• No results found

THE OXIDE AND SULFIDE CATALYSTS OF TRANSITION METALS OTHER THAN RHENIUM

The transition metal oxides or sulfides catalyze various reactions related to hydro-genation and hydrogenolysis, although at relatively high temperatures and pressures.

Compared to metallic catalysts, they are resistant to poisons and stable at high tem-peratures. Industrially, they are often used as mixed oxides or sulfides. For example, the most common catalyst used in the hydrodesulfurization process is a mixture of co-balt and molybdenum oxides supported on γ-alumina, which is sulfided before use.

Nickel–molybdenum and nickel–tungsten oxides are also known as effective catalyst systems for this process.213 Molybdenum sulfides are active for the hydrogenolysis of aldehydes, ketones, phenols, and carboxylic acids to the corresponding hydrocar-bons,214 and also effective for the hydrogenolysis of sulfur-containing compounds (see, e.g., eqs. 13.96, 13.97, and 13.99).

The sulfides of the platinum metals have been found to be active at lower tempera-tures than required for the base metal sulfides. They are insensitive to poisons and have proved particularly useful for hydrogenations in the presence of impurities, for the hydrogenation of sulfur-containing compounds, and for selective hydrogenation of halogen-containing aromatic nitro compounds (Section 9.3.2).215

Molybdenum Oxides. Molybdenum oxide catalysts are prepared by the addition of hydrochloric acid to an ammoniacal solution of molybdic acid or ammonium molybdate. By heating to 400–500°C the molybdate is decomposed to the oxide.216 MoO3 is reduced to MoO2 in a stream of hydrogen at 300–400°C.

Molybdenum Sulfides.217 MoS3: to a solution of 100 g (0.081 mol) of ammonium molybdate(VI), (NH4)6Mo7O24 ⋅ 4H2O, dissolved in 300 ml of distilled water, is added

1.7 THE OXIDE AND SULFIDE CATALYSTS OF TRANSITION METALS OTHER THAN RHENIUM 43

1 liter of aqueous solution of ammonia (d = 0.94), hydrogen sulfide gas is introduced into the solution until saturated under cooling, and the solution is left overnight. The crystals of ammonium thiomolybdate thus formed are collected. An aqueous solution of the thiomolybdate is acidified, with stirring, with a dilute sulfuric acid solution.

After further stirring for 1 h, the suspension is left overnight. The precipitate is well washed with water by decantation, filtered off under suction, and then dried at 70–80°C. MoS2 is obtained by reduction of MoS3 with hydrogen at 350–380°C and 6 MPa for 6 h.

Platinum Metal Sulfides. These are usually prepared by passing hydrogen sulfide gas into an acid solution of metal chlorides or by heating fine metals in a stream of hydrogen sulfide.218

REFERENCES

1. Maxted, E. B.; Moon, K. L.; Overgage, E. Disc. Faraday Soc. 1950, 8, 135.

2. Ueno, A.; Suzuki, H.; Kotera, Y. J. Chem. Soc., Faraday Trans. 1 1983, 79, 127.

3. Pearson, I. M.; Ryu, H.; Wong, W. C.; Nobe, K. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 381.

4. Ellis, C. Hydrogenation of Organic Substances, 3rd ed.; Van Nostrand: New York, 1930; pp 112–156.

5. Sabatier, P.; Senderens, J.-B. Ann. Chim. Phys. 1905, 4(8), 319.

6. Senderens, J.-B.; Aboulenc, J. Bull. Soc. Chim. Fr. 1912, 11(4), 641.

7. Sabatier, P.; Espil, L. Bull. Soc. Chim. Fr. 1914, 15(4), 779.

8. Benton, A. F.; Emmett, P. H. J. Am. Chem. Soc. 1924, 46, 2728.

9. Ellis, C. Ref. 4, p 115.

10. Shukoff, A. A. Ger. Pat. 241, 823 (1910) [CA (Chem. Abstr.) 1912, 6, 2145].

11. Brochet, A. Bull. Soc. Chim. Fr. 1920, 27, 897, 899; Compt. Rend. 1922, 175, 816.

12. Raney, M. U.S. Pat. 1,563,587 (1925) [CA 1926, 20, 515]; 1,628,190 (1927) [CA 1927, 21, 2116]; 1,915,473 (1933) [CA 1933, 27, 4361].

13. Thomas, R. J. Soc. Chem. Ind. 1923, 17, 21T.

14. Urushibara, Y. Bull. Chem. Soc. Jpn. 1952, 25, 280.

15. Urushibara, Y.; Nishimura, S. Bull. Chem. Soc. Jpn. 1954, 27, 480.

16. Urushibara, Y.; Nishimura, S.; Uehara, H. Bull. Chem. Soc. Jpn. 1955, 28, 446.

17. Paul, R.; Buisson, P.; Joseph, N. Ind. Eng. Chem. 1952, 44, 1006.

18. Brown, C. A.; Brown, H. C. J. Am. Chem. Soc. 1963, 85, 1003.

19. Brown, H. C.; Brown, C. A. J. Am. Chem. Soc. 1963, 85, 1005.

20. Ellis, C. Ref. 4, p 147 (reduction with sodium phosphinate).

21. Watt, G. W.; Davies, D. D. J. Am. Chem. Soc. 1948, 70, 3753; Watt, G. W.; Mayfield, P. I. J. Am. Chem. Soc. 1953, 75, 1760 (reduction of NiBr2 with alkali metals in liquid ammonia).

22. Brunet, J. J.; Gallois, P.; Caubere, P. Tetrahedron Lett. 1977, 3955 [reduction of Ni(OAc)2 with NaH-t-AmOH].

23. Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1981, 46, 5340 (reduction of NiBr2 ⋅ DME by potassium–graphite).

24. Mauret, P.; Alphonse, P. J. Org. Chem. 1982, 47, 3322 (reduction of Ni halide with Na, Mg, or Zn in THF or EtOH).

25. Kelber, C. Ber. Dtsch. Chem. Ges. 1916, 49, 55.

26. Armstrong, E. F.; Hilditch, T. P. Proc. Roy. Soc. 1921, A99, 490.

27. Gauger, A. W.; Taylor, H. S. J. Am. Chem. Soc. 1923, 45, 920.

28. Adkins, H.; Cramer, H. I. J. Am. Chem. Soc. 1930, 52, 4349.

29. Adkins, H.; Covert, L. W. J. Phys. Chem. 1931, 35, 1684.

30. Covert, L. W.; Connor, R.; Adkins, H. J. Am. Chem. Soc. 1932, 54, 1651.

31. Dean, J. G. Ind. Eng. Chem. 1952, 44, 985.

32. Adkins, H. Reactions of Hydrogen with Organic Compounds over Copper-Chromium Oxide and Nickel Catalysts; Univ. Wisconsin Press: Madison, 1937; p 15.

33. Bailey, A. E. Ind. Eng. Chem. 1952, 44, 990.

34. Ellis, C. Ref. 4, pp 138–139.

35. Hall, W. K.; Emmett, P. H. J. Am. Chem. Soc. 1959, 63, 1102 and references cited therein.

36. Takai, E.; Yamanaka, T. Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 1961, 55, 194 and references cited therein.

37. Dewar, J.; Liebmann, A. Br. Pat. 12,981; 12,982 (1913) [CA 1914, 8, 3843; 3869]; U.S.

Pat. 1,275,405 (1918) [CA 1918, 27, 2139].

38. Scaros, M. G.; Dryden, Jr., H. L.; Westrich, J. P.; Goodmonson, O. J.; Pilney, J. R. in Catalysis of Organic Reactions; Rylander, P. N.; Greenfield, H.; Augustine, R. L., Eds.;

Marcel Dekker: New York, 1988; p 419.

39. Balandin, A. A.; Grigoryan, E. S.; Yanysheva, Z. S. Acta Physicochim. URSS 1940, 12, 737 [J. Gen. Chem. (USSR) 1940, 10, 1031] [CA 1941, 35, 9609].

40. Bircumshaw, L. L.; Edwards, J. J. Chem. Soc. 1950, 1800.

41. Sasa, T. J. Soc. Org. Synth. Chem (Jpn.) 1953, 11, 463 [CA 1955, 49, 919c].

42. Wurster, O. H. Ind. Eng. Chem. 1940, 32, 1193.

43. Ellis, C. U.S. Pat. 1,482,740 (1924) [CA 1924, 18, 1061].

44. Cornubert, R.; Borrel, C. Bull. Soc. Chim. Fr. 1930, 47(4), 301.

45. Allisson, F.; Comte, J. L.; Fierz-David, H. E. Helv. Chim. Acta 1951, 34, 818.

46. For earlier reviews, see (a) Raney, M. Ind. Eng. Chem. 1940, 32, 1199; (b) Schröter, R.

Angew. Chem. 1941, 54, 229; (c) Lieber, E.; Morritz, F. L. Adv. Catal. 1953, 5, 417.

47. Covert, L. W.; Adkins, H. J. Am. Chem. Soc. 1932, 54, 4116.

48. Mozingo, R. Org. Synth., Coll. Vol. 1955, 3, 181.

49. Adkins, H.; Pavlic, A. A. J. Am. Chem. Soc. 1947, 69, 3039.

50. Paul, R.; Hilly, G. Bull. Soc. Chim. Fr. 1936, 3(5), 2330.

51. Pavlic, A. A.; Adkins, H. J. Am. Chem. Soc. 1946, 68, 1471.

52. Adkins, H.; Billica, H. R. J. Am. Chem. Soc. 1948, 70, 695.

53. Billica, H. R.; Adkins, H. Org. Synth., Coll. Vol. 1955, 3, 176.

REFERENCES 45

54. Nishimura, S.; Urushibara, Y. Bull. Chem. Soc. Jpn. 1957, 30, 199; see also (a) Fischer, F.; Meyer, K. Ber. Dtsch. Chem. Ges. 1934, 67, 253; (b) Maxted, E. B.; Titt, R. A. J. Soc.

Chem. Ind. 1938, 57, 197; (c) Yasumura, J. Kagaku to Kogyo (Sci. Ind.) 1948, 22, 197;

(d) Cornubert, R.; Phélisse, J. Bull. Soc. Chim. Fr. 1952, 19(5), 399.

55. Nishimura, S. Bull. Chem. Soc. Jpn. 1959, 32, 61.

56. Dirksen, H. A.; Linden, H. R. Res. Bull. Inst. Gas Technol. Chicago 1963, 31, 32.

57. Taira, S.; Kuroda, A. Jpn. Pat. 68–15,059 (1968); 69-09,459 (1969) [CA 1969, 71, 123602w].

58. Nishimura, S.; Ikeda, S.; Kinoshita, M.; Kawashima, M. Bull. Chem. Soc. Jpn. 1985, 58, 391.

59. Nishimura, S.; Kawashima, M.; Inoue, S. Takeoka, S.; Shimizu, M.; Takagi, Y. Appl.

Catal. 1991, 76, 19.

60. Takeoka, S. Hyomen 1986, 24, 143.

61. Freel, J.; Pieters, W. J. M.; Anderson, R. B. J. Catal. 1970, 16, 281 and references cited therein.

62. Montgomery, S. R. in Catalysis of Organic Reactions; Moser, W. R., Ed.; Marcel Dekker: New York, 1981, p 383 and references cited therein.

63. Paul, R. Bull. Soc. Chim. Fr. 1946, 13(5), 208.

64. (a) Sokol’skii, D. V.; Shcheglov, N. I.; Tolstikova, L. F. Vestnik Akad. Nauk Kazakh.

SSR 1959, 15, 92 [CA 1960, 54, 10944g]; (b) Shcheglov, N. I.; Sokol’skii, D. V. Trudy Inst. Khim. Nauk, Akad. Nauk Kazakh. SSR 1959, 5, 92 [CA 1960, 54, 15762g]; (c) Lainer, D. I.; Emel’yanov, L. G. Trudy Gosudarst. Nauch.-Issledovatel. i Proekt. Inst.

po Obrabotke Tsvetnykh Metal. 1960, 262 [CA 1961, 55, 17951b].

65. Ishikawa, J. Nippon Kagaku Zasshi 1960, 81, 837, 842 [CA 1960, 54, 24471g]; 1960, 81, 1179, 1187, 1354 [CA 1961, 55, 12701e–i]; 1960, 81, 1629 [CA 1961, 55, 7003h].

66. Delépine, M.; Horeau, A. Compt. Rend. 1935, 201, 1301; 1936, 202, 995; Bull. Soc.

Chim. Fr. 1937, 4(5), 31.

67. Lieber, E.; Smith, G. B. L. J. Am. Chem. Soc. 1936, 58, 1417.

68. Samuelsen, G. S.; Garik, V. L.; Smith, G. B. L. J. Am. Chem. Soc. 1950, 72, 3872.

69. Scholnik, S. S.; Reasenberg, J. R.; Lieber, E.; Smith, G. B. L. J. Am. Chem. Soc. 1941, 63, 1192.

70. Blance, R. B.; Gibson, D. T. J. Chem. Soc. 1954, 2487.

71. Voris, S. S.; Spoerri, P. E. J. Am. Chem. Soc. 1938, 60, 935.

72. Décombe, J. Compt. Rend. 1946, 222, 90.

73. Hata, K. Urushibara Catalysts; Univ. Tokyo Press: Tokyo, 1971.

74. Urushibara, Y.; Kobayashi, M.; Nishimura, S.; Uehara, H. Shokubai, 1956, 12, 107.

75. Jacob, I.; Fisher, M.; Hadari, Z.; Herskowitz, M.; Wisniak, J.; Shamir, N.; Mintz, M. H.

J. Catal. 1986, 101, 28.

76. Mochalov, K. N.; Tremasov, N. V.; Shifrin, Kh. V. Tr. Kazansk. Khim.-Technol. Inst.

1964, 33, 95 [CA 1966, 64, 18930g].

77. Brown, C. A. J. Org. Chem. 1970, 35, 1900.

78. Brown, C. A.; Ahuja, V. K. J. Org. Chem. 1973, 38, 2226; J. Chem. Soc., Chem.

Commun. 1973, 553.

79. Nitta, Y.; Imanaka, T.; Teranishi, S. Bull. Chem. Soc. Jpn. 1981, 54, 3579.

80. Schreifels, J. A.; Maybury, P. C.; Swartz, Jr., W. E. J. Catal. 1980, 65, 195.

81. Strohmeier, W.; Pföhler, M.; Steigerwald, H. Z. Naturforsch. 1977, 32b, 1461.

82. Nishimura, S.; Kawashima, M.; Onuki, A. Unpublished results; Onuki, A. Master’s thesis, Tokyo Univ. Agric. Technol. (1992).

83. Nakano, Y.; Fujishige, S. Chem. Lett. 1979, 995.

84. Nakano, Y.; Fujishige, S. Chem. Lett. 1980, 673.

85. Sada, S.; Shirasaki, T.; Morikawa, K. Kogyo Kgaku Zasshi 1968, 71, 626 [CA 1968, 69, 61847c].

86. Gallois, P.; Brunet, J.-J.; Caubere, P. J. Org. Chem. 1980, 45, 1946.

87. Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1981, 46, 5340.

88. Anderson, R. B. in Catalysis; Emmett, P. H., Ed.; Reinhold: New York, 1956; Vol. 4, p 29.

89. Long, J. H.; Frazer, J. C. W.; Ott, E. J. Am. Chem. Soc. 1934, 56, 1101.

90. Emmett, P. H.; Skau, N. J. Am. Chem. Soc. 1943, 65, 1029.

91. Hüttig, G. F.; Kassler, R. Z. Anorg. Allgem. Chem. 1930, 187, 24.

92. Winans, C. F. Ind. Eng. Chem. 1940, 32, 1215.

93. Barkdoll, A. E.; England, D. C.; Gray, H. W.; Kirk, Jr., W.; Whitman, G. M. J. Am.

Chem. Soc. 1953, 75, 1156.

94. Adam, K.; Haarer, E. Fr. Pat. 1,483,300 (1967) [CA 1968, 68, 21513p].

95. Volf, J.; Pasek, J. in Catalytic Hydrogenation; Cerveny, L., Ed.; Elsevier: Amsterdam, 1986; p 105.

96. Howk, B. W. U.S. Pat. 2,166,152 (1938) [CA 1939, 33, 82115].

97. Faucounau, L. Bull. Soc. Chim. Fr. 1937, 4(5), 63.

98. Dupont, G.; Piganiol, P. Bull. Soc. Chim. Fr. 1939, 6(5), 322.

99. Signaigo, F. K. U.S. Pat. 2,166,183 (1939) [CA 1939, 33, 82117].

100. Aller, B. V. J. Appl. Chem. 1957, 130.

101. Aller, B. V. J. Appl. Chem. 1958, 163.

102. Smith, H. A.; Fuzek, J. F. J. Am. Chem. Soc. 1946, 68, 229.

103. Polkovnikov, B. D.; Freidlin, L. Kh.; Balandin, A. A. Izv. Akad. Nauk SSSR, Otdel.

Khim. Nauk 1959, 1488 [CA 1960, 54, 1264h].

104. Barnett, C. Ind. Eng. Chem. Prod. Res. Dev. 1969, 8, 145.

105. Saito, S. J. Pharm. Soc. Jpn. 1956, 76, 351 [CA 1956, 50, 8941g].

106. Nishimura, S.; Sugimori, A. Nippon Kagaku Zasshi 1960, 81, 314 [CA 1962, 56, 364c].

107. Sabatier, P.; Kubota, B. Compt. Rend. 1921, 172, 733.

108. Sabatier, P.; Senderens, J.-B. Ref. 5, p 368.

109. Pease, R. N.; Purdum, R. B. J. Am. Chem. Soc. 1925, 47, 1435.

110. Ipatieff, V. N.; Corson, B. B.; Kurbatov, I. D. J. Phys. Chem. 1939, 43, 589.

111. Sabatier, P.; Senderens, J.-B. Compt. Rend. 1901, 133, 321.

112. Sabatier, P.; Senderens, J.-B. Compt. Rend. 1902, 135, 225.

113. Rihani, D. N.; Narayanan, T. K.; Doraiswamy, L. K. Ind. Eng. Chem. Proc. Res. Dev.

1965, 4, 403.

REFERENCES 47

114. Bond, G. C. Heterogeneous Catalysis: Principles and Applications; 2nd ed.; Clarendon:

Oxford, 1987; p 101.

115. Adkins, H.; Connor, R. J. Am. Chem. Soc. 1931, 53, 1091.

116. Adkins, H. Folkers, K. J. Am. Chem. Soc. 1931, 53, 1095.

117. Adkins, H. Ref. 32, p 12.

118. Connor, R.; Folkers, K.; Adkins, H. J. Am. Chem. Soc. 1931, 53, 2012.

119. Connor, R.; Folkers, K.; Adkins, H. J. Am. Chem. Soc. 1932, 54, 1138.

120. Folkers, K.; Adkins, H. J. Am. Chem. Soc. 1932, 54, 1145.

121. Adkins, H. Ref. 32, p 13 (see also Connor, R.; Folkers, K.; Adkins, H. Ref. 118).

122. Calingaert, G.; Edgar, G. Ind. Eng. Chem. 1934, 26, 878.

123. Stroupe, J. D. J. Am. Chem. Soc. 1949, 71, 569.

124. Faucounau, L. Bull. Soc. Chim. Fr. 1937, 4(5), 58.

125. Wainwright, M. S. in Catalysis of Organic Reactions; Malz, Jr., R. E., Ed.; Marcel Dekker: New York, 1996; p 213.

126. Paul, R.; Hilly, G. Bull. Soc. Chim. Fr. 1939, 6(5), 218.

127. Thompson, Jr., A. F.; Wyatt, S. B. J. Am. Chem. Soc. 1940, 62, 2555.

128. Taira, S. Bull. Chem. Soc. Jpn. 1962, 35, 840.

129. Debus, H. Justus Liebigs Ann. Chem. 1863, 128, 200; see also Ellis, C. Ref. 4, p 1.

130. Willstätter, R.; Hatt, D. Ber. Dtsch. Chem. Ges. 1912, 45, 1471 [4 years before this finding benzoic acid was hydrogenated to give hexahydrobenzoic acid over platinum in an etherial solution at room temperature (see Willstätter, R.; Mayer, E. W. Ber. Dtsch.

Chem. Ges. 1908, 41, 1475); shortly later, Skita and Meyer were also successful in hydrogenating benzene and other aromatic and heterocyclic compounds to completely saturated compounds with a colloidal platinum in water-acetic acid at room temperature and using 2 atm of hydrogen (see Skita, A.; Meyer, W. A. Ber. Dtsch. Chem. Ges. 1912, 45, 3589)].

131. Bond, G. C.; Webb, G.; Wells, P. B.; Winterbottem, J. M. J. Catal. 1962, 1, 74.

132. (a) Nishimura, S. Bull. Chem. Soc. Jpn. 1960, 33, 566; 1961, 34, 32, 1544; Nishimura, S.; Taguchi, H. Bull. Chem. Soc. Jpn. 1962, 35, 1625; 1963, 36, 353; (b) Rylander, P.

N.; Hasbrouck, L.; Hindin, S. G.; Karpenko, I.; Pond, G.; Starrick, S. Engelhard Ind.

Tech. Bull. 1967, 8, 25; Rylander, P. N.; Hasbrouck, L.; Hindin, S. G.; Iverson, R.;

Karpenko, I.; Pond, G. Engelhard Ind. Tech. Bull. 1967, 8, 93.

133. Bond, G. C.; Webster, D. E. Proc. Chem. Soc. 1964, 398; Platinum Metals Rev. 1965, 9, 12.

134. (a) Bond, G. C.; Webster, D. E. Platinum Metals Rev. 1966, 10, 10; (b) Taya, K. J. Chem.

Soc., Chem. Commun. 1966, 464; (c) Rylander, P. N.; Hasbrouck, L.; Hindin, S. G.;

Iverson, R.; Karpenko, I.; Pond, G. Engelhard Ind. Tech. Bull. 1967, 8, 93.

135. Yoshida, K. Nippon Kagaku Zasshi 1967, 88, 125 [CA 1967, 67, 53784y].

136. Hamilton, J. M.; Spiegler, L. U.S. Pat. 2,857,337 (1953); see also Kosak, J. R. in Ref.

125, p 31.

137. Rylander, P. N.; Cohen, G. Actes Congr. Int. Catal. 2e, Paris, 1960; Vol. 1, p 977 (Editions Technip, Paris, 1961).

138. Loew, O. Ber. Dtsch. Chem. Ges. 1890, 23, 289.

139. Willstätter, R.; Waldschmidt-Leitz, E. Ber. Dtsch. Chem. Ges. 1921, 54B, 113.

140. Feulgen, R. Ber. Dtsch. Chem. Ges. 1921, 54B, 360.

141. Voorhees, V.; Adams, R. J. Am. Chem. Soc. 1922, 44, 1397.

142. Frampton, V. L.; Edwards, Jr., J. D.; Henze, H. R. J. Am. Chem. Soc. 1951, 73, 4432.

143. Vandenheuvel, F. A. Anal. Chem. 1956, 28, 362.

144. Keenan, C. W.; Giesemann, B. W.; Smith, H. A. J. Am. Chem. Soc. 1954, 76, 229.

145. Cahen, D.; Ibers, J. A. J. Catal. 1973, 31, 369.

146. Brown, H. C.; Brown, C. A. J. Am. Chem. Soc. 1962, 84, 1494.

147. Nishimura, S.; Iwafune, S.; Nagura, T.; Akimoto, Y.; Uda, M. Chem. Lett. 1985, 1275.

148. Adams, R.; Voorhees, V.; Shriner, R. L. Org. Synth., Coll. Vol. 1941, 1, 2nd ed., 463.

149. Paal, C.; Amberger, C. Ber. Dtsch. Chem. Ges. 1902, 35, 2195.

150. Paal, C.; Amberger, C. Ber. Dtsch. Chem. Ges. 1904, 37, 124.

151. Skita, A. Ber. Dtsch. Chem. Ges. 1909, 42, 1627; Skita, A.; Meyer, W. A. Ber. Dtsch.

Chem. Ges. 1912, 45, 3579, 3589.

152. Kelber, C.; Schwarz, A. Ber. Dtsch. Chem. Ges. 1912, 45, 1946.

153. Schwerin, B. U.S. Pat. 1,119,647 (1914) [CA 1915, 9, 237].

154. Bourguel, M. Bull. Soc. Chim. Fr. 1927, 41(4), 1443.

155. Rampino, L. D.; Nord, F. F. J. Am. Chem. Soc. 1941, 63, 2745.

156. Hernandez, L.; Nord, F. F. J. Colloid Sci. 1948, 3, 363.

157. Hirai, H.; Nakao, Y.; Toshima, N. J. Makromol. Sci.–Chem. 1979, A13, 727.

158. Kaffer, H. Ber. Dtsch. Chem. Ges. 1924, 57B, 1261.

159. Zelinskii, N. D.; Borrisow, P. P. Ber. Dtsch. Chem. Ges. 1924, 57B, 150.

160. Holmes, H. N.; Ramsay, J.; Elder, A. L. Ind. Eng. Chem. 1929, 21, 850.

161. Packendorff, K.; Leder-Packendorff, L. Ber. Dtsch. Chem. Ges. 1934, 67B, 1388.

162. Ciapetta, F. G.; Hunter, J. B. Ind. Eng. Chem. 1953, 45, 147.

163. Benesi, H. A.; Curtis, R. M.; Studer, H. P. J. Catal. 1968, 10, 328.

164. Moss, R. L. in Experimental Methods in Catalytic Research; Anderson, R. B.; Dawson, P. T., Eds.; Academic Press: New York; 1976; Vol. 2, p 43.

165. Maxted, E. B.; Akhtar, S. J. Chem. Soc. 1960, 1995.

166. Maxted, E. B.; Elkins, J. S. J. Chem. Soc. 1961, 5086.

167. Newhall, W. F. J. Org. Chem. 1958, 23, 1274.

168. Schmidt, E. Ber. Dtsch. Chem. Ges. 1919, 52, 409.

169. Zelinsky, N. D.; Glinka, N. Ber. Dtsch. Chem. Ges. 1911, 44, 2305.

170. Paal, C. U.S. Pat. 1,023,753 (1912) [CA 1912, 6, 1688].

171. Mannich, C.; Thiele, E. Ber. Dtsch. Pharm. Ges. 1916, 26, 36.

172. Polkovnikov, B. D.; Balandin, A. A.; Taber, A. M. Dolk. Akad. Nauk SSSR 1962, 145, 809 [CA 1962, 57, 14465h].

173. Brunet, J.-J.; Caubere, P. J. Org. Chem. 1984, 49, 4058.

174. (a) Pearlman, W. M. Tetrahedron Lett. 1967, 1663; (b) Hiskey, R. G.; Northrop, R. C.

J. Am. Chem. Soc. 1961, 83, 4798.

175. Nishimura, S.; Itaya, T.; Shiota, M. J. Chem. Soc., Chem. Commun. 1967, 422.

176. (a) Shriner, R. L.; Adams, R. J. Am. Chem. Soc. 1924, 46, 1684; (b) Starr, D.; Hixon, R.

M. Org. Synth., Coll. Vol. 1943, 2, 566.

REFERENCES 49

177. Yada, S.; Sasaki, T.; Hiyamizu, M.; Takagi, Y. Bull. Chem. Soc. Jpn. 1996, 69, 2383.

178. Mozingo, R. Org. Synth., Coll. Vol. 1955, 3, 685.

179. Ott, E.; Schröter, R. Ber. Dtsch. Chem. Ges. 1927, 60, 624; see also Hartung, W. H. J.

Am. Chem. Soc. 1928, 50, 3370.

180. Alexander, E. R.; Cope, A. C. J. Am. Chem. Soc. 1944, 66, 886; see footnote 7.

181. Karpenko, I. Unpublished observations (cited in Rylander, P. N. Catalytic Hydrogenation over Platinum Metals; Academic Press: New York, 1967, p 7).

182. Lindlar, H.; Dubuis, R. Org. Synth., Coll. Vol. 1973, 5, 880.

183. Lindlar, H. Helv. Chim. Acta 1952, 35, 446.

184. Freifelder, M. Catalytic Hydrogenation in Organic Synthesis. Procedures and Commentary; Wiley-Interscience: New York, 1978; pp 10–11.

185. Maxted, E. B.; Ali, S. I. J. Chem. Soc. 1961, 4137.

186. (a) Behr, L. C.; Kirby, J. E.; MacDonald, R. N.; Todd, C. W. J. Am. Chem. Soc. 1946, 68; (b) Whitman, G. M. U.S. Pat. 2,606,925 (1952) [CA 1953, 47, 3874i].

187. Takagi, Y.; Naito, T.; Nishimura, S. Bull. Chem. Soc. Jpn. 1965, 38, 2119 and references cited therein.

188. Freifelder, M.; Stone, G. R. J. Am. Chem. Soc. 1958, 80, 5270.

189. Nishimura, S.; Shu, T.; Hara, T.; Takagi, Y. Bull. Chem. Soc. Jpn. 1966, 39, 329.

190. Pichler, H.; Buffleb, H. Brennstoff-Chem. 1940, 21, 257; Pichler, H. Adv. Catal. 1952, 4, 291.

191. Takagi, Y.; Naito, T.; Nishimura, S. Ref. 187, footnote 4.

192. Nishimura, S.; Yoshino, H. Bull. Chem. Soc. Jpn. 1969, 42, 499.

193. Beeck, O. Disc. Faraday Soc. 1950, 8, 118.

194. Gilman, G.; Cohn, G. Adv. Catal. 1957, 9, 733.

195. Nishimura, S. Bull. Chem. Soc. Jpn. 1960, 33, 566.

196. Stocker, J. H. J. Org. Chem. 1962, 27, 2288.

197. Nishimura, S.; Taguchi, H. Bull. Chem. Soc. Jpn. 1963, 36, 353.

198. Nishimura, S. Bull. Chem. Soc. Jpn. 1961, 34, 1544.

199. Hirai, H.; Nakao, Y.; Toshima, N.; Adachi, K. Chem. Lett. 1976, 905.

200. Hirai, H.; Nakao, Y.; Toshima, N. Chem. Lett. 1978, 545.

201. Rylander, P. N.; Steele, D. R. Tetrahedron Lett. 1969, 1579.

202. Nishimura, S.; Mochizuki, F.; Kobayakawa, S. Bull. Chem. Soc. Jpn. 1970, 43, 1919.

203. Nishimura, S.; Katagiri, M.; Watanabe, T.; Uramoto, M. Bull. Chem. Soc. Jpn. 1971, 44, 166; see also Takagi, Y.; Ishii, S.; Nishimura, S. Bull. Chem. Soc. Jpn. 1970, 43, 917.

204. Nishimura, S. in Encyclopedia of Reagents for Organic Synthesis; Pasquette, L. A., Ed.;

Wiley: Chichester, U.K., 1995; Vol. 4, p. 2868.

205. Savchenko, V. I.; Makaryan, I. A.; Dorokhov, V. G. Platinum Metals Rev. 1997, 41, 176.

206. Taya, K. J. Chem. Soc., Chem. Commun. 1966, 464.

207. Brown, H. C.; Sivasankaran, K. J. Am. Chem. Soc. 1962, 84, 2828.

208. Broadbent, H. S. Ann. NY Acad. Sci. 1967, 145, 58 (a review).

209. Broadbent, H. S.; Slaugh, L. H.; Jarvis, N. L. J. Am. Chem. Soc. 1954, 76, 1519.

210. Ciapetta, F. G.; Wallace, D. N. Catal. Rev. 1971, 5, 67.

211. Broadbent, H. S.; Campbell, G. C.; Bartley, W. J.; Johnson, J. H. J. Org. Chem. 1959, 24, 1847.

212. Pascoe, W. E.; Stenberg, J. F. in Catalysis in Organic Syntheses; Jones, W. H., Ed.;

Academic Press: New York, 1980; p 1.

213. Satterfield, C. N. Heterogeneous Catalysis in Practice; McGraw-Hill: New York, 1980;

pp 259–265.

214. Shono, S.; Itabashi, K.; Yamada, M.; Kikuchi, M. Kogyo Kagaku Zasshi 1961, 64, 1357 [CA 1963, 58, 4390e].

215. Greenfield, H. Ann. NY Acad. Sci. 1967, 145, 108.

216. Ciapetta, F. G.; Plank, C. J. in Catalysis; Emmett, P. H., Ed.; Reinhold: New York, 1954;

Vol. 1, pp 331–332.

217. Moldavskii, B. L.; Levshitz, S. E. J. Gen. Chem. (USSR) 1933, 3, 603 [CA 1934, 28, 26939].

218. Livingstone, S. E. in Comprehensive Inorganic Chemistry; Bailar, Jr., J. C. et al., Eds.;

Pergamon: Oxford, 1973; Vol. 3, pp 1163–1369.

REFERENCES 51