Notes and references

In document Stereochemical Control in Complex Molecule Synthesis (Page 40-43)

1 (a) H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner and M. Studer, Adv. Synth. Catal., 2003, 345, 103; (b) J. G. de Vries and C. J. Elsevier, Handbook of Homo- geneous Hydrogenation, Wiley-VCH, Weinheim, 2007; (c) S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, John Wiley and Sons, New York, 2001.

2 The development of metal-free hydrogenation systems is an emerging area that is likely to assume considerable signifi- cance in due course. For a recent review see: L. J. Hounjet and D. W. Stephan,Org. Process Res. Dev., 2014,18, 385. 3 For useful historical introductions see: (a) M. Raney, Ind.

Eng. Chem., 1940, 32, 1199; (b) D. S. Tarbell and A. T. Tarbell,J. Chem. Educ., 1977,54, 26.

4 M. Raney,U.S. Pat., 1,628,190, 1927. 5 M. Raney,U.S. Pat., 1,915,473, 1933.

6 See the Johnson Matthey website for information on com- mercially available sponge metal catalysts: http://www.jmca- talysts.com/pct/marketshome.asp?marketid=241 (accessed March 2014).

7 A. J. Smith, L. O. Garciano II, T. Tran and M. S. Wainwright,

Ind. Eng. Chem. Res., 2008,47, 1409.

8 H. Adkins,Reactions of Hydrogen with Organic Compounds Over Copper-Chromium Oxide and Nickel Catalysts, The Uni- versity of Wisconsin Press, Madison, 1937.

9 (a) H. Adkins and A. A. Pavlic,J. Am. Chem. Soc., 1947,69, 3039; (b) H. Adkins and H. R. Billica,J. Am. Chem. Soc., 1948, 70, 695; (c) H. Adkins and H. R. Billica,J. Am. Chem. Soc., 1948,70, 3118; (d) H. Adkins and H. R. Billica,J. Am. Chem. Soc., 1948,70, 3121 See, also: (e) R. Mozingo,Org. Synth., 1941, 21, 15; (f) H. R. Billica and H. Adkins, Org. Synth., 1949, 29, 24; (g) A. I. Vogel,A Text Book of Practical Organic Chemistry, Longmans, London, 3rd edn, 1956, pp. 870–872. 10 T.-K. Yang and D.-S. Lee, Raney Nickel, in Handbook of

Reagents for Organic Synthesis: Oxidizing and Reducing Agents, ed. S. D. Burke and R. L. Danheiser, John Wiley and Sons, Chichester, UK, 1999.

11 See ref. 1c, pp. 24–25.

12 W. Reeve and W. M. Eareckson III,J. Am. Chem. Soc., 1950, 72, 3299.

Scheme 20

Review Organic & Biomolecular Chemistry

7442|Org. Biomol. Chem., 2014,12, 7433–7444 This journal is © The Royal Society of Chemistry 2014

Published on 17 June 2014. Downloaded by Australian National University on 04/11/2015 01:14:11.

View Article Online

13 A. J. Chadwell Jr. and H. A. Smith,J. Phys. Chem., 1956,60, 1339.

14 The nature of the alkali-leaching process used to remove Al from the Co–Al alloy and its impact on the properties of the RANEY® cobalt so-formed has been the subject of a number of studies: (a) J. P. Orchard, A. D. Tomsett, M. S. Wainwright and D. J. Young,J. Catal., 1983,84, 189; (b) S. Nishimura, M. Kawashima, S. Inoue, S. Takeoka, M. Shimizu and Y. Takagi, Appl. Catal., 1991, 76, 19; (c) K. Abaciouğlu and Y. Salt, React. Kinet., Mech. Catal., 2010,101, 163.

15 B. V. Aller,J. Appl. Chem., 1957,7, 130.

16 G. M. Badger, M. Kowanko and W. H. F. Sasse, J. Chem. Soc., 1959, 440.

17 Nickel-free cobalt–aluminium alloy (12.0 g of 3 : 7 w/w material provided as a <150 micron powder by Goodfellow, Cambridge, UK18) was added to a magnetically stirred solu- tion of sodium hydroxide (25.0 g, 0.625 mole) in water (100 mL) maintained under a nitrogen atmosphere at 0 °C (ice-bath) in a 500 mL round-bottomed flask. The rate of addition of the alloy (normally completed withinca.0.5 h) was such that the frothing was contained within the bottom half of the reaction vessel. After addition was com- plete the reaction mixture was stirred at 60 °C for 1 h then cooled and the supernatant liquid decanted. The ensuing slurry was washed with water (6 × 100 mL) and the dark- gray RANEY® cobalt thus obtained was stored under degassed methanol–water (80 mL of a 1 : 1 v/v mixture). Given the magnetic properties of RANEY® cobalt, the important decanting and washing processes just men- tioned can be greatly facilitated by holding a strong magnet to the exterior of the flask containing the material to be washed and thus ensuring that the decant- ing of the supernatant liquid from the solid RANEY® cobalt is a rapid and completely effective process. CAUTION: exposure to cobalt metal, dust or fumes can cause coughing, dyspnea, decreased pulmonary function, dermatitis, respiratory hypersensitivity and/or diffuse nodular fibrosis.

18 See the Goodfellow website for information on commer- cially available cobalt/aluminium alloys: http://www.good- fellow.com/catalogue/GFCatalogue.php?Language=E (accessed March, 2014).

19 We have observed that when the alloy used to prepare RANEY® cobalt contains even rather small amounts (ca. 1–2%) of nickel then the desired chemoselective reduction capacities can be lost.

20 See the Rhodium website archive for information on Urushibara cobalt catalysts: https://www.erowid.org/archive/ rhodium/chemistry/urushibara.cobalt.html (accessed March, 2014).

21 C. Barnett,Ind. Eng. Chem. Prod. Res. Dev., 1969,8, 145. 22 N. Houyi, S. Taichenc and L. Ganzuo, J. Dispersion Sci.

Technol., 1992,13, 647.

23 For an introduction to transfer hydrogenolysis reactions using, among other things, RANEY® nickel and isopropanol

see: R. A. W. Johnstone, A. H. Wilby and I. D. Entwistle,

Chem. Rev., 1985,85, 129.

24 K. Kawashima, T. Saraie, Y. Kawano and T. Ishiguro,Chem. Pharm. Bull., 1978,26, 942.

25 G. M. Badger, N. Kowanko and W. H. F. Sasse,J. Chroma- togr. A, 1964,13, 234.

26 Q. Song, F. Wang and J. Xu, Chem. Commun., 2012, 48, 7019.

27 A. M. Ruppert, K. Weinberg and R. Palkovits,Angew. Chem., Int. Ed., 2012,51, 2564.

28 X. Jin, D. Roy, P. S. Thapa, B. Subramanian and R. V. Chadhari,ACS Sustainable Chem. Eng., 2013,1, 1453. 29 Y. Amada, H. Watanabe, Y. Hirai, Y. Kajikawa, Y. Nakagawa

and K. Tomishige,ChemSusChem, 2012,5, 1991.

30 W. Reeve and J. Christian,J. Am. Chem. Soc., 1956,78, 860. 31 W. Ried and H. Schiller,Chem. Ber., 1953,86, 730.

32 H. K. Noh, J. S. Lee, Y. Kim, G. Hwang, J. H. Chang, H. Shin, D. H. Nam and K. H. Lee,Org. Process Res. Dev., 2004,8, 781.

33 S. H. Tan, M. G. Banwell, A. C. Willis and T. A. Reekie,Org. Lett., 2012,14, 5621.

34 T. A. Reekie, M. G. Banwell and A. C. Willis,J. Org. Chem., 2012,77, 10773.

35 S. H. Tan and M. G. Banwell, unpublished observations. 36 Spectral data for previously unreported compound17: δH

(CD3OD, 400 MHz) 7.32 (d,J7.6 Hz, 1H), 7.23 (d,J8.0 Hz, 1H), 6.99 (m, 1H), 6.93 (m, 1H), 2.87 (s, 3H), 2.85 (s, 3H), 2.73 (t,J7.2 Hz, 2H), 2.66 (d,J15.2 Hz, 1H), 2.59 (s, 2H), 2.57 (d, J 15.2 Hz, 1H), 2.50 (d, J 14.8 Hz, 1H), 2.34 (d,

J 14.8 Hz, 1H), 2.00 (m, 1H), 1.78 (m, 1H), 1.56 (m, 4H), (signals due to NH group protons not observed); δC (CD3OD, 75 MHz) 174.3 (C), 138.1 (C), 134.0 (C), 129.2 (C), 121.5 (CH), 119.3 (CH), 118.1 (CH), 111.5 (CH), 108.5 (C), 43.3 (CH2), 38.5 (CH3), 38.3 (CH2), 37.5 (CH2), 36.0 (CH3), 35.8 (CH2), 33.5 (CH2), 32.8 (CH2), 27.9 (C), 20.9 (CH2); νmax/cm−1(KBr) 3272, 3051, 2926, 2852, 1628, 1492, 1466, 1395, 741; MS (ESI, +ve) 314 [(M+H+), 100%], 297 (18); HRMS Found: M+H+, 314.2226. C19H28N3O requires M+H+, 314.2232. Given the paramagnetic properties of cobalt, the presence of even trace amounts of the metal in samples of product being subjected to NMR analysis will result in dra- matic line broadening.

37 E. J. Lorand and J. E. Reese,U.S. Pat., 2,491,926, 1949. 38 Y.-Z. Chen, B.-J. Liaw and S.-J. Chiang,Appl. Catal., A, 2005,

284, 97.

39 K. Hotta and T. Kubomatsu,Bull. Chem. Soc. Jpn., 1969,42, 1447.

40 K. Hotta and T. Kubomatsu,Bull. Chem. Soc. Jpn., 1972,45, 3118.

41 K. Hotta and T. Kubomatsu,Bull. Chem. Soc. Jpn., 1973,46, 3566.

42 B. Liu, L. Lu, T. Cai and K. Iwatani,Appl. Catal., A, 1999, 180, 105.

43 B. Liu and T. Cai,React. Kinet., Catal. Lett., 2003,80, 21. 44 J.-i. Ishiyama, S. Maeda, K. Takahashi, Y. Senda and

S. Imaizumi,Bull. Chem. Soc. Jpn., 1987,60, 1721.

Organic & Biomolecular Chemistry Review

This journal is © The Royal Society of Chemistry 2014 Org. Biomol. Chem., 2014,12, 7433–7444 |7443

Published on 17 June 2014. Downloaded by Australian National University on 04/11/2015 01:14:11.

View Article Online

45 E. I. Klabunovskii, V. I. Neupokoev, Yu. I. Petrov, A. B. Fasman and G. Kh. Areshidze,Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.), 1980,29, 106 (translated fromIzv. Akad. Nauk SSSR, Ser. Khim., 1980, 121).

46 See, for example: R. Noyori and T. Ohkuma,Angew. Chem., Int. Ed., 2001,40, 40.

47 H. P. Liao and W. B. Tuemmler,U.S. Pat., 3,092,638, 1963. 48 C. de Bellefon and P. Fouilloux,Catal. Rev. Sci. Eng., 1994,

36, 459.

49 M. Levine and R. Sedlecky,J. Org. Chem., 1959,24, 115. 50 (a) M. Freifelder, J. Am. Chem. Soc., 1960, 82, 2386;

(b) J. v. Braun, G. Blessing and F. Zobel,Ber. Dtsch. Chem. Ges., 1923,56, 1988.

51 P. Schärringer, T. E. Müller and J. A. Lercher, J. Catal., 2008,253, 167.

52 R. J. Allain and G. D. Smith,U.S. Pat., 4,375,003, 1983. 53 T. A. Johnson,U.S. Pat., 5,869,653, 1999.

54 G. F. Deebel,U.S. Pat., 2,953,490, 1960.

55 J. Zhu, B. A. Price, J. Walker and S. X. Zhao,Tetrahedron Lett., 2005,46, 2795.

56 F. Gosselin, R. A. Britton, I. W. Davies, S. J. Dolman, D. Gauvreau, R. S. Hoerrner, G. Hughes, J. Janey, S. Lau, C. Molinaro, C. Nadeau, P. D. O’Shea, M. Palucki and R. Sidler,J. Org. Chem., 2010,75, 4154.

57 K. R. Lassila,U.S. Pat., 5,847,220, 1998.

58 (a) P. Kukula, M. Studer and H.-U. Blaser, Adv. Synth. Catal., 2004, 346, 1487; (b) K. Fukatsu, O. Uchikawa, M. Kawada, T. Yamano, M. Yamashita, K. Kato, K. Hirai, S. Hinuma, M. Miyamoto and S. Ohkawa, J. Med. Chem., 2002,45, 4212.

59 P. Kukula and K. Koprivova,J. Catal., 2005,234, 161. 60 E. M. M. de Brabander-van den Berg and E. W. Meijer,

Angew. Chem., Int. Ed. Engl., 1993,32, 1308.

61 D. L. Verraest, E. Zitha-Bovens, J. A. Peters and H. van Bekkum,Carbohydr. Res., 1998,310, 109.

62 C. V. Stevens, A. Meriggi and K. Booten,Biomacromolecules, 2001,2, 1.

63 W. J. Houlihan and D. R. Moore,U.S. Pat., 3,405,185, 1968. 64 L. O. Garciano II, N. H. Tran, G. S. K. Kannangara,

A. S. Milev, M. A. Wilson and H. Volk,React. Kinet., Mech. Catal., 2013,108, 127.

65 B. V. Aller,J. Appl. Chem., 1958,8, 492.

66 T. A. Reekie and M. G. Banwell, unpublished observations. 67 B. H. Gross, R. C. Mebane and D. L. Armstrong, Appl.

Catal., A, 2001,219, 281.

68 (a) S. G. Harsy, U.S. Pat., 4,990,666, 1991; (b) Y. Zhang, G. Bai, Y. Li, X. Yan and L. Chen,J. Mol. Catal. A: Chem., 2006,255, 269.

69 F. Nomoto, Y. Hirayama, M. Ikunaka, T. Inoue and K. Otsuka,Tetrahedron: Asymmetry, 2003,14, 1871.

70 A. N. Parvulescu, P. A. Jacobs and D. E. De Vos,Adv. Synth. Catal., 2008,350, 113.

71 J. Falbe and F. Korte,Angew. Chem., Int. Ed. Engl., 1962,1, 266.

72 J.-L. Muller, A. Rickers and W. Leitner,Adv. Synth. Catal., 2007,349, 287.

73 A. Ionkin, S. Solek, H. Bryndza and T. Koch, Catal. Lett., 1999,61, 139.

74 H. Adkins and G. Krsek,J. Am. Chem. Soc., 1948,70, 383. 75 M. J. Culver and L. H. Bock,U.S. Pat., 2,605,263, 1952. 76 J. M. Janey, C. J. Orella, E. Njolito, J. M. Baxter, J. D. Rosen,

M. Palucki, R. R. Sidler, W. Li, J. J. Kowal and I. W. Davies,

J. Org. Chem., 2008,73, 3212.

77 L. F. Tietze and N. Rackelmann,Pure Appl. Chem., 2004,76, 1967.

78 M. T. Jones, B. D. Schwartz, A. C. Willis and M. G. Banwell,

Org. Lett., 2009,11, 3506.

79 (a) B. D. Schwartz, M. T. Jones, M. G. Banwell and I. A. Cade, Org. Lett., 2010, 12, 5210; (b) L. V. White, B. D. Schwartz, M. G. Banwell and A. C. Willis, J. Org. Chem., 2011, 76, 6250; (c) B. D. Schwartz, L. V. White, M. G. Banwell and A. C. Willis, J. Org. Chem., 2011, 76, 8560.

80 M. J. Harper,U.S. Pat., 6,156,694, 2000.

81 (a) A. J. Smith, L. O. Garciano II and T. Tran, Ind. Eng. Chem. Res., 2008, 47, 2518; (b) P. Kukula, V. Gabova, K. Koprivova and P. Trtik,Catal. Today, 2007,121, 27. 82 C. A. Drake,U.S. Pat., 4,248,799, 1981.

83 P. Jowett,U.S. Pat., 4,166,805, 1979.

84 H. H. von Doehren and M. Jüng,U.S. Pat., 3,379,635, 1968. 85 A. Chojecki, H. Jobic, A. Jentys, T. E. Müller and

J. A. Lercher,Catal. Lett., 2004,97, 155.

86 P. Schärringer, T. E. Müller, A. Jentys and J. A. Lercher,

J. Catal., 2009,263, 34.

87 See the Sigma-Aldrich website for information on commer- cial non-availability of RANEY® cobalt catalysts: http:// www.sigmaaldrich.com/catalog/product/aldrich/510084? lang=en&region=AU (accessed April, 2014).

88 L. V. White and M. G. Banwell, to be published.

89 The conversion63→64was carried out as follows: A mag- netically stirred solution of compound 63 (40 mg, 0.10 mmol) in methanol (10 mL) containingp-TsOH·H2O (86 mg, 0.50 mmol) was treated with RANEY® cobalt (80 mg, 200% w/w) and the resulting mixture subjected to a degassing/dihydrogen flushing protocol (three times) then heated at 40 °C whilst being maintained under an atmosphere of dihydrogen (contained in a balloon) for 6 h. The cooled reaction mixture was rendered basic through the addition of ammonia-saturated methanol (ca. 25 mL) then filtered through Celite™. The residues thus retained were washed with additional ammonia-saturated methanol (3 × 25 mL) and these washings were also filtered through Celite™. The combined filtrates were concentrated under reduced pressure and the residue thus obtained subjected to flash chromatography (silica, 1 : 9 v/v ammonia-saturated methanol–dichloromethane). Concentration of the relevant fractions (Rf = 0.6) then afforded compound 64 (25 mg, 71%) as a clear, colourless oil.

90 For an up-to-date point-of-entry into the literature on this important alkaloid see: L. V. White, M. G. Banwell and A. C. Willis,Heterocycles, 2014, DOI: 10.3987/COM-14-S(K) 19.

Review Organic & Biomolecular Chemistry

7444| Org. Biomol. Chem., 2014,12, 7433–7444 This journal is © The Royal Society of Chemistry 2014

Published on 17 June 2014. Downloaded by Australian National University on 04/11/2015 01:14:11.

View Article Online

Publication 2

A Chemoenzymatic Route to Enantiomerically Pure and Highly Functionalized

In document Stereochemical Control in Complex Molecule Synthesis (Page 40-43)