• No results found

Expression and characterization of the thymidine kinase gene of African swine fever virus.

N/A
N/A
Protected

Academic year: 2019

Share "Expression and characterization of the thymidine kinase gene of African swine fever virus."

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

JOURNAL OFVIROLOGY, Feb. 1991, p. 1046-1052 0022-538X/91/021046-07$02.00/0

CopyrightC)1991, AmericanSociety for Microbiology

Expression and

Characterization

of the

Thymidine Kinase

Gene of African Swine Fever Virus

A. M. MARTINHERNANDEZ AND E. TABARES*

Departamentode Microbiologia, Facultad de Medicina, UniversidadAutonoma de Madrid,

Arzobispo

Morcillo

4,

28029

Madrid,

Spain

Received5July1990/Accepted 26 October 1990

The thymidinekinase(TK)geneof African swine fever virus (ASFV)waslocatedwithinthe viralgenomeby using two degenerate oligonucleotide probes derived from sequences of the vaccinia virus and cellular TK genes. The TKgenewasmappedwithin a0.72-kbpBglll-XhoI fragment (0.242to0.246mapunits) derived

froma23.9-kbpSal-Bfragment oftheASFVgenome.Identification ofthisregionastheASFVTKgene was confirmed by expression ofTK inEscherichia coliand by the synthesis ofactive TK in a cell-free system programmedwithRNA synthesized invitro.Thesequencedgenefor TK includesanopenreadingframe of588

nucleotidesencodingaproteinof 196 amino acids. The deduced amino acidsequenceshows32.4% identity with

the TKof vaccinia virus.

Thethymidine kinase (TK) marker hasprovenvaluable in

the establishmentof vaccinia virus and herpes simplex virus cloningvectorsandforthedevelopment ofsurrogate

genet-ics in these viruses (18, 21). Therefore, it is of particular interest toidentify andcharacterize the African swine fever virus (ASFV) TKgene as apotentialtarget site for genetic manipulations. ASFV is an icosahedral cytoplasmic DNA virus withpropertiescommontoiridoviruses and poxviruses (30, 34). It causes a highly contagious and generally fatal disease ofpigs (8, 9, 16, 23, 34, 35). Productive infection is accompanied byaweakshutoff of hostprotein synthesisand

the appearance of44 virus-specific polypeptides ranging in

molecularweight from 9,500to243,000 (5, 27, 29, 30). These polypeptideshavebeenclassifiedasimmediateearly, early, and late (5, 33). Increases in the levels oftwo enzymatic activitieswhich maybe involvedin DNAreplication, those

ofaTK(19)andaDNApolymerase (20),havebeen detected followingASFV infection. ASFV infection ofbaby hamster

kidney (BHK) cells may induce the formation of a TK different from thatfound in normal cells(19). This activity canbe induced in BHK cellsdeficient in TKas an

immedi-ate-early protein, and we have generated ASFV TK-

mu-tants by bromodeoxyuridine mutagenesis (datanot shown).

These results strongly suggested that the TKinduced after infection is encoded byASFV. Herewe reportthe identifi-cation, characterization, and expression of the ASFV TK gene as aninitialsteptoward the geneticmanipulation of this

virus.

Mapping of the ASFV TK gene. The use of degenerate oligonucleotides to locate the TK genes of Shope fibroma

virus and avipoxvirus (26, 32) suggested that such

oligonu-cleotides couldalso be usedfor ASFV, given the

phyloge-netic proximity between ASFV and the poxviruses. Oligo-nucleotide pools 1 [GG(A/G/T/C)CCCATGTT(T/C)TC(A/G/ T/C)GG] and 2 [GA(T/C)GA(G/A)GG(G/A)CA(G/A)TT(T/C) TT], representing conserved regions inthe 3' portion of the

vaccinia virus, human, and mouse TK genes (32), were synthesized by F. Barahona in Centro deBiologia Molecu-lar, Madrid, Spain. ASFV DNA isolated from MS cells

*Correspondingauthor.

infectedwith ASFV strainE70MS44 (31)wasdigestedwith ClaI, SalI,andSmaI andelectrophoresedinanagarosegel.

The DNA fragmentswere denatured in thegel, transferred

to a nitrocellulose filter, and hybridized tothe

32P-oligonu-cleotideprobes (32). Probe 1 annealed with theSall-A, -B, -H', and -E fragments (see Fig. 4). This indicated possible viral sequences related to proteins that contain an

ATP-binding domain, since probe 1 represents a consensus se-quenceforsucha nucleotide-binding site. Probe 2 annealed onlywith theSalI-BandSalI-Efragments (datanotshown).

We studied theSall-B fragmentbecauseSalI-Eencodes late

proteins (22) and the TK of ASFV is an immediate-early protein.ASFVDNAisolated from strainE70MS14wasused intheconstructionof therecombinantplasmid pRPEM513,

and theEcoRI-Kfragmentwas subcloned inpUC18 (Fig. 1) bystandardtechniques (15). Theseplasmidswere subjected

torestrictionenzymeanalysis,and the DNAfragmentswere hybridized to 32P-labeled oligonucleotides in order to map the TKgene more precisely. Aregionofhomology with the TKgenewaslocalized ina390-bpPstI-HindIII fragmentof

pRPEM204 (Fig. 2, lanes 2). Sail-B represents unique

se-quences on theviral genome because this segment

hybrid-izesonlywithfragments SmaI-A,ClaI-B, -F, -P,and-R,and

Sall-B (reference31 and datanotshown), indicatingthatthe TKgeneisa single-copygene.

Identificationof the ASFV TKgene.The TKgene andits

flanking regions were sequenced by the dideoxynucleotide

chain termination method(24),with recombinant pUC18or pGEM3Z as the template. The nucleotide and deduced

protein sequences are presented in Fig. 3. The TK gene mapsatcoordinates 0.242to0.246(Fig. 4)inE70MS14DNA

(31).ThepredictedASFV TKprotein comprises 196 amino

acids, with a calculated molecular weight of 22,394. The

translation initiation codon of the open reading frame has been assigned on the basis of homology of the amino-terminal domain to that of other TK proteins. Also, the

proposedinitiator AUG is flankedbynucleotides character-istic ofpreferred eucaryoticinitiationsites,whereas thenext ATG codon, located 93 nucleotides downstream, is not flankedby consensustranslation initiation sequences(25).

Characterization and expressionof the TK gene in

Esche-1046

Vol.65, No. 2

on November 10, 2019 by guest

http://jvi.asm.org/

(2)

E

B

p

x

H/EaBEn /Bom HI

FIG. 1. Physicalmapofplasmids containing the TK gene. Viral DNA was digested withSalIandcloned in plasmid pUC18 (2,686 bp), and recombinant plasmids were obtained upon transformation of E. coli NM522. One of these plasmids, pRPEM513, contained the SalI-B (23.9-kbp) and

SaII-J

(0.9-kbp) fragments (31). After digestion withEcoRI, the EcoRI-K fragment (1) was subcloned in pUC18 to obtain plasmidpRPEM204. The largerBgIIIfragment and theHindIII-BglIIfragment ofthis plasmid were cloned in pGEM3Z(2,743bp)(Promega Biotec, Madison, Wis.)andpINIIIAl(7.4kbp) (kindly supplied by E.Garcia,Madrid, Spain) (4, 12), respectively, toyieldpGEM204aand pINTK14, respectively. RestrictionenzymesitesBglII(B),ClaI(C),EcoRI(E),HindlIl (H),PstI(P),PvuI(Pv), andXhol(X) are indicated.

richiacoli cells. TheHindIII-BglII fragment was cloned into the HindIll and BamHI sites ofpINIIIAl (4, 12) to yield

plasmidpINTK14 (Fig. 1).Inthis clone, the N-terminal five

amino acids of ASFV TK protein are replaced by the five

A

B

1

23456789

1

2345 6789

amino acids encoded bylinker DNA from pINIIIAL. Plas-midpINTK14wasused totransformE. coliKY893 (TK-). Untransformed E. coli KY893 TK- is unable to grow on

selection mediumcontaining5-fluorouracil (11).Onlyclones containing viral TK from pINTK14, which complemented the cellular TKdefect,survived on the drugselectionplates. It was important to confirm the TK complementation of KY893 TK- cellsharboringtheplasmidpINTK14by

exam-ining incorporation of [3H]thymidineinto the bacterial cells. TheKY893mutantofE. coli transformed with theplasmids was cultured overnight in peptone-glucose medium (10)

containing (per ml) 50 ,ug ofampicillin, 25 ,ug of

5-fluorou-FIG. 2. Mapping of the ASFVTK genewithinplasmid pRPEM 204.(A)Lanes 1to8, pRPEM204digestedwithHindlIl plus EcoRI, HindlIl plus PstI, XhoI plus PstI, BgIIH plus PstI, BglII plus HindIII, BglII plus HindlIl plus EcoRI, EcoRI,andBamHI, respec-tively;lane9,plasmid pUC18digested with RsaI.Thegelwas0.75% agarose(31),and the DNAwasstained withethidiumbromide.(B)

Southern blot of thegelshown inpanelAprobedwithend-labeled oligonucleotide pool (map positions of the various restriction

en-zymes are shown in Fig. 1). The asterisk indicates the 390-bp

PstI-HindIIIfragmentofpRPEM204.

a&

1769bp

676bp

241bp

on November 10, 2019 by guest

http://jvi.asm.org/

[image:2.612.152.454.70.403.2] [image:2.612.64.288.552.724.2]
(3)

1048 NOTES

MA

p x

GCRARRRGTR

CCGCRRRTRR

RRRRRCRRCG

RRGGGCTCCT CCRRRTCTOG TTCCTCCRGR

GGCCRCRCCG

OCRRRRCCCR

TGCTTCTTCG

TCCRTGCRTT CCGGGRTGCT CTRTRRRGRT

Bgl

U

RTGGTRRRTR

TTGCTRfiRTC

TRGRGGCRTT CCGRTTTRCC

RGRRTGGRTC

GCGTCTTRCT

RBS

fidm

RRRRGTGRRT

TGGRGRRRRR

RRTRRRCffILCRM

RTG RRT RTR RTT RGG

fiflCtL

M N I I R K L

RCR RTT

RGC

CTT

T I S L

RTT

CRT

TGC RTT

I H C I

RRR

TCT

RCC RRR

K S T K

CAG

CTR CGR CCC

o L R P

GTG GGR

TCT CTC

V G S L

TTT

GRC GRT TTR

F D D L

RTT CTT GCG GGR

I L A G

GTT

COT

RTT TTT

V R I F

RTG RRR TGT RRC

M K C N

RRG

RCO

CTT RTC

K T L I

RRC

TGT

CTR RRR

N C L K

GTG

CTO

GGR CCC

V L G P

TRC RTG CTC

ORR

Y M L E

RRC RCC

CGR GRC

N T R D

RRG

CRR TGT RRR

K Q C K

RCC GRT RTC CRT

T D I H

RTR RRR TGC CGC

I K C R

CTC

RRT OCT

TCC

L N A S

PsI

CCT

TRC

RAC

TGC

P. y C S

CRR CRT RRT

OCR

Q H N A

CTT

GCG GOR

GOR

L A G G

RRT

RCR

TTT RTT

N T F I

RTG TTT

0CC

GOC

M F A G

CGT

TTG

GRR RRR

R L E K

RRR

ACT RTT

RRR

K T I K

RTC RTR GRR RGC

I I E S

GCR GTT

GTC

GTR

A V V V

RCC TGG GCR GRG

T W A E

TTC GRG CRG RRR

F E Q K

RRR RCT K T RRR GTR K V RCR CRC T H

RCA

CR0

T O GRT GRR D E GRR GRR E E

RTO

TTT

M F

TOG OTT RRG TRT RTT GOC

W V K Y I G

TGC TTT RRT GTG COT RRG

C F N V R K

RGT GRR CTO TRC OTR RCR

S E L Y V T

RRG CR0 TTG CRR CCT RTT

K Q L Q P I

ARRTCTTRTR CRRTRRTOGR TCRTTRTCTT RRRRRRTTRC RRGRTRTTTR

XhOI

[image:3.612.132.494.89.185.2]

TRCGRRGALfLQGGGGCCRTC CCTTTCTTTT TROCCCGTCG RRRRCCRRTO RRRRRGRGTT TRTTRCTCTO CTRRRCCROG CCTTGGCCTC RRCGCROCTT TRCCOCRGCR TRCRRCRACT GTTTTTRRCG RTOTATRROC TRGRTCCCRT TGOGTTTRTT RRCTRTRTTR RRRCGOGTRR RCRROROTRT TTATGCCTGT TORTTARTCC TRRACTCGTT RCTRRGTTTT TARRRATAAC

FIG. 3. NucleotidesequenceoftheASFVTKgeneand flanking regions. (A) The PstI-EcoRI 1.4-kbp TKgenefragmentfrompRPEM204was

inserted inpUC18toyield pRPEM207. Then the PstI-HindIII390-bp,HindIII-EcoRI 1.1-kb, andPstI1.1-kbpTKgenefragmentsweresubcloned

toyieldplasmids pRPEM211, pRPEM210, andpRPEM213,respectively. These plasmidsweresequenced, andtheopenreading framesof both

strandsweredetermined. Arrows show the direction andextentofsequencedeterminationfrom eachrestriction site. Restrictionenzymecleavage

sitesBglII(B), HindlIl (H), PstI (P), and XhoI (X)areindicated. (B) Nucleotidesequenceand predicted amino acidsequenceof the TKprotein (single-letter amino acid code). Ter, Termination codon. Locations of cleavage sites BgII, HindIII, PstI, and XhoI and the ribosome-binding site

areunderlined.

B H

I I1IiT

T K

B

RRG

CCT

GGR

K P G

RCG TTT CTT

T F L

OTC

TTC RTR

V F I

TCC

GGT

RTR

S G I

TTR TCT

GRC

L S D

GCG CRT TTT

A H F

RRR

ATT

RTT

K I I

CCG CCC RTC

p p I

CGC RCC

TGT

R T C

RRC GCR

GRC

N A D

TGT TGT

RRC

C C N

RRR

TRT TRR

K Y Ter

J. VIROL.

on November 10, 2019 by guest

http://jvi.asm.org/

(4)

NOTES 1049

.2

B I

.4

l l

.6 .a

4 156 Kbp

K

C I

I C IH'i B F'I A . I IHI E

IGI~

E C C CE

ES

I I-Ia I .. 1

E BH P X

a I

p a E

I I aWa

TK

FIG. 4. Summary of the mapping and precise location ofthe TKgenein the ASFVgenome. Thesizeofthe DNAfromASFV growing

inMS cells is 156 kbp(31).Sallfragmentsareshown(boxed). Thelocationof the .Kgenewithin theSalI-Bfragment is indicated.Restriction

enzymesBglII (B), ClaI (C),EcoRI (E),HindIll (H), PstI (P),Sall(S),andXhol (X)areindicated.

racil, 2.5 ,ug of uridine, 5 ,ug of thymidine, 250 ,ug of

deoxyadenosine, and 1 ,uCi of[3H]thymidine (82.2 Ci/mmol; New England Nuclear Corp., Boston, Mass.). The cells were lysed with 2% sodium dodecyl sulfate-0.2 N NaOH

ABC D

P73

1P23.5

[image:4.612.85.526.73.239.2]

IP16 ._

FIG. 5. Sodiumdodecyl sulfate-polyacrylamide gel electropho-resisofpolypeptides translated from different RNA preparations.

TheRNAresulting from in vitro transcription by T7 RNA

polymer-asefrom plasmid pGEM204a linearized with XhoI (pGEM204aX) (lane C) was translated in a rabbit reticulocyte lysate system

(Promega), with [35S]methionineasthelabeled aminoacid. Labeled proteins were analyzed by 12% polyacrylamide-sodium dodecyl

sulfategelelectrophoresis, and the labeled polypeptideswere

visu-alizedby autoradiography of the dried gel. Lane D, No RNA; lane A, polypeptides from uninfected MS cells; lane B, infected cells labeled with[35S]methioninefrom 20to22hpostinfection (28). IP, Polypeptides from infected cells; numbersaremolecularmassesin kilodaltons.

and precipitated with ice-cold 10% trichloroacetic acid.

Precipitates werecollected by filtration on glass fiber filters andcounted in toluene-based scintillationfluid. When these cellsweregrownin the presence of

isopropyl-p3-D-thiogalac-topyranoside (IPTG), the incorporation of [3H]thymidine

was increased about 25 times inrelation to that in parallel cultures in the absence ofIPTG (Table 1). Sincethe pINI-IIAl vectorcontains the lac promoter-operator region, the

expression of the viral TK gene can be induced by a lac inducer such as IPTG. The increase of[3H]thymidine

indi-catesthat theexpression ofthe ASFV TK gene isregulated by alac promoter-operator region.

Cell-free translation of synthetic RNA.Additional evidence

that the BglII-XhoI fragment contains the TK gene was

obtainedby the synthesis ofactive TKproteinin acell-free

system programmedwith RNA synthesized in vitro, using

plasmid pGEM204a (Fig. 1)and T7orSP6RNApolymerase in the presenceof 0.5 mM

m7G(5')ppp(5')G.

The RNA was translated in a reticulocyte cell-free system, and samples from the translation mixture were then assayed for TK

activity.Positive controlswereearlyRNAsfrom BHK TK-cells(kindlysupplied byB.Roizman, UniversityofChicago)

at14hafter infection with ASFV(strainSpainM0/MS44[31])

in the presence of 0.1 mM cycloheximide. Total RNA was

[image:4.612.117.234.374.607.2]

isolated from infected and mock-infected cellsbyguanidine

isothiocyanate-CsCl

extraction (15). Active TK was ob-tained upon translationofRNAfrominfected cells(Table 2).

TABLE 1. Incorporation of[3H]thymidineinto DNAof

plasmid-transformedTK- E. coli(KY893 mutantstrain)a

Bacterialstrain . cpm/mlof

(culturesupplementb) asma bacterial culture

KY893 37

NH522 1,877

KY893(FUdr) pINIIIAl 37

KY893(FUdr + IPTG) pINIIIAl 58

KY893(FUdr) pINTK14 166

KY893(FUdr+ IPTG) pINTK14 4,110

aForselectionof TKexpression,theTK-deficient(TK-)strain KY893(10)

of E. coliwas used.TK activity was assayed bymeasuring theuptakeof [3H]thymidineasacid-precipitable radioactivity.

bFUdr,

Fluorodeoxyuridine.

PRPEM 513

pRPEM204

_"

.. V

VOL.65, 1991

on November 10, 2019 by guest

http://jvi.asm.org/

[image:4.612.317.557.610.691.2]
(5)

1050 NOTES

fHIIRKLKP6TISLULGPfFRGKTTFLIHCIYMLERLEKKUUFIKSTKHTR

-

OK

MSC

INLPTULP6SPSKTRGQIQUILGPMFSGKSTELIRRURRFQIROYKCLUIKYRKOTRY----SS

MSYIHLPTULPSSPSKTRGQIQUILGPnFSGKSTELIRRURRFQIRQYKCLUIKYRKDTRY----SK

IHCLTUPGUHPGSPGRPRGQIQUIFGPfFSGKSTELIRRURRFQLRQYRCLLUKYRKDTRYC---TT

1SSGSIHUITGPnFSGKTSELURRIKRFnLSNFKCIIIKHCGONRYNDEDIN

nHGGHIOLIIGPnFSGKSTELIRRURRYQ1RQYKCUTIKYSNDNRYG

----T

INGGHIQLIIGPMFSGKSTELIRRURRYQIRQYKCUTIKYSHDHRYG----T

IHGGHIQLIIGPIFSGKSTELIRRURRYQIRQYKCUTIKYSHDHRYG----T

n1

IGHIHLIIGP1FRGKSTELIRLURRYQIRKHKCLUUKYEKDIRYG----N

G I +

GPfF+GK+++L

+++ + + ++

+K+

+ R+

TIKTHSGIQLRPKQCKIIESTQLSDU--GSLTO--IHRUU-UDERHFFODLIK-CRTUREEEKIIIL

SFCTHD.---RHTERLPRCLLRDURQERL----6URUIGIDEGQFFPDInEFCERnRHRGKTUIU

SFSTHD---RHT1DRLPRCfLRDUTQELL----GURUIGIOEGQFFPDIUDFCE1IRHEGKTUIU

GUSTHD---RHTMERRPRCRLQDUYQERL----GSRUIGIDEGQFFPDIUEFCEKIRHTGKTUIU

KUYTHD---LLFMERTRSSHLS-ULUPTLLHD-GUQUIGIDERQFFLDIUEFSESMRHLGKTUIU

GLUTHD---KHHFRRLEUTKLCDU----LERITDFSUIGIDE6QFFPDUUEFCERMRHEGKIUIU

GLUTHD---KHHFERLERTKLCDU----LESITDFSUIGIDEGQFFPDIUEFCERMRNEGKIUIU

GLUTHD---KNHFERLERTKLCDU----LERITDFSUIGIDEGQFFPOUUEFCERMRHEGKIUIU

GUCTHD---NS

I

TRUCTPSLDK

I

----DSURENREUII6OEGQFFPNIRTFCERRtHRGKUL

I U

TH+

+ L ++ +

U+++DE++FF++

+++

oR+

+K

+1+

AGLHRSFEQKMFPPIURIFPYCSIUKYIGRTCIKCHQHHRCFHURKHRDKTLILRGGSELYUTCCHH

RARLDGTFQRKPFGRILHLUFLRESUUKLTRUCIECF-RERRYTKRLGTEKEUEUIGGRDKYHSUCRL

RRLDGTFQRKRFGSILHLUPLRESUUKLTRUCMECF-RERRYTKRLGLEKEUEUIGGRDKYHSUCRL

RRLOGTFQRKRFGSILHLUPLRESUUKLHRUCfECY-RERSYTKRLGREREUEUIGGRDKYHSUCRR

RRLHGDFKRELFGHUYKLLSLRETUSSLTRICUKCY-CDRSFSKRUTENKEUMDIGGKDKYIRUCRK

RRLDGTFQRRPFHHILHLIPLSEMUUKLTRUCMKCF-KERSFSKRLGTETEIElI6GHODYQSUCRK

RRLOGTFQRKPFN

ILHLIPLSEIUUKLTRUCMKCF-KERSFSKRLGEETEIElIGGIDIYQSUCRK

RRLOGTFQRKPFHHILOLIPLSEfUUKLTRUCMKCF-KERSFSKRLGTETKIEIIGGHDIYQSUCRK

RRLDGTFORKPFSHISELIPLRENUTKLNRUCfYCY-KHGSFSKRLGDKMEIEUIGGSDKYKSUCRK

R+L+++F+++ F + + ++ + +

+++C+

C +

*R++

+ + GG + Y

++C+

ASFV CLKHTFIKQLQPIKY

Human

CYFKKRSGQPRPDONKEICPUPOKPGERURRRKLFRPQQILQCSPRH

Mouse

CYFKKSSRQTRGSONKN-CLULGQPGERLUURKLFRSQQULQYHSRH

Chicken

CYFQKRPQQL-GSEHKENUPIGUKQLDfPRSRKIFRS

FPV CFFSH

MPV CYIDS

VV CYIDS

VarV CYIDS

SFV CYEE

Homology C+

FIG. 6. Alignment of amino acidsequencesof TK from ASFV, humans (H) (3), mice (M) (13), chickens (Ch) (17), vaccinia virus (VV) (37), variolavirus (Var V) (6), monkeypox virus (MPV) (6), fowlpox virus (FPV) (2), and Shope fibroma virus(SFV) (32). Theconsensussequenceand

thepositionsatwhich identicalresiduesareobserved inseven ormoreof the nine alignedsequences areindicated (+) below the alignment.The

maximumidentity with vaccinia virus TKwaslocated in thenucleotide-binding siteatresidues 17to25 inthe ASFV TKgene,whichcorrespond

toresidues 11 to19in the vacciniavirus TKgene (7),and in thepossiblenucleoside-binding siteat residues 88to 122in ASFVTK,which

correspondtoresidues 77to116in thevaccinia virus TKgene.

The polypeptide synthesized had a molecular weight of

about22,400 (Fig. 5, lane C), in goodagreementwith thesize predicted from the open reading frame gene sequence. In conclusion, we have identified andexpressed, both in

bac-terial cells and by cell-free translation, the TK gene of

ASFV.

Comparison of the ASFV TK gene with poxvirus and cellular TK genes. In addition to providing a tool for the

TK

ASFV

Human

Mouse

Chicken

FPV

MPV

vV

Var V

Homology

ASFV

Human

Mouse

Chicken

FPV

MPV

VV

Var V

SFV

Homology

ASFV

Human

Mouse

Chicken

FPV

MPV

VV

Var

V

SFH

l

Homology

J. VIROL.

on November 10, 2019 by guest

http://jvi.asm.org/

[image:5.612.137.504.77.590.2]
(6)
[image:6.612.50.293.91.172.2]

TABLE 2. TK activityincellextract aftertranslationsa

Source of Plasmid TKactivity

RNA (cpm)

BHK(TK-) 10,046

BHK 17,629

BHK (TK-)withcycloheximideb 18,126

Invitro transcription pGEM204aS 90,737

In vitrotranscription pGEM204aX 97,308

Invitro transcription pGEM204aE 10,133

aThe level of TKactivitywasassayed byconversionof

[3H]thymidine

into [3H]thymidylate. Plasmid pGEM204a (Fig. 1) was linearized with Sail (pGEM204aS)orXhoI(pGEM204aX), transcribed withT7RNApolymerase orfurther linearizedwithEcoRI(pGEM204aE),and then transcribed with SP6 RNApolymerawe.About 3S.gof RNA transcribed in vitroandabout35 ,ug of totalRNAfrominfected oruninfectedBHKcellsweretranslated for4 h in a micrococcal nuclease-treated reticulocyte lysate, and the TKactivity was assayed in thepresenceof50p.Mthymidine tostabilizenascent TK activity (36).

b Cells infected with ASFV.

development of ASFV genetics, the TK gene is of interest

for further defining phylogenetic relationships among large DNA viruses. The nucleotide sequence of the ASFV TK gene includes an open reading frame of 196 codons, with a calculated molecular weight for ASFV TK of 22,394, only

slightly higherthan that ofthe vaccinia virus TK, which is 20,102 (37). Homology analysis of the deduced ASFV TK

gene protein sequence indicates a relationship with both

poxvirus andcellularTKproteins (Fig. 6).The percentages ofidentityin TK sequencesaligned bythe FASTP program (14) were shown to be 28% for human, 29.5% for mouse,

26.1% for chicken, 26.2% for fowlpox virus, 31.3% for

monkeypoxvirus, 32.4%forvaccinia virus, 31.8% for vari-olavirus,and29% for Shope fibroma virusTKpolypeptides.

Theidentification ofthe ASFV TK gene will now permit direct construction, by genetic manipulation, of TK- mu-tants to serve asrecipientsforreinsertion offoreigngenes. Oneimportantchange thatoccursin theadaptation ofASFV strain E70to monkey cells is the lossofpathogenicity (31). Consequently,ASFVcouldbe usedas amodel in studiesof

pathogenesis of persistent infections by inserting genes

presumably involvedinpathogenesis into the genome of the

avirulent E70MS14 strain (31).

We are grateful to S. Fernandez and J. Alvarez forexcellent technical assistance.

This workwassupported byagrantfromComisionAsesora para elDesarrollo delaInvestigaci6nCientificayTdcnica(Spain).

REFERENCES

1. Almendral, J. M., R. Blasco, V.Ley, A. Blasco,A.Talavera, and E. Vihuela. 1984. Restriction site mapof African swine fever virusDNA. Virology 133:258-270.

2. Boyle, D.B., B. E. H.Coupar, A.J. Gibbs,L.J.Seigman,and G. W. Both.1987. Fowlpoxvirusthymidinekinase: nucleotide sequence andrelationshipstootherthymidinekinases.Virology 156:355-365.

3. Bradshaw, H. D., Jr., and P. L. Deininger. 1984. Human thymidine kinase gene: molecular cloning and nucleotide

se-quenceofacDNA expressiblein mammaliancells. Mol. Cell. Biol.4:2316-2320.

4. Duffand, G. D., P. E. March, andM.Inouye.1987.Expression

andsecretion offoreign proteins in Escherichia coli. Methods Enzymol. 153:492-507.

5. Escribano, J. M., and E. Tabaires. 1987. Proteins specified by

Africanswinefever virus.V.Identification of immediateearly,

earlyand lateproteins.Arch. Virol. 92:221-232.

6. Esposito, J. J.,andJ.C.Knight. 1984. Nucleotidesequenceof the thymidine kinase gene region of monkeypox and variola virus.Virology 135:561-567.

7. Gentry, G. A. 1985. Locatinga nucleotide-binding sitein the

thymidinekinaseof vacciniavirusand ofherpessimplexvirus

by scoringtriply alignedprotein sequences. Proc.Natl. Acad. Sci. USA82:6815-6819.

8. Hess, W. R. 1971. African swine fever virus. Virol. Monogr.

9:1-33.

9. Hess, W. R. 1981. African swine fever: areassessment. Adv. Vet. Sci. Comp. Med. 25:39-69.

10. Hiraga, S., K. Igarashi, and T. Yura. 1967. Deoxythymidine

kinase-deficient mutant of Escherichia coli. I. Isolation and

someproperties. Biochim. Biophys.Acta145:41-51.

11. Igarashi, K.,S. Hiraga, and T. Yura.1967. Adeoxythymidine

kinase-deficient mutant of Escherichia coli. II. Mapping and transduction studieswithphage

480.

Genetics37:643-654. 12. Inouye,S.,and M.Inouye.1985. Up-promoter mutations inthe

lpp gene of Escherichia coli. Nucleic Acids Res. 13:3101-3110.

13. Lin, P.-F.,H.B.Lieberman,D.-B.Yeh,T.Xu,S.-Y.Zhao,and F. H.Ruddle.1985. Molecularcloningandstructuralanalysisof murinethymidinekinase genomic andcDNAsequences. Mol. Cell. Biol.5:3149-3156.

14. Lipman, D. J., and W. R. Pearson. 1985. Rapid andsensitive

proteinsimilaritysearches. Science227:1435-1441.

15. Maniatis, T., E. F. Fritsch,andJ. Sambrook. 1982. Molecular

cloning: alaboratorymanual. ColdSpringHarborLaboratory,

ColdSpring Harbor,N.Y.

16. Mebus, C. A. 1988. African swine fever. Adv. Virus Res. 35:251-269.

17. Merrill, G. F., R. M. Harland, M. Groudine, and S. L. McKnight.1984. Geneticandphysicalanalysisofthechicken tk gene. Mol. Cell. Biol. 4:1769-1776.

18. Piccini, A., and E. Paoletti. 1988. Vaccinia: virus, vector, vaccine. Adv. VirusRes. 34:43-64.

19. Polatnick, J., and W. Hess. 1970. Altered thymidine kinase

activity in culture cells inoculated with African swine fever virus. Am. J. Vet. Res. 31:1609-1613.

20. Polatnick, J., and W. Hess. 1972. Increaseddeoxyribonucleic

acid polymerase activity in African swine fevervirus-infected culture cells.Arch. GesamteVirusforsch.38:383-385. 21. Roizman, B., and F. J. Jenkins. 1985. Genetic engineering

of novel genomes of large DNA viruses. Science 229:1208-1214.

22. Salas,M.L., J.Rey-Campos,J.M.Almendral,A.Talavera,and E. Vinuela. 1986. Transcription maps of African swine fever virus. Virology152:228-240.

23. Sanchez Botia, C. 1982. Peste porcina africana. Nuevos de-sarrollos. Rev. Sci. Tech. O.I.E. 1:991-1029.

24. Sanger, F.,S.Nicklen,and A. R.Coulson. 1977. DNA

sequenc-ing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.

25. Sargan,D.R.,S. P.Gregory,and P. H. W.Butterworth. 1982. Apossible novel interactionbetween the 3'-end of18 S ribo-somal RNA and the 5'-leader sequence of many

eukaryotic

messenger RNAs. FEBSLett. 147:133-136.

26. Schnitzlein, W. M., N. Ghildyal, and D. N. Tripatly. 1988. A

rapid method for identifying the thymidine kinase genes of

avipoxvirus.J.Virol. Methods 20:341-352.

27. Tabares,E.1987.Characterization ofAfricanswinefevervirus

proteins, p. 51-61. In Y. Becker (ed.), African swine fever. MartinusNijhoffPublishing, Boston.

28. Tabares, E.,M. A.Marcotegui,M. Fernandez,andC. Sanchez

Botija. 1980. Proteinsspecified byAfrican swine fever virus. I.

Analysis of the structural proteins and

antigenic

properties.

Arch. Virol. 66:49-59.

29. Tabares,E., J.Martinez,F.R.Gonzalvo,andC. SanchezBotja.

1980.Proteinsspecified byAfrican swine fevervirus. II.

Anal-ysisofproteinsininfectedcells and

antigenic

properties.

Arch. Virol.66:119-132.

30. Tabares,E.,J.Martinez,E.Martin,andJ.M.Escribano.1983.

on November 10, 2019 by guest

http://jvi.asm.org/

(7)

1052 NOTES

Proteins specified by African swine fever virus. IV. Glycopro-teins andphosphoproteins. Arch. Virol. 77:167-180.

31. Tabares,E.,I.Olivares,G. Santurde,M. J.Garcia, E.Martin,

and M. E. Carnero. 1987. African swine fever virus DNA: deletions and additions during adaptationtogrowthin monkey kidney cells. Arch.Virol. 97:333-346.

32. Upton, C., and G. McFadden. 1986. Identification and

nucleo-tide sequence of the thymidine kinase gene ofShope fibroma

virus. J. Virol. 60:920-927.

33. Urzainki, A., E. Tabares, and L. Carrasco. 1987. Proteins synthesized in African swine fever virus infected cells analyzed bytwodimensional gel electrophoresis. Virology 160:286-291. 34. Vifiuela,E. 1985. African swine fever virus. Curr.Top.

Micro-biol. Immunol. 116:151-170.

35. Wardley, R. C., C. M. Andrade, D. N. Black, F. L. Castro Portugal, L. Enjuanes, W. R. Hess, C. Mebus, A. Ordas, D. Rutili, J. M. Sanchez Vizcaino, J. D. Vigario, and P. J.

Wil-kinson. 1983. African swine fever virus. Arch. Virol.

76:73-90.

36. Weir, J. P., G. Bajszar, and B. Moss. 1982. Mapping ofthe

vacciniavirus thymidine kinasegeneby markerrescueand by

cell-freetranslation of selected mRNA. Proc. Natl. Acad. Sci. USA 79:1210-1214.

37. Weir, J. P., and B. Moss. 1983. Nucleotide sequence of the vaccinia virus thymidine kinasegeneand the natureof

sponta-neousframeshift mutations. J. Virol. 46:530-537.

J. VIROL.

on November 10, 2019 by guest

http://jvi.asm.org/

Figure

FIG. 2.PstI-HindIIIHindlIlHindIII,oligonucleotidezymes204.tively;agaroseSouthern Mapping of the ASFV TK gene within plasmid pRPEM (A) Lanes 1 to 8, pRPEM204 digested with HindlIl plus EcoRI,plus PstI, XhoI plus PstI, BgIIH plus PstI, BglII plus BglII plus
FIG. 3.insertedtoare(single-letterstrandssites yield Nucleotide sequence of the ASFV TK gene and flanking regions
TABLE 1. Incorporation of [3H]thymidine into DNA of plasmid-transformed TK- E. coli (KY893 mutant strain)a
FIG. 6.variolathetocorrespondmaximum residues Alignment of amino acid sequences of TK from ASFV, humans (H) (3), mice (M) (13), chickens (Ch) (17), vaccinia virus (VV) (37), virus (Var V) (6), monkeypox virus (MPV) (6), fowlpox virus (FPV) (2), and Shope f
+2

References

Related documents

A large number of nef alleles were obtained from peripheral blood mononuclear cells (PBMC) of four long-term nonprogressing survivors of human immunodeficiency virus type 1

According to the above interpretation, both the natural and synthetic attenu- ator sequences in m1 to m3 and m5 inhibited the ribozyme in the circular products and yet they could

pJG108 was inserted into the KAT::loxl genome at the tk laxP site in a cell-free Cre-mediated recombination reaction, and infectious virus was produced by transfection of the

Mice immunized with recombinant vaccinia virus expressing dengue 4 virus structural proteins with or without nonstructural protein NS1 are protected against fatal dengue

Note: N* = Number of participants who completed the study; NICU = Neonatal Intensive Care Unit; PPQ = Perinatal PTSD Questionnaire; SCL = Symptom Checklist; PCL = Post-traumatic

The study involves an investigation and development of new and improved feature extraction and data dimension reduction algorithms based on image processing techniques.. The approach

Variation of loads on a three-bladed horizontal axis tidal turbine with frequency and blade position.. Gr´

While the political experience of empire could not be expunged from the international public sphere, and indeed had significant ideological and structural influence on