7 Curriculum Vitae

8.3 Supplementary Data

In this chapter, two additional figures supporting the PhD thesis are shown. Figure 45 shows the calibration curves for the mass flow rate of the feed pump of the Büchi B-290 spray dryer and Figure 46 shows the correlation between the powder tensile strength (σ) and the powder bed coverage (PBC).

Figure 45: Calibration curves for the mass flow rate of the feed pump of spray dryer with water at different pump capacities of 5% to 40%.

Figure 46: Correlation between powder tensile strength and powder bed coverage (PBC). a) Results for powder bed coverage of supraparticle powders with different powder tensile strength ranging from σ = 20.6 Pa to σ = 1.5 Pa with photographs of the powder beds (b-i).

9 References

1. Zhang, S. Building from the bottom up. Mater. Today 6, 20–27 (2003).

2. Mendes, A. C., Baran, E. T., Reis, R. L. & Azevedo, H. S. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev.

Nanomedicine Nanobiotechnology 5, 582–612 (2013).

3. Robert Joseph Paton Williams, J. J. R. F. S., da Silva, J. J. R. F., Williams, R. J. P. & Da Silva, P. A.

C. I. S. T. J. J. R. F. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life.

(OUP Oxford, 2001).

4. Kaim, W., Schwederski, B. & Klein, A. Bioinorganic Chemistry -- Inorganic Elements in the Chemistry of Life: An Introduction and Guide. (Wiley, 2013).

5. Voet, D., Voet, J. G. & Pratt, C. W. Fundamentals of Biochemistry: Life at the Molecular Level.

(Wiley, 2016).

6. Schartl, M., Gessler, M. & von Eckardstein, A. Biochemie und Molekularbiologie des Menschen. (Elsevier Health Sciences Germany, 2013).

7. Lay, M. & Fritsche, O. Mikrobiologie. (Springer Berlin Heidelberg, 2016).

8. Gaspar, V. M., Lavrador, P., Borges, J., Oliveira, M. B. & Mano, J. F. Advanced Bottom-Up Engineering of Living Architectures. Adv. Mater. 32, 1903975 (2020).

9. Schwegler, J. S. & Lucius, R. Der Mensch - Anatomie und Physiologie. (Thieme, 2016).

10. Clauss, W. & Clauss, C. Humanbiologie kompakt. (Springer Berlin Heidelberg, 2017).

11. Wintermantel, E. & Ha, S. W. Medizintechnik: Life Science Engineering. (Springer Berlin Heidelberg, 2009).

12. Acatech. Individualisierte Medizin durch Medizintechnik. Deutsche Akademie der Technikwissenschaften (Herbert Utz Verlag GmbH, 2017).

13. Glasmacher, B. & Mller, M. Biomedizinische Technik - Biomaterialien, Implantate und Tissue Engineering. (Walter de Gruyter GmbH, 2013).

14. Park, J. & Lakes, R. S. Biomaterials. Biomaterials: An introduction: Third edition (2007).

15. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 117, 10212–10290 (2017).

16. Schmid, M. Laser Sintering with Plastics - Technology, Processes, and Materials. (Carl Hanser Verlag GmbH & Co. KG, 2018).

17. Singh, S. Biomedical applications of additive manufacturing: Present and future. Curr. Opin.

Biomed. Eng. 2, 105–115 (2017).

18. DIN EN ISO/ASTM 52900, Additive Fertigung – Grundlagen – Terminologie. Beuth Verlag GmbH, 10772 Berlin (2018).

19. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. & Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng.

143, 172–196 (2018).

20. Mazzoli, A. Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput. 51, 245–256 (2013).

21. Bakhtiar, S. M. et al. 3D printing technologies and their applications in biomedical science.

in Omics Technologies and Bio-engineering: Towards Improving Quality of Life vol. 1 167–

189 (Elsevier Inc., 2017).

22. Gioumouxouzis, C. I., Karavasili, C. & Fatouros, D. G. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov. Today 24, 636–643 (2019).

23. Bose, S., Vahabzadeh, S. & Bandyopadhyay, A. Bone tissue engineering using {3D} printing.

16, 496–504 (2013).

24. Chatham, C. A., Long, T. E. & Williams, C. B. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Prog. Polym.

Sci. 93, 68–95 (2019).

25. Wohlers, T. Wohlers report 2016. Wohlers Associates. Inc. Fort Collins, CO, USA (2016).

26. Kango, S. et al. Surface modification of inorganic nanoparticles for development of organic–

inorganic nanocomposites—A review. Prog. Polym. Sci. 38, 1232–1261 (2013).

27. Musyanovych, A., Schmitz-Wienke, J., Mailänder, V., Walther, P. & Landfester, K. Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol. Biosci. 8, 127–139 (2008).

28. Rao, J. P. & Geckeler, K. E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36, 887–913 (2011).

29. Elahi, N., Kamali, M. & Baghersad, M. H. Recent biomedical applications of gold nanoparticles: A review. Talanta 184, 537–556 (2018).

30. Zheng, K. & Boccaccini, A. R. Sol-gel processing of bioactive glass nanoparticles: A review.

Adv. Colloid Interface Sci. 249, 363–373 (2017).

31. Vogel, N., Retsch, M., Fustin, C. A., Del Campo, A. & Jonas, U. Advances in Colloidal Assembly:

The Design of Structure and Hierarchy in Two and Three Dimensions. Chem. Rev. 115, 6265–6311 (2015).

32. Wintzheimer, S. et al. Supraparticles: Functionality from Uniform Structural Motifs. ACS Nano 12, 5093–5120 (2018).

33. Stewart, C. A., Finer, Y. & Hatton, B. D. Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Sci. Rep. 8, 1–12 (2018).

34. Urban, M., Musyanovych, A. & Landfester, K. Fluorescent superparamagnetic polylactide nanoparticles by combination of miniemulsion and emulsion/solvent evaporation Techniques. Macromol. Chem. Phys. 210, 961–970 (2009).

35. Greasley, S. L. et al. Controlling particle size in the Stöber process and incorporation of calcium. J. Colloid Interface Sci. 469, 213–223 (2016).

36. Kim, D. W. et al. Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process. Langmuir 26, 384–388 (2010).

37. Bourell, D. et al. Materials for additive manufacturing. CIRP Ann. 66, 659–681 (2017).

38. Wang, X., Jiang, M., Zhou, Z., Gou, J. & Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 110, 442–458 (2017).

39. Kotlinski, J. Mechanical properties of commercial rapid prototyping materials. Rapid Prototyp. J. (2014).

40. Agarwala, M. K. et al. Structural quality of parts processed by fused deposition. Rapid

Prototyp. J. (1996).

41. Kruth, J. P., Levy, G., Klocke, F. & Childs, T. H. C. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. - Manuf. Technol. 56, 730–759 (2007).

42. Schmid, M., Amado, A. & Wegener, K. Polymer powders for selective laser sintering (SLS).

160009, 160009 (2015).

43. Karapatis, N. P., Egger, G., Gygax, P. E. & Glardon, R. Optimization of powder layer density in selective laser sintering. in 1999 International Solid Freeform Fabrication Symposium (1999).

44. Kruth, J., Levy, G., Schindel, R., Craeghs, T. & Yasa, E. Consolidation of Polymer Powders by Selective Laser Sintering. Int. Conf. Polym. Mould. Innov. 15–30 (2008).

45. Kruth, J. P., Wang, X., Laoui, T. & Froyen, L. Lasers and materials in selective laser sintering.

Assem. Autom. 23, 357–371 (2003).

46. Tolochko, N. K. et al. Absorptance of powder materials suitable for laser sintering. Rapid Prototyp. J. (2000).

47. Goodridge, R. & Ziegelmeier, S. Powder bed fusion of polymers. in Laser Additive Manufacturing: Materials, Design, Technologies, and Applications 181–204 (Elsevier, 2017).

48. Schmid, M., Amado, A. & Wegener, K. Materials perspective of polymers for additive manufacturing with selective laser sintering. J. Mater. Res. 29, 1824–1832 (2014).

49. Zhao, M., Wudy, K. & Drummer, D. Crystallization kinetics of polyamide 12 during Selective laser sintering. Polymers (Basel). 10, (2018).

50. Blümel, C. et al. Increasing flowability and bulk density of PE-HD powders by a dry particle coating process and impact on LBM processes. Rapid Prototyp. J. 21, 697–704 (2015).

51. Ziegelmeier, S. et al. An experimental study into the effects of bulk and flow behaviour of laser sintering polymer powders on resulting part properties. J. Mater. Process. Technol.

215, 239–250 (2015).

52. Dadbakhsh, S. et al. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Phys. Procedia 83, 971–980 (2016).

53. Drummer, D., Rietzel, D. & Kühnlein, F. Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Phys. Procedia 5, 533–542 (2010).

54. Schmid, M. & Wegener, K. Additive manufacturing: polymers applicable for laser sintering (LS). Procedia Eng. 149, 457–464 (2016).

55. Lee, H. et al. Lasers in additive manufacturing: A review. Int. J. Precis. Eng. Manuf. Technol.

4, 307–322 (2017).

56. Athreya, S. R., Kalaitzidou, K. & Das, S. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater. Sci. Eng. A 527, 2637–2642 (2010).

57. Goodridge, R. D., Tuck, C. J. & Hague, R. J. M. Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 57, 229–267 (2012).

58. Baumann, F.-E. & Wilczok, N. Preparation of precipitated polyamide powders of narrow particle size distribution and low porosity. (1999).

59. Dechet, M. A. et al. Production of polyamide 11 microparticles for Additive Manufacturing

by liquid-liquid phase separation and precipitation. Chem. Eng. Sci. 197, 11–25 (2019).

60. Dechet, M. A., Baumeister, I. & Schmidt, J. Development of polyoxymethylene particles via the solution-dissolution process and application to the powder bed fusion of polymers.

Materials (Basel). 13, 1535 (2020).

61. Schmidt, J. et al. Optimized polybutylene terephthalate powders for selective laser beam melting. Chem. Eng. Sci. 156, 1–10 (2016).

62. Sebastian, G. B. J., Alexander, D. M., Jochen, S., Wolfgang, P. & Andreas, B. Thermal rounding of micron-sized polymer particles in a downer reactor: direct vs indirect heating. Rapid Prototyp. J. 26, 1637–1646 (2020).

63. Schmidt, J. et al. A novel process route for the production of spherical LBM polymer powders with small size and good flowability. Powder Technol. 261, 78–86 (2014).

64. Stranz, M. & Köster, U. Irreversible structural changes in cryogenic mechanically milled isotactic polypropylene. Colloid Polym. Sci. 282, 381–386 (2004).

65. Wilczek, M., Bertling, J. & Hintemann, D. Optimised technologies for cryogenic grinding. Int.

J. Miner. Process. 74, S425–S434 (2004).

66. Kleijnen, R. G., Schmid, M. & Wegener, K. Production and processing of a spherical polybutylene terephthalate powder for laser sintering. Appl. Sci. 9, 1308 (2019).

67. Fanselow, S., Emamjomeh, S. E., Wirth, K. E., Schmidt, J. & Peukert, W. Production of spherical wax and polyolefin microparticles by melt emulsification for additive manufacturing. Chem. Eng. Sci. 141, 282–292 (2016).

68. Bonilla, J. S. G. et al. Effect of particle rounding on the processability of polypropylene powder and the mechanical properties of selective laser sintering produced parts.

69. Dechet, M. A. et al. A novel, precipitated polybutylene terephthalate feedstock material for powder bed fusion of polymers (PBF): Material development and initial PBF processability.

Mater. Des. 197, 109265 (2021).

70. Kloos, S., Dechet, M. A., Peukert, W. & Schmidt, J. Production of spherical semi-crystalline polycarbonate microparticles for Additive Manufacturing by liquid-liquid phase separation. Powder Technol. 335, 275–284 (2018).

71. Canziani, H. et al. Bottom-Up Design of Composite Supraparticles for Powder-Based Additive Manufacturing. Small 16, 2002076 (2020).

72. Gayer, C. et al. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Mater. Sci. Eng. C 101, 660–

673 (2019).

73. Dechet, M. A. et al. Development of poly (L-lactide)(PLLA) microspheres precipitated from triacetin for application in powder bed fusion of polymers. Addit. Manuf. 32, 100966 (2020).

74. Williams, J. M. et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26, 4817–4827 (2005).

75. Beck, R. C. R. et al. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int. J. Pharm. 528, 268–279 (2017).

76. Epple, M. Biomaterialien und Biomineralisation: Eine Einführung für Naturwissenschaftler, Mediziner und Ingenieure. (Vieweg+Teubner Verlag, 2013).

77. Karachalios, T. Bone-Implant Interface in Orthopedic Surgery: Basic Science to Clinical Applications. (Springer London, 2013).

78. Ferri, J. & Hunziker, E. Preprosthetic and Maxillofacial Surgery: Biomaterials, Bone Grafting and Tissue Engineering. (Elsevier Science, 2016).

79. Dinh, P., Hutchinson, B. K., Zalavras, C. & Stevanovic, M. V. Reconstruction of osteomyelitis defects. Semin. Plast. Surg. 23, 108–118 (2009).

80. Pesce, V. et al. Surgical approach to bone healing in osteoporosis. Clin. Cases Miner. Bone Metab. 6, 131–135 (2009).

81. Hutmacher, D. W., Schantz, J. T., Lam, C. X. F., Tan, K. C. & Lim, T. C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1, 245–260 (2007).

82. Hench, L. L. An Introduction to Bioceramics. Advanced Series in Ceramics vol. Volume 1 396 (1993).

83. Roohani-Esfahani, S. I., Newman, P. & Zreiqat, H. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci. Rep. 6, 1–8 (2016).

84. Eriksen, E. F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 11, 219–

227 (2010).

85. Florencio-Silva, R., Sasso, G. R. da S., Sasso-Cerri, E., Simões, M. J. & Cerri, P. S. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res. Int. 2015, (2015).

86. Linß, W. & Fanghänel, J. Histologie: Zytologie, allgemeine Histologie, mikroskopische Anatomie. (de Gruyter, 1998).

87. Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J.

Biol. Chem. 285, 25103–25108 (2010).

88. Maquet, P., Wolff, J. & Furlong, R. The Law of Bone Remodelling. (Springer Berlin Heidelberg, 2012).

89. Bauer, T. W. & Muschler, G. F. Bone graft materials: an overview of the basic science. Clin.

Orthop. Relat. Res. 371, 10–27 (2000).

90. Shibuya, N. & Jupiter, D. C. Bone graft substitute: allograft and xenograft. Clin. Podiatr. Med.

Surg. 32, 21–34 (2015).

91. Damien, C. J. & Parsons, J. R. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater. 2, 187–208 (1991).

92. Nandi, S. K. et al. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J. Med. Reseach 132, 15–30 (2010).

93. Goulet, J. A., Senunas, L. E., DeSilva, G. L. & Greenfield, M. L. V. H. Autogenous iliac crest bone graft: complications and functional assessment. Clin. Orthop. Relat. Res. 339, 76–81 (1997).

94. Carr, B. C. & Goswami, T. Knee implants–Review of models and biomechanics. Mater. Des.

30, 398–413 (2009).

95. Hinchliffe, R. & Ochsner, P. E. Total Hip Replacement: Implantation Technique and Local Complications. (Springer Berlin Heidelberg, 2012).

96. Arora, M., Chan, E. K. S., Gupta, S. & Diwan, A. D. Polymethylmethacrylate bone cements and

additives: A review of the literature. World J. Orthop. 4, 67 (2013).

97. Breusch, S. & Malchau, H. The Well-Cemented Total Hip Arthroplasty: Theory and Practice.

(Springer Berlin Heidelberg, 2006).

98. Ali, U., Karim, K. J. B. A. & Buang, N. A. A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polym. Rev. 55, 678–705 (2015).

99. Böstman, O. & Pihlajamäki, H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 21, 2615–2621 (2000).

100. Nair, L. S. & Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007).

101. Farah, S., Anderson, D. G. & Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 107, 367–392 (2016).

102. Boccaccini, A. R., Roelher, J. A., Hench, L. L., Maquet, V. & Jérǒme, R. A composites approach to tissue engineering. in 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings 805–816 (Wiley Online Library, 2002).

103. Boccaccini, A. R. et al. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol. 70, 1764–1776 (2010).

104. Garlotta, D. A literature review of poly (lactic acid). J. Polym. Environ. 9, 63–84 (2001).

105. Löfgren, A., Albertsson, A.-C., Dubois, P. & Jérôme, R. Recent advances in ring-opening polymerization of lactones and related compounds. J. Macromol. Sci. Part C Polym. Rev. 35, 379–418 (1995).

106. Nijenhuis, A. J., Grijpma, D. W. & Pennings, A. J. Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules 25, 6419–

6424 (1992).

107. Hyon, S. H., Jamshidi, K. & Ikada, Y. Synthesis of polylactides with different molecular weights. Biomaterials 18, 1503–1508 (1997).

108. Zhang, X., MacDonald, D. A., Goosen, M. F. A. & McAuley, K. B. Mechanism of lactide polymerization in the presence of stannous octoate: the effect of hydroxy and carboxylic acid substances. J. Polym. Sci. Part A Polym. Chem. 32, 2965–2970 (1994).

109. Hyon, S.-H., Jamshidi, K. & Ikada, Y. Synthesis of polylactides with different molecular weights. Biomaterials 18, 1503–1508 (1997).

110. Slomkowski, S., Penczek, S. & Duda, A. Polylactides—an overview. Polym. Adv. Technol. 25, 436–447 (2014).

111. Kowalski, A., Duda, A. & Penczek, S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate. 3. Polymerization of L, L-dilactide. Macromolecules 33, 7359–

7370 (2000).

112. Gupta, B., Revagade, N. & Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci.

32, 455–482 (2007).

113. Yu, F. et al. Effects of talc on the mechanical and thermal properties of polylactide. J. Appl.

Polym. Sci. 125, E99–E109 (2012).

114. Kontou, E., Niaounakis, M. & Georgiopoulos, P. Comparative study of PLA nanocomposites

reinforced with clay and silica nanofillers and their mixtures. J. Appl. Polym. Sci. 122, 1519–

1529 (2011).

115. Day, M., Nawaby, A. V. & Liao, X. ADSC study of the crystallization behaviour of polylactic acid and its nanocomposites. J. Therm. Anal. Calorim. 86, 623–629 (2006).

116. Piemonte, V. & Gironi, F. Kinetics of hydrolytic degradation of PLA. J. Polym. Environ. 21, 313–318 (2013).

117. Middleton, J. C. & Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices.

Biomaterials 21, 2335–2346 (2000).

118. Mainil-Varlet, P., Curtis, R. & Gogolewski, S. Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. J.

Biomed. Mater. Res. 36, 360–380 (1997).

119. Woodruff, M. A. & Hutmacher, D. W. The return of a forgotten polymer - Polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217–1256 (2010).

120. Nair, L. S. & Laurencin, C. T. Polymers as biomaterials for tissue engineering and controlled drug delivery. Tissue Eng. I 47–90 (2005).

121. Samavedi, S., Whittington, A. R. & Goldstein, A. S. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 9, 8037–8045 (2013).

122. Jones, J. R. Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013).

123. Dorozhkin, S. V & Epple, M. Biological and medical significance of calcium phosphates.

Angew. Chemie Int. Ed. 41, 3130–3146 (2002).

124. Eliaz, N. & Metoki, N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel). 10, 334 (2017).

125. Bauer, K. H. et al. Pharmazeutische Technologie: mit Einführung in die Biopharmazie; mit 91 Tabellen. (Wiss. Verlag-Ges., 2012).

126. Köhler, K. & Schuchmann, P. D. I. H. P. Emulgiertechnik: Grundlagen, Verfahren und Anwendungen. (Behr, 2012).

127. Israelachvili, J. N. Intermolecular and Surface Forces. (Elsevier Science, 2015).

128. Stauff, J. Kolloidchemie. (Springer Berlin Heidelberg, 2013).

129. Lagaly, G., Schulz, O. & Zimehl, R. Dispersionen und Emulsionen: Eine Einführung in die Kolloidik feinverteilter Stoffe einschließlich der Tonminerale. (Steinkopff, 2013).

130. Lauth, G. J. & Kowalczyk, J. Einführung in die Physik und Chemie der Grenzflächen und Kolloide. (Springer Berlin Heidelberg, 2015).

131. Tadros, T. F. Emulsions: Formation, Stability, Industrial Applications. (De Gruyter, 2016).

132. Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys.

Theor. Appl. 9, 457–468 (1910).

133. Chapman, D. L. LI. A contribution to the theory of electrocapillarity. London, Edinburgh, Dublin Philos. Mag. J. Sci. 25, 475–481 (1913).

134. Leal-Calderon, F., Schmitt, V. & Bibette, J. Emulsion Science: Basic Principles. (Springer New

York, 2007).

135. Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. M. Nanoemulsions:

formation, structure, and physical properties. J. Phys. Condens. Matter 18, R635–R666 (2006).

136. Adams, F. et al. Modern aspects of emulsion science. (Royal Society of Chemistry, 2007).

137. Landfester, K. Synthesis of Colloidal Particles in Miniemulsions. Annu. Rev. Mater. Res. 36, 231–279 (2006).

138. Staff, R. H. et al. Particle formation in the emulsion-solvent evaporation process. Small 9, 3514–3522 (2013).

139. Staff, R. H., Schaeffel, D., Turshatov, A. & Donadio, D. Particle Formation in the Emulsion-Solvent Evaporation Process. 3514–3522 (2013) doi:10.1002/smll.201300372.

140. Masters, K. Spray Drying Handbook. (Longman Scientific & Technical, 1991).

141. Tsotsas, E. & Mujumdar, A. S. Modern drying technology. (Wiley Online Library, 2007).

142. Gehrmann, D., Esper, P. D. G. J. & Schuchmann, H. Trocknungstechnik in der Lebensmittelindustrie. (Behr, 2009).

143. Tsotsas, E. & Mujumdar, A. S. Modern Drying Technology, Volume 3: Product Quality and Formulation. (Wiley, 2011).

144. Vehring, R., Snyder, H. & Lechuga-Ballesteros, D. Spray drying. Drying Technologies for Biotechnology and Pharmaceutical Applications 179–216 (2020).

145. Walzel, P. Spraying and Atomizing of Liquids. Ullmann’s Encycl. Ind. Chem. (2019).

146. Cotabarren, I. M., Bertín, D., Razuc, M., Ramírez-Rigo, M. V. & Piña, J. Modelling of the spray drying process for particle design. Chem. Eng. Res. Des. 132, 1091–1104 (2018).

147. Mezhericher, M., Levy, A. & Borde, I. Theoretical drying model of single droplets containing insoluble or dissolved solids. Dry. Technol. 25, 1025–1032 (2007).

148. Maurice, U., Mezhericher, M., Levy, A. & Borde, I. Drying of Droplet Containing Insoluble Nanoscale Particles: Numerical Simulations and Parametric Study. Dry. Technol. 31, 1790–

1807 (2013).

149. Mezhericher, M., Levy, A. & Borde, I. Heat and mass transfer of single droplet/wet particle drying. Chem. Eng. Sci. 63, 12–23 (2008).

150. Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 25, 999–

1022 (2008).

151. Vicente, J., Pinto, J., Menezes, J. & Gaspar, F. Fundamental analysis of particle formation in spray drying. Powder Technol. 247, 1–7 (2013).

152. Nandiyanto, A. B. D. & Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 22, 1–19 (2011).

153. Büchi Labortechnik AG. Bedienungsanleitung Mini Spray Dryer B-290. 1–80 (2019).

154. Hede, P. D., Bach, P. & Jensen, A. D. Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review. Chem. Eng. Sci. 63, 3821–3842 (2008).

155. Iskandar, F., Gradon, L. & Okuyama, K. Control of the morphology of nanostructured

particles prepared by the spray drying of a nanoparticle sol. J. Colloid Interface Sci. 265, 296–303 (2003).

156. Bück, A., Peglow, M., Naumann, M. & Tsotsas, E. Population balance model for drying of droplets containing aggregating nanoparticles. AIChE J. 58, 3318–3328 (2012).

157. Mezhericher, M., Levy, A. & Borde, I. Spray drying modelling based on advanced droplet drying kinetics. Chem. Eng. Process. Process Intensif. 49, 1205–1213 (2010).

158. Lintingre, E., Lequeux, F., Talini, L. & Tsapis, N. Control of particle morphology in the spray drying of colloidal suspensions. Soft Matter vol. 12 7435–7444 (2016).

159. Makepeace, D. K. et al. Stratification in binary colloidal polymer films: Experiment and simulations. Soft Matter 13, 6969–6980 (2017).

160. Tuteja, A., Mackay, M. E., Narayanan, S., Asokan, S. & Wong, M. S. Breakdown of the continuum Stokes− Einstein relation for nanoparticle diffusion. Nano Lett. 7, 1276–1281 (2007).

161. Stieß, M. Mechanische Verfahrenstechnik - Partikeltechnologie 1. (Springer Berlin Heidelberg, 2009).

162. Boel, E. et al. Unraveling particle formation: from single droplet drying to spray drying and electrospraying. Pharmaceutics 12, 625 (2020).

163. Mezhericher, M., Levy, A. & Borde, I. Theoretical models of single droplet drying kinetics: A review. Dry. Technol. 28, 278–293 (2010).

164. Mezhericher, M., Levy, A. & Borde, I. Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage. Chem. Eng. Sci. 66, 884–896 (2011).

165. Maurice, U., Mezhericher, M., Levy, A. & Borde, I. Drying of droplets containing insoluble nanoscale particles: Second drying stage. Dry. Technol. 33, 1837–1848 (2015).

166. Mezhericher, M., Levy, A. & Borde, I. Spray drying modelling based on advanced droplet drying kinetics. Chem. Eng. Process. Process Intensif. 49, 1205–1213 (2010).

167. Liu, W., Midya, J., Kappl, M., Butt, H. J. & Nikoubashman, A. Segregation in Drying Binary Colloidal Droplets. ACS Nano 13, 4972–4979 (2019).

168. Trogisch, A. & Franzke, U. Feuchte Luft - h,x-Diagramm: praktische Anwendungs- und Arbeitshilfen. (VDE-Verlag, 2012).

169. Leipertz, A. Technische Thermodynamik. ESYTEC 4 . Auflag, 2011 (2011).

170. Schulze, D. Pulver und Schüttgüter. Pulver und Schüttgüter vol. 3. Auflage (2014).

171. Rhodes, M. J. Introduction to Particle Technology. (Wiley, 2008).

172. Visser, J. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Adv. Colloid Interface Sci. 3, 331–363 (1972).

173. Rumpf, H. C. H. Systematische Entwicklung von Verfahren zur Kornvergrößerung durch Agglomerieren. Chemie Ing. Tech. 48, (1974).

174. Brika, S. E., Letenneur, M., Dion, C. A. & Brailovski, V. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Addit. Manuf. 31, 100929 (2020).

175. Capece, M., Silva, K. R., Sunkara, D., Strong, J. & Gao, P. On the relationship of inter-particle cohesiveness and bulk powder behavior: Flowability of pharmaceutical powders. Int. J.

Pharm. 511, 178–189 (2016).

176. Yang, J., Sliva, A., Banerjee, A., Dave, R. N. & Pfeffer, R. Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 158, 21–33 (2005).

177. Li, Q., Rudolph, V., Weigl, B. & Earl, A. Interparticle van der Waals force in powder flowability and compactibility. Int. J. Pharm. 280, 77–93 (2004).

178. Ceska, G. W. The effect of carboxylic monomers on surfactants free emulsion copolymerization. J. Appl. Polym. Sci. 18, 427 (1974).

179. Egen, M. & Zentel, R. Surfactant-free emulsion polymerization of various methacrylates:

Towards monodisperse colloids for polymer opals. Macromol. Chem. Phys. 205, 1479–1488 (2004).

180. Stöber, W., Fink, A. & Bohn, E. A novel method for synthesis of silica nanoparticles. J. Colloid Interface Sci 26, 62–68 (1968).

181. Greasley, S. L. et al. Controlling particle size in the Stöber process and incorporation of calcium. J. Colloid Interface Sci. 469, 213–223 (2016).

182. Zheng, K. et al. Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. RSC Adv. 6, 95101–95111 (2016).

183. Stewart, C. A., Hong, J. H., Hatton, B. D. & Finer, Y. Responsive antimicrobial dental adhesive based on drug-silica co-assembled particles. Acta Biomater. 76, 283–294 (2018).

184. Landfester, K. Synthesis of Colloidal Particles in Miniemulsions. Annu. Rev. Mater. Res. 36, 231–279 (2006).

185. IKA-Werke GmbH & Co. KG. Ultraturrax T 25 easy clean digital Datenblatt.

https://www.ika.com/de/Produkte-Lab-Eq/Dispergiere.

186. Koutsoukos, P., Amjad, Z., Tomson, M. B. & Nancollas, G. H. Crystallization of calcium phosphates. A constant composition study. J. Am. Chem. Soc. 102, 1553–1557 (1980).

187. Ishikawa, K. et al. Occlusion of dentinal tubules with calcium phosphate using acidic calcium phosphate solution followed by neutralization. J. Dent. Res. 73, 1197–1204 (1994).

188. Blümel, C. et al. Increasing flowability and bulk density of PE-HD powders by a dry particle coating process and impact on LBM processes. Rapid Prototyp. J. 21, 697–704 (2015).

189. Pilipovic, A. et al. Influence of laser sintering parameters on mechanical properties of polymer

189. Pilipovic, A. et al. Influence of laser sintering parameters on mechanical properties of polymer

In document Prozess- und Produktentwicklung von funktionellen Suprapartikeln für die biomedizinische Additive Fertigung (Page 141-159)