solvent: 55% MeOH /45%

138 AAS' Values

Amide Bonded Phase (e.u.) Solvent Tetrahydrofuran (THF)

25% THF ZS'C 30°C 35°C 40°C 45°C

Toluene 1.09 1.11 1.11 1.12 1.11

Ethylbenzene 2.22 2.27 2.27 2.27 2.26 Isopropylbenzene 3.74 3.78 3.80 3.77 3.75

35% THF 25°C 30°C 35°C 40°C 45°C

Toluene 1.06 1.07 1.07 1.07 1.06

Ethylbenzene 2.16 2.17 2.18 2.19 2.15 Isopropylbenzene 2.26 2.29 2.66 2.67 2.28

139

r.AAS' Values Phenyl Bonded Phase (e.u.)

Solvent Methanol (MeOH)

55% MeOH ZS'C 30°C 35'C 40"'C 45''C

Toluene .03 .03 .03 .04 .03

Ethylbenzene .20 .18 .21 .22 ,18

Isopropylbenzene -.05 -.05 -.05 -.02 -.06 Solvent Tetrahydrofuran (THF)

40% THF 25°C 30°C SS'C 40''C 45 °C

Toluene .69 .72 .70 .70 .70

Ethylbenzene 1.21 1.23 1.22 1.21 1.22

Isopropylbenzene .94 .99 .95 .98 .95

140

25°C 30% MeOH

AAS' Values

Benzyl Alcohol Acetophenone

5% ODS -1.08 ^ 0.00 .

Benzyl Alcohol Acetophenone 5% ODS

APPENDIX 5

THEORETICAL PLATE MEASUREMENTS

N = 5.54

H = L/N

number of theoretical plates

height equivalent of a theoretical plate column length

retention time

width of the peak at half height

141

5% ODS

5% ODS

10% ODS

H (cm)

H (cm)

20% ODS

148

149

150 H (cm)

Amide Bonded Phase

2 5 ° C 3 5 ' ' C A S ' C

25% THF

y = .39 cm/sec Benzene .07 .06 .06

Toluene .05 .04 .04

Ethylbenzene .04 .04 .04

y = .46 cm/sec Benzene .07 .06 .06

Toluene .05 .05 .05

Ethylbenzene .05 .04 .05

p = .54 cm/sec Benzene .06 .07 .07

Toluene .05 .05 .05

Ethylbenzene .05 .04 .04

25% THF

y = .39 cm/sec Benzyl Alcohol .07 .08 .08

Acetophenone .07 .07 .08

Phenol .06 .07 .07

p = .46 cm/sec Benzyl Alcohol .07 .10 .08

Acetophenone .07 .08 .08

Phenol .07 .07 .08

y = .54 cm/sec Benzyl Alcohol .09 .09 .09

Acetophenone .09 .09 .09

Phenol .07 .08 .08

Amide Bonded Phase

APPENDIX 6

RETENTION ERRORS

Errors in the retention measurements are primarily due to fluctuations in the flow rate of the mobile phase. These fluctuations can be classified as short term and long term variations.

Short term or run to run variations in retention measurements are normally 2% or less. Long term or day to day reproducibility in retention measurements is usually not greater than 5%.

All retention data presented is an average of 2 runs if the variations in retention were 2% or less. If the variations were greater then a 3 run average was used.

152

REFERENCES

1. V. Rehak, and E. Smolkova. Review of chemically bonded sta­

tionary phases. Chromatographia, 9^, 219 (1976).

2. Kitka, E. J., Jr., and E. Gruska. Retention behavior on alkyl bonded stationary phases in liquid"chromatography. Anal. Chem.,

1098-1104 (1976).

3. Gurkin, M. Reversed phase chromatography-sorbents and approaches.

Amer. Lab., 9, 29-33 (1977).

4. Majors, R. E. Recent advances in high performance liquid

chromatography packings; and columns. Amer. Lab., 13-^39 (1975).

5. Howard, G. A. and Am J. P. Martin. The separation of fatty acid by reversed phase partition chromatography. Biochem. J.,

532-538 (1952).

6. Knox, J. H., and A. Pryde. Performance and selected applications of a new range of chemically bonded packing materials in HPLC.

J. Chrom., 2^, 171-188 (1975).

7. Bakalyer, S. R. Mobile phases for high performance liquid chromatography, Amer. Lab.,; 10, 43-61 (1978).

8. Scott, R. P. W., and P. Kucera. Examination of five commercially available liquid chromatographic reversed phases (including the nature of the solute-solvent-stationary phase interactions associated with them). J. Chrom., 142, 213-232

9. Colin, H., and G. Guiochon, Comparison of some packings for reversed-phase high-performance liquid-solid chromatography.

J. Chrom., 3^, 183-205 (1979).

10. Horvath, C., and W. Melander. Reversed-phase chromatography and the hydrophobic effect, Amer. Lab., Oct. 1978.

11. Fransson, B., K. G. Wahlund, I. M. Johansson, and G. Schill. Ion-pair chromatography of acidic drug metabolites and endogenic compounds. J. Chrom., 125, 327-344 (1976).

12. Unger, K., Structure of porous adsorbents. Angen. Chem. internat.

Ed., 11, 267-278 (1972).

153

154 13. Snyder, L. R., and J. W. Ward. The surface structure of porous

silica. J. Phys. Chem., 70, 3941-3952 (1966).

14. Gilpin, R. K., and M. F. Burke. The role of tri- and dimethyl-silanes in tailoring chromatographic adsorbents. Anal. Chem.,

1383-1389 (1973).

15. Peri, J. B. Infrared structures of OH and NH„ groups on the surface of dry silica aerogel. J. Phys. Cnem., 70, 2937-2945 (1966).

16. Peri, J. B. The surface structure of silica gel. J. Phys. Chem., 72, 2926-2933 (1968).

17. Unger, K., and E. Gallei. Hydroxylgruppenbestimmung an silica-geloberflachen. Kolloid Z. U. Z. Polymere, 237, 358 (1970).

18. Unger, K., W. Thomas, and P. Adrian. Herstellung oberflachen-modifizierter adsorbentien. Kolloid Z. U. Z. Polymere, 251, 45-52 (1973).

19. Gilpin, R. K. Studies of tailored chromatographic adsorbents.

Ph.D. Dissertation. University of Arizona, Tucson (1973).

20. Karch, K., I. Sebastian, and I. Halasz. Preparation and properties of reversed phases. J. Chrom. 122, 3-16 (1976).

21. Iler, R. K. The colloid chemistry of silica and silicates.

Cornell University Press, Ithaca, N. Y. (1955).

22. Kieselev, A. V. and Y. I. Yashin. Gas adsorption chromatography.

Plenum Press, New York (1969).

23. Boehm, H. P. Functional groups on the surface of solids. Angew.

Chem. Inter. Edit., 533-544 (1966).

24. Sears, G. W., Jr. Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Anal.

Chem., 2B, 1981-1983 (1956),

25. Boehm, H. P., M. Schneider, and F. Arendt. Der Wassergehalt

"Getrockneter" silicumdioxydoberflachen. Z. Anorg. Allg. Chem., 320, 43-53 (1963).

26. Wartmann, J., and H. Deuel. Organische derivative des silikagels mit Si-C bindung II. Helv. Chim. Acta., 42, 1166-1170 (1959).

27. Locke, D. C., J. T. Schmermund, and B. Banner. Bonded stationary phases for chromatography. Anal. Chem., 44, 90-92 (1972).

155

28. Halasz, I., and I. Sebastian. Neue stationary phase fur die chromatographie. Angew. Chem., 81, 464 (1969).

29. Deuel, H., J. Wartmann, K. Hutschnecker, U. Sobinger, and C.

Gudel. Organische derivative des silikagels mit Si-O-C bindung I. Helv. Chem. Acta., 1160-1165 (1959).

30. Cusa, N. W., and F. S. Cipping. Organic derivatives of silicon Part XLVIII. J. Chem. Soc., 1040-1043 (1933).

31. Folman, L. Infra-red studies of NH„ adsorption on chlorinated porous vycor glass. Trans. Faraday Soc., 57, 2000-2006 (1961).

32. Berg, K., and K. Unger. Herstellung oberflachenmodifzierter adsorbentien. Kolloid Z. U. Z. Polymere, 246, 682-687 (1971).

33. Unger, K., and P. Ringe. Surface modified silica gels as porous material for GPC. J. Chrom. Sci., £, 463-466 (1971).

34. Unger, K. Structure of porous adsorbents. Angew. Chem. Inter.

Edit,

n,

267-278 (1972).

35. Unger, K., N. Becker, and R. Roumeliotis. Recent developments in the evaluation of chemically bonded silica packings for liquid chromatography. J. Chrom. 125, 115-127 (1976).

36. Hemetsberger, H., W. Maasfeld, and H. Ricken. The effect of chain length of bonded organic phases in reversed phase high per­

formance liquid chromatography. Chromatographia, 303-310 (1976).

37. Kirkland, J. J. Microparticles with bonded hydrocarbon phases for high performance reverse phase liquid chromatography.

Chromatographia, 8^, 661-668 (1975).

38. Gaudzik, J., and Z. Suprynowicz. Studies of chromatographic packings comprising chemically bonded phases obtained from porous glass beads. J. Chrom., 131, 7-18 (1977).

39. Gilpin, R. K., J. A. Korpi, and C. Z. Janiki. On-column prepara­

tion of bonded phases for high pressure liquid chromatography.

Anal. Chem., 1314-1316 (1974).

40. Gilpin, R. K, D. J. Camillo, and C. A. Janicki. Preparation and use of in situ chemically bonded small-particle silica as packings in high pressure liquid chromatography. J. Chrom., 121. 13-22 (1976).

41. Arkles, B. Tailoring surfaces with silanes. Chemtech., 7_, 766-778 (1977).

156 42. Majors, R. E., and M. J. Hopper. Studies of siloxane phases

bonded to silica gel for use in high performance liquid chromatography. J. Chrom. Sci., 12, 767-778 (1974).

43. Barry, R. A., Chemist, retired from Dow Coming, Personal Communication.

44. Karger, B. L., L. R. Snyder, and C. Horvath. An introduction to separation science. J. Wiley and Sons, New York (1973).

45. Scott, R. P. W. Contemporary liquid chromatography. J. Wiley and Sons, New York (1976).

46. Horvath, C., and W. Melander. J. Chrom Sci., 393 (1977).

47. Martin, A. J. P., and R. L. M. Synge. A new form of the chromato-gram using two liquid phases. Biochem. J., 35, 1358-1368 (1941).

48. van Deempter, J. J., F., J. Zuiderweg, and A. Klinkenberg.

Longitudinal diffusion and resistance to mass transfer as causes of monideality in chromatography. Chem. Engr. Sci., _5, 271-289 (1952).

49. van Gerven, L. (ed.) Nuclear magnetic resonance in solids.

Plenum Press, New York (1977).

50. Pines, A., M. G. Gibby, and J. S. Waugh. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys., 59, 569-590

51. Kaplan, S., H. A. Resing, and J. S. Waugh. 13 C NMR chemical shift anisotropy for benzene adsorbed on charcoal and silica gel.

J. Chem. Phys., 59, 5681-5687 (1974).

52. Chang, J. J., A. Pines, J. J. Fripiat, and H. A. Resing. Quali­

tative analysis of chemisorbed molecular speices via ^^C NMR.

Surface Science, t£}_, 661-665 (1975).

53. Little, C. J., A. D. Dale, Y. A. Whatley, and M. B. Evans.

Optimization of reaction conditions for the preparation of chemically bonded supports. I. J. Chrom., 171, 431-434 (1979).

54. Carman, Trans. For. Soc., 3^, 964 (1940). Title not available.

55. Johnson, E. L., and R. Stevenson. Basic liquid chromatography.

Varian Associates Inc., Palo Alto, Ca.

56. linger, K. Porous silica. J. Chrom. Library, Vol. 16, Elsevier, New York (1979).

157 57. Tilly-Mellin, A., Y. Askermark, K. G. Whalund, and Goran Schill.

Retention behavior of carboxylic acids and their quaternary ammonium ion pairs in reversed phase chromatography with acetonitrile as organic modifier in the mobile phase. Anal.

Chem., 976-983 (1979).

58. Savage, M. Viscosity data, Altex Instrument, Co.

59. Cline, S. Chromatographic characterization of chemically modified open tubular column. Ph.D. Dissertation, University of

Arizona, Tucson (1979).

60. Elias, Hans-Gerog, Macromolecules I, Plenum Press, New York (1969).

61. Hibi, K. Studies of open tubular microcapillary liquid chroma­

tography. J. Chrom., 175, 105-111 (1979).

62. Giddings, J. C. Dynamics of chromatography Part 1. Principles and theory. Marcel Dekker, New York (1965).

In document THE CHARACTERIZATION OF BONDED PHASES FOR HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (Page 153-172)