• No results found

Preliminary Interdependency Analysis: An Approach to Support Critical Infrastructure Risk Assessment

N/A
N/A
Protected

Academic year: 2019

Share "Preliminary Interdependency Analysis: An Approach to Support Critical Infrastructure Risk Assessment"

Copied!
21
0
0

Loading.... (view fulltext now)

Full text

(1)

City, University of London Institutional Repository

Citation:

Bloomfield, R. E., Popov, P. T., Salako, K., Stankovic, V. and Wright, D. (2017).

Preliminary Interdependency Analysis: An Approach to Support Critical Infrastructure Risk

Assessment. Reliability Engineering and System Safety, 167, pp. 198-217. doi:

10.1016/j.ress.2017.05.030

This is the published version of the paper.

This version of the publication may differ from the final published

version.

Permanent repository link:

http://openaccess.city.ac.uk/id/eprint/17456/

Link to published version:

http://dx.doi.org/10.1016/j.ress.2017.05.030

Copyright and reuse: City Research Online aims to make research

outputs of City, University of London available to a wider audience.

Copyright and Moral Rights remain with the author(s) and/or copyright

holders. URLs from City Research Online may be freely distributed and

linked to.

(2)

ContentslistsavailableatScienceDirect

Reliability

Engineering

and

System

Safety

journalhomepage:www.elsevier.com/locate/ress

Preliminary

interdependency

analysis:

An

approach

to

support

critical-infrastructure

risk-assessment

Robin E. Bloomfield

a ,b

, Peter Popov

a

, Kizito Salako

a ,∗

, Vladimir Stankovic

a

, David Wright

a

aTheCentreforSoftwareReliability,City,UniversityofLondon,EC1V0HB,London,UK bAdelardLLP,24Waterside,44-48WharfRoad,LondonN17UX,London,UK

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Interdependencyanalysis Riskassessment Cascadingfailure

Criticalinfrastructureresilience

a

b

s

t

r

a

c

t

Wepresentamethodology,PreliminaryInterdependencyAnalysis(PIA),foranalysinginterdependenciesbetween criticalinfrastructure(CI).Consistingoftwophases– qualitativeanalysisfollowedbyquantitativeanalysis– anapplicationofPIAprogressesfromarelativelyquickelicitationofCI-interdependenciestothebuildingof representativeCImodels,andthesubsequentestimationofanyresilience,riskorcriticalitymeasuresanassessor mightbeinterestedin.Bydesign,stagesinthemethodologyarebothflexibleanditerative,resultingininteracting CImodelsthatarescalableandmayvarysignificantlyincomplexityandfidelity,dependingontheneedsand requirementsofanassessor.Formodelparameterisation,onereliesonacombinationoffielddata,sensitivity analysisandexpertjudgement.Facilitatedbydedicatedsoftwaretoolsupport,weillustratePIAbyapplyingittoa complexcase-studyofinteractingPower(distributionandtransmission)andTelecommunicationsnetworksinthe Romearea.Anumberofstudiesarecarriedout,including:1)aninvestigationofhow“strengthofdependence” betweentheCIs’ componentsaffectsvariousmeasuresofriskanduncertainty,2)forresourceallocation,an explorationofdifferent,butrelated,notionsofCIcomponentimportance,and3)highlightingtheimpactof modelfidelityontheestimatedriskofcascades.

CrownCopyright© 2017PublishedbyElsevierLtd. ThisisanopenaccessarticleundertheCCBYlicense.(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Itisrecognisedthatoneofthechallengesinenhancingtheprotection ofCriticalInfrastructures1(CIs)againstaccidents,naturaldisasters,and

actsofterrorism(includingcyberterrorism)isestablishingand main-taininganunderstandingoftheinterdependenciesbetween infrastruc-tures.Governmentalagenciesresponsibleforprotectingnationalcritical infrastructureneedmethodsandtoolstoassessrisks(includingthose relatedtointerdependencies)andevaluate thealternativesavailable formitigatingthese.Theownersandoperatorsof critical infrastruc-tureneedtoknowthelikelyimpact,ontheirservices,ofdisruptions fromotherinfrastructures,sotheycandevelopmitigations(e.g.intheir emergencyplanning)andmakeconsideredinvestmentsinresilience[1] . Onceonerecognisestheimportance– intermsofrisks– of interde-pendenciesbetweencriticalinfrastructures,oneisthenfacedwiththe feasibilityandcostofarisk-assessment[2–5] ,sincecritical infrastruc-turesaretypicallylargeandverycomplexsystems.Model-based risk-assessmentcanofferafeasibleandcost-effectiveassessmentapproach foranassessor,iftheassessorcangainenoughconfidencethather

mod-∗Correspondingauthor.

E-mailaddresses:reb@csr.city.ac.uk,reb@adelard.com(R.E.Bloomfield),ptp@csr.city.ac.uk(P.Popov),k.o.salako@city.ac.uk(K.Salako),Vladimir.Stankovic.1@city.ac.uk(V. Stankovic),d.r.wright@city.ac.uk(D.Wright).

1AsdefinedbytheU.S.DepartmentofHomelandsecurity(seehttps://www.dhs.gov/ what-critical-infrastructure).

els arerepresentative of thesystem’sbehaviour,capturingwhat she judgestobeessentialinterdependencies.Facedwithnumerouschoices aboutmodelstructure,fidelityandparameters,ourassessorcan gain confidencein amodelbya successionof modelrefinements,each re-finementresultingfromverifyingandvalidatinganearlierversionof amodelandmakingjudgementsaboutwhatchangestothemodelare neededforanimprovementwhile,atthesametime,notputtinginmore detailthanshejudgestobenecessaryforherneeds.So,forinstance,if anassessorhascertainrisk-measures2inmind(e.g.thedistributionof

lossin network-connectivityresulting fromcomponentfailureor the distributionoflossinsuppliedelectricalpowerduetoline-outagesina snowstorm)which,tobecomputed,requirethemodeltoexplicitlyhave dynamicsofacertainkind(e.g.packet-routingalgorithmsorelectrical powerflowmodels),thenthesedynamicswillneedtobeincorporated inarevisionofthemodel.

Clearly,withsomanychoicestomake,thetaskofmodelbuilding andrefinementcanbeadauntingone,withseriousramificationsforthe

2Inthispaper,foreaseofpresentationandwithout-loss-of-generality,arisk-measureis

aprobabilitydistributionofunwantedeventsarisingfromrandomchangesinaCI’sstate.

http://dx.doi.org/10.1016/j.ress.2017.05.030

Received8July2015;Receivedinrevisedform21March2017;Accepted18May2017 Availableonline22May2017

(3)

risk-assessmenttobe carriedout.Anymethodology/toolswhich sup-portanassessorinthisendeavourshouldaffordtheassessorthe flex-ibilityto(1)createmodelsatanydesiredlevelofabstraction,(2) al-ter/add/removestochasticanddeterministicprocesses,and(3)define anyrisk-measureofinterest.Tothisend,weproposePreliminary Inter-dependencyAnalysis(PIA)– asystematicmethodtosupportbuilding, refiningandanalysingmodelsof interdependentLargeComplex Criti-calInfrastructures(LCCI).PIAstarts off atahigh-levelof abstraction, supportingacyclic,systematicthoughtprocess,directedtowards iden-tifyingdependenciesbetweencomponentsofCIs.Eventually,(hybrid) probabilisticmodelsaredeployed,oncetheyhavebeenjudgedtobe appropriateforrisk-assessment; theseareusedtoconductstudies fo-cussedoncomputingdifferentmeasuresofinterests,e.g.thelikelihood ofcascadefailureunderagivensetofassumptions,orthe identifica-tionoftheweakestlinkinthemodelledsystem.And,ifmodellingwith evengreaterdetailisrequired,PIAcanassistinthisprocesstoo,e.g.by addingmodelsoftheconsequencesofLCCIoperatoractions,orby intro-ducingvariousconstraintsonsuchactions,suchaslimitingthe main-tenanceresourcesavailableinthecaseofamajordisaster,oradding deterministicmodelsspecifictoaparticularLCCI(e.g.powerflowsfor powersystems).

ThePIAmethodisapplicableasboth:

1. alightweightmethodusedtoprovideaninitialidentificationof in-terdependenciesandtoscopetheoptionsformoredetailedstudies. Theapproachshouldbeaccessibletoarangeofstakeholders, partic-ularlySmall-to-MediumEnterprises(SMEs)insupportoftheirbusiness continuityplanning

2. amoreheavyweightmethodofstudying,withanincreasinglevel ofdetail,complexregionalandnationwideCIsbycombining prob-abilisticanddeterministicmodelsoftheCIs.

TherearenumerousstudiesaboutCIinterdependencies,including somewhichrelyoncomplexdynamicmodels.Aspointedoutinarecent survey[6] summarisingresearchoninterdependenciesinpowersystems forthelast5years,manystudiesanalyseinterdependencieswithout de-tailinghowtheseinterdependencieswereidentifiedinthefirstplace, givingtheimpressionthattheinterdependenciesareallknowntothe analyst.Systematicmethodswhich canbe followedtoidentify inter-dependenciesarelackingintheliterature.Theauthorsofthesurvey, therefore,recommendthatmethodsforinterdependencyidentification begivenhighpriority.Weagree,andPIAprovidessignificantsupport inthisdirection.

WeillustratetheuseofPIAonarealisticcasestudy:aregional sys-temoftwoCIs,namelythepowergridandthetelecommunication net-workaroundRome,Italy(i.e.Romecase-study).Inthestudy,weused asetoftools– thePIAToolkit– whichconsistsoftwosoftware appli-cationswedeveloped:

UsingthePIADesigner,amodellercanconstructandparameterize avisualrepresentationofinterdependentCIs.ThePIADesigner con-vertsthisvisualmodelintoaprobabilisticmodelreadytobesolved viaMonteCarlosimulation.TheDesignerusesthirdparty propri-etarysoftwarecalledASCE[7] .

TheExecutionEngineallowsforMonteCarlosimulationusing mod-elscreatedwiththePIADesigner.TheExecutionengineusesMöbius

[8] ,whichwecustomisedextensivelyto1)allowforvariousforms ofdependenciesbetweenthemodelledelements,and2)for integra-tionofthirdpartysoftwareinsimulation(e.g.variousdeterministic flowmodels,typicallyusedwiththeCIs).

Therestofthepaperisorganisedasfollows.Section 2 presents re-latedresearch,whileanoverviewofthePIAmethod– bothits qualita-tiveandquantitativeaspects– isgiveninSection 3 .Section 4 detailsthe mathematicalfamilyofmodelsunderlyingquantitativePIA,including modelsofinterdependentCIsandtheirdependentconstituent compo-nents.InSection 5 we describethecasestudyused toillustrateour approach.Thisisfollowedbyapresentationofresultsobtained,anda

discussionoftheirplausibility,inSection 6 .InSection 7 ,wediscussour findings,andopenissuesforfutureresearch,whilefinallyconcluding thepaperinSection 8 .Appendix A containsadetailedillustrationof modeldevelopmentovervariousstagesofPIA,usingPIAstoolsupport intheaforementionedcase-study.

2. Relatedresearch

TheauthoritativepaperbyRinaldietal.[9] established interdepen-dencyrelatedterminologyandconcentratesonhighleveldependencies betweeninfrastructures.Itwasnoticed,however,thatsuchanapproach, althoughusefulataconceptuallevel,isinappropriateforrisk quantifi-cationasfurtherelaborationisneeded.Manyauthors,including our-selves,havesincearguedinfavourofservice-levelmodelsofadifferent flavour.

AnoverviewofCIinterdependencyresearchisprovidedinour ear-lierstudyon interdependenciesforUKagencies[10,11] .A more re-centsurveyis[12] ,inwhichanumberofmodellingandsimulation ap-proachesaregroupedintosixcategories:1)Empirical,2)Agent-based, 3) Economic-based, 4) Complex-Networkbased, 5) System-dynamics basedand6)“Others”,whichcoversallapproachesnotincludedinthe previouscategories.Accordingtothisclassification,ourworkbelongsto the“Others” category,partlybecauseourworkincorporatesapproaches frommorethanonecategory.WecomparetheseapproachestoPIA be-low.

PIAallowsonetoestimate riskusingalternative,consistent mod-els,therebyallowingrisk-measuresresultingfromthesemodelstobe directlycompared.Weseethiscapabilityasausefulstepinaddressing theresearchgapidentifiedattheendofsection4.1.2in[12] .Asan empiricalmodellingapproach,PIAcanbeusedfor1)identificationof frequentandsignificantfailurepatterns,aswellas2)quantificationof anyrisk-measureschosenbyanassessor.

Agent-based models, consisting of dynamically interacting rule-based agents,arebasedon theideathatcomplex behaviour or phe-nomena emergefrom manyindividual andrelatively simple interac-tionsofautonomousagents[13–15] .Intermsofemergentmodel prop-erties,therearesimilaritiesbetweenPIAandagent-basedmodelling ap-proaches.Thedeterministicrulesthatgovernthebehaviourofagents canbemodelledinPIAaswell,asthedeterministicresponsesof com-ponents toasystem’srandomchangesintime. But,PIAextendsthis conceptbyintroducingstochasticassociations,whichdefine determinis-ticrulesgoverninghowtheuncertaintyinthemodeldependsuponthe stateofthesystemanditscomponents.

Incontrastwiththe“bottom-up” approachofAgent-basedmodels,

System-dynamicsapproachestakea“top-down” view[16–18] by focus-ingonthenonlinearbehaviourofsystemsovertime,usingstocksand

flows,internalfeedbackloopsandtimedelays.Thisnonlinearbehaviour istypicallycharacterisedbyasetofdifferentialequationscapturingthe behaviour ofsystemswithfixednetworktopologies– some seethisas asignificantlimitation[12] .PIAisfullycompatiblewiththese tech-niques,butinadditionallowsanassessortoanalyseasystemwith un-certaintyinnetworktopology.

(4)

timedistributionthatcanbesampledfromefficientlycanbe usedin definingtheprocess.

Complex-Networkbased approaches [24,25] , broadlygroupedin

[12] intotopology-basedandflow-basedmethods,modelsingleCIsby networks(i.e.graphswithnodesandlinks)anddescribe interdependen-ciesbyinter-links,providingCIrepresentationswithdetailed descrip-tionsoftheirtopologiesandflowpatterns.Intermsofmodelfidelity, theseapproachesarepitchedatafairlyhighlevelofabstraction.Also, theuseofprobabilisticallyindependenteventsisquitecommonwiththese approachesandsimplifiestheanalysisofsuchmodels.PIAis,however, notrestrictedbylevelofabstraction,ortheuseofprobabilistically in-dependentevents.Onthecontrary,weencouragePIAuserstoexplore variouslevelsofabstractionandalternativeformsofstochastic depen-dencebetweenthemodelledentities.Bysuchexploration,anassessor isbetterequippedtomakeaninformeddecisionaboutmodelaccuracy andusefulness.

In[26] anapproachtomodellinginterdependenciesis developed thatconsidersbothstructuralproperties,usingtechniquesemployedin graphtheory,aswellasfunctionalproperties,toincreasethefidelity andusefulnessoftheapproach.Theapproachisappliedtoacomplex case-studythatincludesrailtransportation,powergridand telecommu-nication.Inessence,thisisusedtostudytheeffectsofremovingasingle componentfromtherespectivenetworkandhowsystemperformance variesasaresult.Thework,however,doesnottakeintoaccountthe likelihoodsofdifferentcomponentsbecominginoperable;thisis signif-icantlydifferentfromourmethodology.Also,theapproachisclearly limitedinitspotentialtoseetheeffectsofmultipleelementsbeing re-moved(e.g.whentheyfailsimultaneously).

Aninterestingobservationmadein[27] isthatservicesinsometypes ofinfrastructure,suchastelecommunicationsortheelectricgrid,are providedandconsumedinstantly.Others,notablyoil,gasand infras-tructurebuiltonphysicalresources,however,exhibitbuffering char-acteristics.Thisaspectisnotexplicitlymodelledinourapproach, al-thoughtakingthisintoaccountshouldnotposeaproblem-PIAoffers waysofmodellingcomplexstochasticbehaviourandbuffering(at cer-tainlevelofabstraction)seemsnomorethandeterministicdelays be-tween“cause” and“consequences”.Moredetailedmodelsofbuffering canbeaddedviaacustom-builtdeterministicmodel.

Anapproachsimilartooursispresentedin[28] inwhichtheauthors seemtorefertoascaled-downversionofthecase-studyusedinthis pa-per,andconcentrateonmodellingtheavailabilityoftheSCADAsystem. Thekeydifferenceisthatthefocusthereisonthetopologyofthe spe-cificsystemandonbuildingaspecialisedStochasticActivityNetworks

(SAN)modelofavailability,ratherthanpresentingagenericmethodof studyingCIinterdependencyscenarios.Inaddition,basedonour experi-ence,buildingSANmodelsfromscratchforeverynewcase-study’does notscale’ up– forscenariosoftypicalcomplexityitistimeconsuming, errorproneandcanbedifficulttodebug.Weaddressedthisdifficulty bydevelopingatoolsupport,basedonSANformalismandASCEtool, whichcomplementsPIA,andwhichisbrieflysummarisedinthe intro-ductionanditsuseisdemonstratedintheappendix.Alargenumberof publicationsreviewtheconceptofriskwhenappliedtointerdependent CI.Thesurveyin[29] discussesanumberofapproaches,andproposes anapproacheasilyapplicableinpractice.Theseauthorsargueinfavour ofrankingtheincidentsaccordingtotheirfrequencyandimpactand demonstratetheapplicationtoacase-studyofcriticalinfrastructuresin Oslo.Theapproach,however,seemssimplistic,astheballparkfigures usedforrankingtheincidentsarenotconvincing.Insteadofadopting asimilar view– prescribing aparticularwayofdefiningcomponent criticality– inthispaperwedemonstratethatcriticalitymayvary sig-nificantlywiththedefinitionofcriticality.Acomponentseenashighly criticalusingone definitionof criticality,e.g.theoneused bythose authors,maywellturnouttobealowcriticalitycomponentusinga differentdefinitionofcriticality,e.g.thelikelihoodofacomponent be-ingapartofalargecascade.Wediscussthepracticalimplicationofour observation.

ItisalsointerestingtorelatePIAtoothermethodsusedinsafetyand dependabilityanalysis.Methodsforsafetyanalysiscanbeunderstoodin termsofhowtheysupportthediscoveryoftherightsystemmodel(even ifimplicitly)andtheexplorationoftheimplicationsofthatmodele.g. byexploringitsstatespace.Techniquessuchasfault-treeanalysis(FTA) orfailure-mode,effectsandcriticalityanalysis(FMECA)largelyconcern exploringanexistingmodel(e.g.onegivenbyplantdiagrams,a cir-cuitboarddesign).ConductingHazardOperabilitystudies(HAZOP)isan interestingtechnique, inthatitcombinesthediscoveryofthe appro-priatemodelwithanexplorationoftheimplicationsofthatmodel:in undertakingasecurity-informedHAZOP,theattacksorfailureof the systemmaycomefrom amuch lowerlevelof abstractionthan origi-nallychosen,ortheconnectivityinthesystemmightbedifferentfrom thatassumed.PIAissimilar inthis regard,combiningmodel discov-eryandanexplorationofmodelconsequences.PIAoffersmore, how-ever.For,whilesomeinterdependenciesareobviousoncethemodelis scopedcorrectly,manyotherbehavioursarecomplex,requiringa de-tailedsimulation-basedapproachtoexplorenotjusttheconsequences ofthemodelbutalsotheimpactofuncertaintyinmodelstructure.

3. Method:preliminaryinterdependencyanalysis(PIA)

PreliminaryInterdependency Analysis(PIA)isananalysisactivity thatseekstounderstandtherangeof possibleinterdependenciesand provideajustifiedbasisforfurthermodellingandanalysis.Givena col-lectionofCIs,theobjectivesofPIAaretodevelopandanalyse,through aprocessofiterativerefinement,anappropriatemodelforthe infras-tructures,andtodocumentassumptionsaboutresources,environmental impact,threatsandotherfactors.

ThecontextwithinwhichPIAmodelsaredeveloped,andanalysed, isdefinedbyascenarioandrelatedrequirements.Here,thenarrative aspectofascenarioisenormouslyimportant,asitprovidesthebasis foraskingquestionsanddiscoveringinterdependencies;typically,this isthestartingpointfortheuseofmoreformalmodels.

Fig. 1 illustrateshowone mightstartconstructing,say,a service model, andidentifyinginterdependenciesbetween theservices.Each oftheservicesislikelytoconsistofvariouscomponents.InFig. 1 we showtwoserviceswiththeirrespectiveInformationandCommunications Technology(ICT),components,networks,andinformationassets.Some

reasonswhyinterdependenciesmayexistbetweenservicesinclude:

Functionaldependencies,i.e.aserviceconsumestheoutputofanother serviceaseitherinput(e.g.oilisusedasarawmaterialinachemical plantandissubjectedtotransformation)orresourceused(e.g.fuel forheating,orpowerforcommunicationequipment);

Similarcomponents,e.g.ICTcomponentsusedinmultipleservices, viawhichcommoncause/modefailuresmayleadtosimultaneousor relatedfailuresoftheservices(e.g.avirusmayaffectthecomputers runningthesamestandardconfigurationofOS/applicationsusedby differentservicesproviders);

Commonenvironment.Stressfulconditions in theenvironment are likelytoincreasethelikelihoodoffailureorcauseafailureof com-ponentsindifferentservices.Spatialdependenciesareatypical ex-amplehere,butonecaneasilyenvisageotherformstoo,e.g. ser-vicesusethesamecloudproviderfortheirIToperationwhichwill leadtosimultaneousimpactonbothservicesifthecloudprovideris stressed.

(5)

Fig.1.PIAsourcesofdependenciesbetweenresources.

PIAisbothqualitativeandquantitative:

Qualitativeanalysis.Themodellingexercisebeginswithadefinition oftheboundariesofthesystemtobestudiedanditscomponents. Startingoff atahighlevel,theanalystmaygothroughacyclical processofrefinements,butmayalsobefocusedonaparticular ser-vice,sothelevelofdetailmayvarybetweenthedifferentpartsofthe overallmodel.Theidentificationofdependencies(e.g.functionalor duetosharedenvironment)willstartatthispoint.

Quantitativeanalysis.ThemodelscreatedduringthequalitativePIA arenowusedtoconstructanexecutable,i.e.asimulatorofthemodel behaviourinthepresenceoffailures/disruptionsofthemodelled enti-ties– hereafterreferredtoasMEs– forthechosenmodel parameter-isation.Themodelparameterisationmaybebasedeitheronexpert judgementoron analysisof incidentdata.Examplesofsuchdata analysesandfittingtheavailabledatatoplausibleprobabilisticdata modelsarediscussedin[30] .

3.1. PIAmodelarchitecture:twolevelsofabstraction

PIAmodelsbroadlyoperateattwodistinctlevelsofabstraction:

High Level Service Model (HLSM). At this level the CIs are mod-elledasaset ofinterdependent services andthe environmentin whichtheyoperate.Here,theviewispurposefullyabstract,sothat wecanreasonaboutdependenciesbetweentheservices(e.g.data

centreXdependsonpowerplantY),orbetweentheservicesand theenvironment(e.g.thepowersystemdependsontheweatheror theICTsystemmaybeaffectedbycyber-attacks).Now,each ser-viceis,itself,acomplexcollectionofinteracting,dependent com-ponents.Althoughtheconstituentelementsofservicesarenot ex-plicitlymodelledat thislevel (forsuchdetail,see DSBM below), theinter-servicedependenciesare,andtheyarededucedfrom de-finedlower-leveldependencies/relationshipsamongsttheservices’ constituententities(physicalcomponents,resourcesetc.).Werefer tosuch“cross-service” associationsbetweencomponentsascoupling points.Thecouplingpointsincomingtoaservicecanberelatedto theresourcesthattheservicerequires(e.g.,atelecommunication serviceconsumes"commodities"suppliedbyapowerservice).The resourcesconsumedbyaservicecanbeobtainedfromthe organi-sation’sreserves(internalresources)orprovidedbyanother organ-isation(externalresources).Theoutgoingcouplingpoints,instead, definehowtheoutputsfromaservicegetconsumedbyother ser-vices(aseitherinputsorresources). Similarly,thedependenceof theservicesontheenvironmentcanbedefinedintermsofcoupling pointsbetweentheenvironmentandtheservices(e.g.“cyber-attack perimeter” canbedefinedintermsofpointsviawhichanadversary canattackanICTservice).

[image:5.595.133.465.57.456.2]
(6)

includesitsunderlyingprocesses,constituentcomponentsandtheir relationshipswithone-another,relationshipsamongstcomponents fromdifferentbutdependentnetworks.Forinstance,aGlobal Sys-temforMobile(GSM)telecommunicationoperatortypicallyrelieson anetworkofdevicesdeployedtocoveraparticulararea(e.g.masts, etc.).ViaDSBM wecan choosethelevelof detailusedtomodel thesenetworks.IntheexampleaboveDSBMmayrangefroma con-nectivitygraph– representinghowthecomponentsofthenetwork areconnectedtoeachother– toahighfidelitymodelofthe proto-colsusedintheGSMnetwork.WetendtothinkthatDSBMmodels thenetworksowned(atleastpartially)and/ormaintainedbythe re-spectiveserviceoperator,i.e.anorganisation.Althoughsuchaview isnotnecessary,itallowsonetomodelseveralimportantaspectsvia DSBM.Forinstance,thelevelofinvestmentandtheculturewithin theorganisation(e.g.strongemphasisonengineeringvs. outsourc-ingthemaintenance)willaffecthowwellthenetworkismaintained, whichinturnwillaffectthefrequencyofoutagesandthespeedof recovery.Thus,thespeed/rateofrecovery(aparameterthatcanbe usedinaDSBM)canbeausefulproxyofthelevelofinvestmentby theoperator.Inotherwords,throughDSBMonecandescribeand studyinterestingscenarioswhichatfirstmayseemoutsidethescope ofPIA.Anexampleofsuchascenariowouldbeastudyofthe im-pactofderegulationinaparticularcriticalCIgiventhecurrentor projectedinterdependencieswithotherCIs.

3.2. ThePIAprocess

OurexperiencewithPIA[31–33] indicatesthatitcanbeappliedin thefollowingstages(forinstance,seeAppendix A foradetailedaccount ofhowweappliedeachofthesestages.Fig. 2 givesapictorialoverview):

1. CIdescriptionandscenariocontext.ACIdescriptionprovidesa con-cretecontextandconceptofoperation.Thisisthefirstlevelof scop-ingfortheanalysistask;theCIdescriptiongivesthefirstindications ofanalysisboundaries.DSBMentitiesareidentifiedandrecorded andtheoverallCIservicesdefined.Forexample,thecontextofthe case-studyusedtodemonstratePIAinthispaperwasprovidedbythe reallifefloodingofatelecommunicationsnodeintheRomearea

[28] .Thefloodingultimatelyresultedinalossofcommunication betweentwoSCADAcontrolcentresinthelocalpowernetwork.In total,theincidentinvolvedcomponentsfrom5interdependentCI: 2powernetworksand3telecommunicationnetworks.Tobetter un-derstandtheinterdependenciesinvolvedinthisincident,and inter-dependenciesinvolvedinincidentsnotyetseen,these5CIprovide anaturalscopeforthestudy.Infact,theideaofscenarioisstillkey here:onceawell-scopedmodelofinteractingCIhasbeenbuilt,one canseekfurtherinsightbyaskingquestionsofthismodel– ques-tionsphrasedinnewscenarios/contexts.Forinstance,inotherwork usingPIA,weaugmentawell-knownpowernetworkmodel(called NORDIC-32)– createdforothercontexts/scenarios– andusethis augmentedmodelincyber-securityresearch[31,32] .

2. HLSM Modeldevelopment. Amodel of theservices (resources, in-puts,outputs,systemstates),theoperationalenvironmentand sys-temboundariesaredeveloped,basedontheCIdescription.Model boundarydefinitions areusedat thisstage tofurther restrictthe scopeoftheanalysis.Aninitialidentificationismadeof dependen-ciesbetweentheservicesviathecouplingpointsasdefinedinthe

Section 3.1 above.

3. DSBMmodeldevelopment.DSBMsaredefinedbyselectingtheright levelofabstractionfortheservices:allservicesaremodelledas state-machineswhich,asaminimum,consistof“failed” and“Ok” states. Inthiscase,theirrepresentationintheDSBMwillrequirenofurther refinement.Forthoseservices,however,whicharemodelledinmore detail,thestate-machinesmodellingtheirbehaviourmaybe signif-icantlymorecomplex.Westartbydefining,explicitly,their com-ponentsandassets,andmayresorttousingexistingmodelsofthe

Fig.2.PIAmethodstages.

underlyingphysicalnetworksusedbytheservices.Thesenetworks mayincludeanumberofcomponents,whichwecallmodelled enti-ties(MEs).Similarly,theenvironmentmodelisdetailedtoaccount fortheparticularthreatstobeincludedinthestudy.Forinstance, astate-basedadversarymodelcanbedefinedtoincludeanumber ofmodelledentities[31,32] .Alevelofconsistencyisachieved be-tweentheservicemodel(Stage2)andDSBM:thecouplingpoints appearinbothviews.

4. Initialdependencyandinterdependencyidentification.Whilesomeof theservicedependencieshavealreadybeenidentifiedandrecorded inStage2(viainput/output/resourceidentification),atthisstage themodellerlooksforadditionalsourcesofdependence(e.g. com-moncomponents/assets),whichmaymakeseveralservices vulnera-bletocommonfaultsorthreats.Thesecanbederivedbyexamining theservice-levelmodel,takingintoaccountothercontextual infor-mation(e.g.scenarios,threatmodels,attackerprofile).Thecaptured dependenciesaremodelledasstochasticassociationsbetweenthe ser-vicesorcomponentsthereof.ThisisdetailedinSection 4 below. 5. Probabilistic-model development and parameterisation. Since we are

dealingwithriskwetaketheviewthat,giventhestatespaceformed bytheMEs,astochasticprocess[34,35] mustbeconstructedthat capturesthestate-changesandinteractionsoftheMEsovertime. Then,viasimulation,riskisquantifiedasasuitablerandomvariable

[image:6.595.308.555.54.459.2]
(7)

processdefinedtoestimatetheriskofsomeunwantedevents.We shallrefertoboththeserandomvariablesandtheirrelated prob-abilitydistributionsasrisk-measures. Now,inprinciple,any3

risk-measureofinterestmaybedefinedbyanassessor.And,depending onanassessor’srequirementsandpreferences,shemaydefine mul-tiplerisk-measuresforthesamemodeltoaddressdifferentaspects ofrisk(e.g.risksassociatedwithcomponentunavailability,thesize ofcascadeswhentheyoccur,etc.)Tothisend,atthisstageofPIA, astochasticprocessisdefinedintermsoftheStochasticActivity Net-works(SANs)formalism[36] andthetheoryofCompetingRisks[37] , aswellasanyrisk-measuresofinterest.Examplesofsuchdefinitions aregiveninSections 4 and5 .

6. Deterministicmodelsconfiguration(optionallyaddingdeterministic mod-elsofbehaviour).Ourearlierworkestablishedthatpurely probabilis-ticmodelscan beinadequate in capturingessentialsystem prop-erties,otherwisecapturedbyhybrid models[38] .So, amodeller mightchoosetoextendthebehaviourofaprobabilisticPIAmodel byaddingtoitdeterministic modelsof behaviour.Such astep is usefulwhenseekingtoextendthefidelityofthesimulationbeyond standardmechanismspossible with apurely probabilistic model. Furthermore,suchextensionscan beused tostudytheimpactof thelevelofabstraction/fidelityonthemodellingresults,an impor-tantaspectofmodelvalidation.Examplesofdeterministicmodels includevariousflowmodels(e.g.ACpower-flow,modelsoffluid flow,networktrafficandtransport flowmodels), state-estimation schemes(e.g.Newton-Gaussbasedmethodsusedinpowersystem analysis),networkconnectivitymodels,etc.

7. Quantitative interdependency analysis. A Monte Carlo simulation

[39] isusedtoquantifytheimpactoftheinterdependenciesonthe behaviourofthesystemunderstudyanddrawconclusionsaboutthe interdependency-relatedrisks.

Duringthesestageswefoundthatnarrativeinformationisvery rel-evantanduseful.Itusuallycomesfromthefollowingsources:

Scenarios:PIAisascenario-drivenapproach.Oncethesystemhas beenmodelled,“what-if” questionswillbeusedtoexplore vulnera-bilitiesandfailurecascadepossibilities.Scenarioscanbedeveloped fromavarietyofassumptionsorexperiences.Forinstance,onecan beginbyaskingaquestionasabstractas“whathappensifthereis aflood”,or“ifpowerplantXfails”.Such questionsform the ba-sisforscenarios,whichfocustheanalysisonparticularconditions, exploringpotentialvulnerabilities.

Incidentdescription:PIAcanbeusedtomodelanincidentthathas alreadyoccurred.Thiscanbeusedasabaselineforgeneratingand exploringvariationsofthesamescenarioorsimplyfurtherexploring asystemthathasbeencompromised,orhasfailed,astheincident revealedunknownvulnerabilitiesandfailures.

Threatorattackmodel:here,weareconsideringmodelling assump-tionsbasedonaccidentalfailuresormaliciousattacks.

Modelofthreatagent:Theabove(scenarios,incidentdescription, threatorattackmodel)areelementsthatwillshapetheprofileofa threatthatismodelledinoursystem.Thiscanbeasourceofnatural disaster(e.g.flood)oramaliciousagent(e.g.aterrorist).

4. Quantitativedependencymodelling

Inthissection,wedescribePIA’squantitativemodellingapproach (underlying stages5–7 of the methodology)which captures various waysinwhich networkcomponentsmightbe dependenton one an-other.Sourcesofdependencebetweennetworkcomponentscaninclude thefollowing:

3Limitationstothisprimarilystemfromwhetherenoughstate-informationcanbe

in-cludedinamodelandsimulated.

1) ThePhysical NetworkTopology: Componentsaresometimesreliant onbeingphysicallyconnectedtoeachotherinordertoreceivea resourceor perform somefunction. Therefore,via these physical connections,thefailureofonecomponentcanimpacttheoperation ofanothercomponent.So,forexample,medium-voltage-trunksare usedtoprovide electricalpowerfromthePowerdistribution net-worktoTelecommunicationnetworksites:damagetothetrunkcan resultinservicedisruptionfromTelecommunicationsnetwork.Also, physicallyco-locatednetworkcomponents,suchasthosepower net-workcomponentssituatedatapowersubstation,mightcollectively beaffectedbythesamedisturbance/event,forinstancelocal flood-ingorforestfires.

2) FunctionalRelationships between components: Network components canberelatedbecausetheyare“coupled” inthefunctionthey per-form.So,forinstance,whenapowerline istripped inthePower TransmissionNetworkthereisaredistributionofpowerflowacross thenetwork.Thisinevitablyaffectsthequalityofserviceprovided atvariouspointsinthenetwork,suchasthelocalamountofload re-quiredatagivenpoint.Anotherexamplecanbeseeninthe Telecom-municationsnetwork,wherebackuppowergeneratorssupply mul-tipleTelecomscomponentswithpowerintheeventofapowercut fromthePowerdistributionnetwork.Potentially,ifthegenerators becomeunavailable,multipleTelecomscomponentsstop function-ing.

3) StochasticCorrelation:Thestatechangesofcomponentsmaybe ob-served tobe correlatedin termsof,both, what new statesthese componentsenterinto,and,whenthesestatechangesoccur.Here, wenotethatsuchcorrelationcouldbeexhibitedbyscenariossuch asthosepointedoutinbulletpoints1and2above.However,we alsoacknowledgeotherpossibilities,suchascomponents experienc-ingsynchronisedfallsandpeaksinthequalityofservicethey pro-videduetophenomenaknowntooccurintechnicalsystems,e.g.

common-modefailures,andcommonstressonnetworkelements re-sultingfromextremeweather, naturaldisastersor newcomputer viruses.

Themodelwedescribehereadequatelycaptureseachofthese ex-amples.Ourexpositiononhowwemodeldependenceiscarriedoutin twosteps:firstly,wegivethedefinitionofanindividualisolatedME’s behaviour(therebyeffectivelyignoringotherMEs)and,secondly,we extend thisbehaviour totakeintoaccount howchangesin thestate oftheMEaffect,andareaffectedby,thestatechangesofotherMEs. Formally,theresultingmodelisageneralisation4ofaContinuous–time Semi–Markovprocess[34,35] which,inordertosimulate,weimplement asaSANintheMöbiusmodellingenvironment[8,36] .

We begin with an individual ME; it experiences a state change withprobability,accordingtoanappropriatelydefinedCompetingRisks

[37] model. Toillustrate, given that theithME can be in any one of the Mi possiblestates ∶={𝑠𝑖1,,𝑠𝑖𝑀

𝑖} ata givenpointin time,

suppose thattheME entersintoastate𝑠𝑖

𝑗𝑖(𝑡0)∈at timet0 (where 𝑗𝑖=1,, 𝑀𝑖).Competing Risksthenrequiresthateach statetheME couldpotentiallyenterintonexthasanassociatedprobability distribu-tionforhowlongitcouldtaketoenterintothatstate.Todetermine whichstatewillactuallybeenteredintonext,eachofthesepotential timelengthsisrandomlygeneratedaccordingtothesedistributions,and theminimumofthesegeneratedtimesisdefinedtobehowlongitwill actuallytakefortheMEtochangestate(thisistheMEssojourntimein thestate𝑠𝑖𝑗

𝑖(𝑡0)).Sinceeachofthegeneratedtimesisassociatedwith

auniquenextstate,thisminimumalsodetermineswhatthenextstate willbe.5

4Ageneralisation,inthattheprocesshasbothinstantaneousandtime-consuming

so-journsinsystemstates.

5Forourpurposes,inorderforthenextstatetobeuniquelydefined,werequirethat

(8)

Fig.3.Usingacompetingrisksalgorithm,anMEtransits,withprobability,fromastate

𝑠𝑖

𝑗𝑖(𝑡0)attimet0tosomeotherstateatsomefuturepointintime.Inthisexample,each

transition’sassociatedprobabilityofoccurrenceisaquotient(suchas𝜆

𝑖 𝑗𝑖(𝑡0)→1

Λ(𝑡0) )oftransition

ratesforexponentialdistributions.

Fig.4.Theevolutionoftheithmodelledentity’sstateintimeisaccomplishedbyapplying thecompetingrisksalgorithmtotheentityatsometimet0,resultingintheMEchanging

statefrom𝑠𝑖

𝑗𝑖(𝑡0)tostate𝑠𝑖𝑗𝑖(𝑡1)attimet1(thatis,theMEremainsinthestate𝑠𝑖𝑗𝑖(𝑡0)fora

time𝑇(𝑠𝑖

𝑗𝑖(𝑡0))=𝑡1−𝑡0),atwhichpointthecompetingrisksalgorithmisappliedagainto

determinethenextstatechange.

Pictorially,anexampleofthisprocessisshowninFig. 3 fortheith MEattimet0.Here,eachofthepotentialtransitionsfromtheinitial state𝑠𝑖

𝑗𝑖(𝑡0)toanotherstateinisrepresentedasanarrowconnecting

apairof states.Intheparticularcasewhereeach transitionstarting attimet0hasanexponentiallydistributedpotentiallengthoftime,as depictedinFig. 3 ,ourmodelbecomesequivalenttoanappropriately definedContinuous-timeMarkovChain[34,35] .Moregenerally,anyclass ofsojourn-timedistributionmaybeusedin PIA,aslongasitcan be efficientlysampledfrom.

So,CompetingRisksdetermineboththenextstatefortheMEand howlongitwilltake(fromtimet0) forthisstatetobeenteredinto.

Thisprocedureisthenrepeatedeachtimethecomponententersintoa newstate,resultingintheMEevolving,overtime,fromstatetostateas depictedinFig. 4 .

minimumvalue.Thislimitationisnotseriousinpractice.Shouldtheneedtoresolveit explicitlyoccurthenextstatecanbechosenatrandomfromthosewhichproducedthe sameshortestsojourntime.

Fig.5.Anetworkofmodelledentitiessubjecttostochasticassociations.ME1isachild

ofME2,itselfachildofME3.Consequently,uponenteringthestate𝑠1𝑗1(𝑡1)attimet1,the

randomvariablethatisthetimeuntilME1experiencesitsnextstatechangeisdefined

byboththestateofME1andthestateofitsparent,ME2,attimet1.Weemphasizethis

dependencebywritingtherandomvariableas𝑇(𝑠1

𝑗1(𝑡1),𝑠 2

𝑗2(𝑡1)).ThedependenceofME2’s

sojourn-timeonME3’sstateissimilarlyillustrated.

ThedynamicalMEmodeloutlinedthusfarcanbeextendedto cap-ture interdependenciesbetween MEs.Intuitively, theevolutionofan ME’sstateatagivenpointintimeisdependentonthecurrentstateof theME,howitgotintothatstate,thecurrentstateofotherMEsand theirrespectiveevolutionaryhistories.Inparticular,adependentME– hereaftercalleda“child” – probabilisticallychangesstateinawaythat dependsonanotherME– hereaftercalleda“parent” .Forbrevity,we shalluse“StochasticAssociation” torefertothetripletofagivenME,the parentsoftheME,andadefinitionofhowtheseparentMEs’ statesand historydeterminetheprobabilisticlaw(i.e.determineamemberofa familyofprobabilitydistributions)thatgovernsthestochasticbehaviour ofthechildME.6Inthisway,eachMEcanpotentiallyhaveseveral

par-entsandseveralchildren,andtheMEsaremadeprobabilistically depen-dentoneachother(so,anMEcanbebothparentandchildofanother ME).Thisallowsonetomodelrathercomplexfailureandrecovery be-haviours,forinstance.AsimpleexampleofanetworkconsistingofMEs withstochasticassociationsdefinedbetweenthemisdepictedinFig. 5 . Inthefigure,theMEs’ statesevolveastimeflowsfromlefttoright.Solid circlesindicatepointsinsimulatedtimewhenstatechangesoccurand, asaconsequence,nextstatesand/ornewsojourn-timesarecomputed asrequiredforsomeMEs.Dashedcirclesindicateasyetunrealised po-tentialstatechange events.So,ME1entersintostate𝑠1

𝑗1(𝑡1)attimet1

and,therefore,anewnextstateandsojourn-time(ofduration𝑡′′′𝑡 1)

arecomputedforME1atthattime.However,indeterminingthese,the

stateofitsparent,ME2,isused.Thatis,𝑇(𝑠1𝑗1(𝑡1),𝑠

2

𝑗2(𝑡1))– the

sojourn-timeforME1– isafunctionofbothME1andME2’sstatesattimet1.And, whenME3changesstateattimet2it,alongwithitschildME2,requires

newnext-stateandsojourn-timecomputations,resultinginthemodel experiencingitsnextstatechangeeventattimet.Note,however,that

ME1isnotaffectedsinceME2didnotexperienceastatechange,in

ac-cordancewiththestochasticassociationdefinedbetweenME1andME2.

During simulation,thisparticularbehaviourisachievedbyusingthe SANmechanismof“reactivation”[36] .

Thespecificationofacollectionofstochasticassociationsis equiv-alenttodefining,foreachpointinsimulatedtime,ajointprobability distributionovertheModel’sstate-space,wherethisstate-spaceisthe so-calledcartesianproductoftheindividualMEstate-spaces.Withthis inmind,definingstochasticassociationsisquiteconvenientwhen com-paredwiththealternativeofexplicitlydefiningtherelatedjoint distri-bution.FormodelswithasufficientlylargenumberofMEs,theexplicit specificationofsuchajointdistribution– say,asasuitablemarkovchain

– wouldbebothdauntingandtedious,andmayrequireunfeasiblylarge

6Ageneralisationofthiswouldbetodefine,explicitly,stochasticassociationsbetween

[image:8.595.49.278.55.225.2] [image:8.595.312.552.58.170.2] [image:8.595.41.288.289.474.2]
(9)

state-transitiondiagrams.And,evenifaccomplishedwithouterrors,it islikelythatsuchanexplicitrepresentationwillnotbeusablewhen attemptingtosimulatethemodel:suchamodel,evenofmodestsizein termsofthenumberofmodelledelements,couldhaveastate-spacethat istoolargetofitinanyavailablecomputermemory.7

EachMEsevolutionis,therefore,determinedbymarginalisingthe aforementionedjointdistributions.Ingeneral,differentformsofthese marginalprobabilitydistributionscanbespecified,dependingonwhat issuitableinagivenmodellingsituation.Forinstance,forour experi-ments,MEssuchasfibre-opticcableshadthedistributionoftheirnext statecompletelydefined byconditionallyindependent,exponentially distributedrandomvariables,conditionalonthestatesandhistoryof theMEsparents(inaccordancewiththegeneraldepictionsinFigs. 3 and

5 ).MoredetailonthisisgiveninSection 5 .

ThecollectiveevolutionofallMEsisitselfgovernedbyaCompeting Risksalgorithm.Ateachpointinsimulatedtime,eachMEhasa poten-tialsojourn-timeatwhichitcouldexperienceitsnextstatechange.So, wheneveranMEchangesstate,thetimeatwhichthenextstatechange occursinthemodelisdeterminedbytheminimumofthesepotential sojourn-timesacrossallMEs.Recall,wheneveraparententersintoa newstate,thepotentialsojourn-timebeforetheparentnextexperiences astatechangeiscomputed.Inaddition,thepotentialsojourn-times be-foreeachoftheparent’schildrennextexperiencestatechangesarealso recomputed,inamannerdependentonthenewstateoftheparent.All ofthesesojourn-timesarecomparedwiththesojourn-timesassociated withtheotherMEs,inorder todeterminethetimeof thenextstate changeinthemodel.Forexample,inFig. 5 where,uponME3entering

intostate𝑠3

𝑗3(𝑡2)attime𝑡2,thepotentialsojourn-timesforboththeparent ME3anditschildME2arecomputedandcomparedwiththepotential

sojourn-time(previouslycomputedattime𝑡1)forME1.Theminimum

ofthesesojourn-timesisassociatedwith𝑀𝐸3,implyingthatthenext

statechangewillbeexperiencedbyME3attimet.

ModellingMEsasbeingprobabilisticallydependentmaybejustified byidentifyingfunctionalrelationshipsbetweenthecomponents. Exam-plesof theseabound.Forinstance,inapowertransmissionnetwork, thosecomponentsthatfacilitatethesupervisionandcontrolofpower flowacrossthenetwork(suchasRemoteMeasurementUnitsorIntelligent ElectronicDevices8)relyonICTfortheiroperation:lackofcontrolmay

leadtoanincreasedlikelihoodofthecontrolledcomponentsfailing.Or, inaTelecommunicationsnetwork,thereisarelianceofICTcomponents (suchasroutersandadd-dropmultiplexers)onastablesourceofpower providedbyothercomponents:lossofpowerresultsinthecomponents beinginoperable.

Note,however,thatthemodellingrequirementhereisoneof prob-abilisticdependencebetweentheMEs,andnotnecessarilyoneofan ob-servedcausalrelationship.Thisisconvenientfromamodelling perspec-tive,sinceitisquite possiblethatin practicethere mightnotbe an immediatelyobservablecausallinkbetweencertainrealworldentities, andyetsuchentitiesmaystillbeobservedtoexhibitsomeformof corre-lationbetweentheirstatechanges.While,uponextensiveinvestigation, suchcorrelationmaybe determined asbeingdue tosome common-cause,adeterminationofthiskindisnotneededtojustifymodelling theseentitiesasdependentMEs.

Dependingonthetime-scalesoverwhichtypicaleventsofinterest occurinthemodel,anextremecaseofastochasticassociationwouldbe aninstantaneous(i.e.aparticularformofdeterministic)statechangeof achildMEasaresultofaparentME’sstatechange.Thiscanbemodelled eitherstochastically(withinstantaneoustransitions)orbyusing deter-ministicmodels.Anexampleofthelattermightbeusingapower-flow modelwithMEswhichareelementsofapowergrid.Inthiscase,the

ran-7Forillustration,amodelwitha1000MEs,whereeachMEhasanassociated

state-spacesizeof2,willresultinamodelstate-spacewith21000states– anumberthatiseasily

greaterthan1082whichistheestimatednumberofatomsintheobservableuniverse. 8HereweusetheterminologyestablishedbyIEC61850.

domfailureofsomeMEs,e.g.apowergenerator,maydeterministically leadtoinsufficientsupplyofenergyand,asaresult,toloadshedding, i.e.fromtherandomfailureofanME,thestatechangeofsomelineswill followdeterministically(withadurationthatiseitherinstantaneousor hassomedelay).Anotherexamplefromapowergridmightbethe ran-domfailureofsomepowerline(e.g.duetoelectricalshortinginextreme weather)resultinginanimmediateanddeterministicredistributionof powerflow(accordingtoapower-flowmodel)andtheoverloadingof otherpowerlines.Asaconsequence,theseoverloadedlinesmight be-comedisconnected.Ofcourse,whenthesecomponentschangestate,the probabilitiesofwhenandhowtheirstochasticchildrenwillnext experi-encechangearealteredaswell.Inthisway,thereisacontinual“dance” betweenstochasticanddeterministiceventsinourmodels.

Tofinishthissectionwenote,inpassing,thatanimportantaspectof model-buildingismodelparameterisation;aproblemwhichweaddress inSections 5 ,6.3 andAppendix A .

5. AMulti-infrastructurecasestudy:theRomesystem

ThePIAmethodwasappliedtoacomplexcasestudyofaregional systemoftwocriticalinfrastructuresintheRomearea:thepowergrid andthetelecommunications.PleaseseeAppendix A fordetailsofhow thePIAprocesswasapplied.Thepowergridinfrastructureincludestwo services:thehighvoltagetransmission(150kV)andthemedium volt-agedistribution(20kV),eachwiththeirownnetworks;the telecom-municationinfrastructureincludesthe3serviceswiththeirrespective networks:thefibre-opticsbackbone,thefixedlinesservice/networkand theGSMmobileservice/networkandtheirinterconnection.

Thecase-studywasoriginallydevelopedwithintheEuropean Inte-gratedProjectIRRIIS[40] withthehelpoftheactualnetworkoperators ofthetwomodelledinfrastructures,andthiswasfurtherdevelopedin theUnitedKingdomTechnologyStrategyBoard(TSB)fundedPIA-FARA project[41] .Themodelincludessome829MEs(119inthepower infras-tructureand710inthetelecommunicationsinfrastructure)andclosely representsthetopologyoftherealinfrastructuresintheareaofRome, Italy[40] .DetailsofhowthePIAmethodwasappliedtotheRomecase studyareprovidedintheAppendix A .

EachMEismodelledasbeinginoneoftwopossiblestates–Failedor

Ok– atanygivenpointintime.9AsweindicatedinSection 4 ,a

stochas-ticassociationrequiresthesuitabledefinitionofacollectionofmarginal probabilitydistributionsthatdetermineachildMEsnextstateduring simulation. Inourexperiments,wechosemost oftheMEs totransit fromstatetostateaccordingtoexponentiallydistributedsojourn-times betweenstatechanges.Theratesusedinthecomputationofthesetimes aredeterminedasfollows:suppose𝜆isthefailurerateofanMEwhen allofitsparentsareinanOkstate.If,instead,nparentsareinaFailed

state,thenthefailureratebecomes𝛼n𝜆,where𝛼1.Thescalingfactor 𝛼isamodelparameterthatindicatesthe“strength” ofthestochastic de-pendencebetweentheMEs10;varyingthevalueofthisparameterresults

inchangestotheprobabilisticbehaviouroftheMEs,inparticular,and themodelasawhole.Thisideahassomesimilaritiestotheapproach tomodellingdependentcomponentspresentedin[42] .Theuseof𝛼to modelstochasticdependenceinthiswayismerelyoneexampleofthe manykindsofstochasticassociationPIAaffordsus– anexamplethatis, ofcourse,lesschallengingtocalibratethanonewithsignificantlymany moreparameters.WeencourageusersofPIAtocomeupwithstochastic associationssuitablefortheirparticularneeds.

9Thisstatespaceissufficientforourpreliminaryanalysesasthisisthesimplestsetof

MEstatesthatmaybeusedtocapturephenomenasuchascascadingfailureandsystem recovery.

10Variousgeneralisationsofthisconceptarepossible,suchasrequiringpossiblyunique

(10)

Fig.6. Thisillustratestheevolutionoftwocascades.Eachcascadehasadurationand sizethatarerandomvariables;onlybyobservingacascadetoitsconclusioncanoneknow whatitssizeanddurationis.Eachoftheserandomvariablescanbeusedtodefine risk-measuresrelatedtocascades:thatis,theydefineprobabilitydistributions(e.g.of cascade-sizeorcascade-duration)associatedwiththecostofacascade’soccurrence.

Theuseof𝛼allowsustointroducenonlinearityinthemodelsof fail-ure(consistentwithobservationsmadeinpreviousstudiese.g.[43] ). Indeed,asmallnumberoffailedmodellingelementsmayleadtoa dra-maticincreaseinthepropensityofmanyotherelementstofail,hence increasingthechancesoflargeoutages.

Thevaluesof𝛼maydifferacrossthe“parent-child” elementpairsin themodel.Elicitingthe𝛼valuesisdifficult;possiblyinfeasible. There-fore,wedealtwiththisproblembysystematicallyapplyingsensitivity analysisundertheassumptionthatthestrengthofdependenceisthe sameforall“parent-child” pairs.Weconducted5simulationcampaigns usingthe𝛼values1,10,100,150,250and500,whichareonlyasample fromtheplausiblerangeof𝛼valuesstudied.Wechosenottoinvestigate themodelbehaviourforvaluesof𝛼outsidethisrangebecause,for val-uesof500andabove,thenumberofsimultaneouscomponentfailures wastoohighand,clearly,unrealistic.

Theparameterisationofthemodel(i.e.boththefailureandrepair rates,aswellasthecharacteristicsofeachME)wasprovidedbythe in-dustrialpartnersintheIRRIISproject[40] :dataonthepowergridwas providedbyengineers fromSiemens,thetelecomdatawas provided byengineersfromTelecomItalia.Whendatawasneededwemade in-formedestimatesandcheckedtheirplausibilitywiththesesubject mat-terexperts.11

Asexplainedearlierinstage6ofSection 3.2 ,inadditiontothe prob-abilisticbehaviouroftheMEs,deterministiceffectsmaybeincludedin themodel.IntheRomestudy,weuseddc-loadflowcomputationsto de-terminetheredistributionofpowerwhencomponentsfailinthepower network.Also,intheeventofanoutageofthemainpowersupply,the Telconetworkusesbackuppowersupplyunits,suchasbatteriesor gen-erators.

ThemodelwasusedtosimulatetheCIsoperatingoveran11year and4monthperiod.12DuringoperationtheMEsthatmakeuptheCIs

experiencedfailuresandrepairs.Toillustratethesortofanalysesthatis possible,wechosetofocusontheoccurrenceoffailurecascades,how longtheselastfor(i.e.theirdurations),andthemaximumnumberof si-multaneouslyfailedMEsinvolved(i.e.theirsizes)asshowninFig. 6 .A

11Examplesofunavailabledatathatrequiredestimatesvalidatedbyexpertjudgement

includethefailureandrepairratesofvariouspowerlinesconnectingtelecommunication nodestosecondarypowersources(dieselgeneratorsandbatteries)

12Thisisadurationequalto100000hours(approximately11yearsand4months).

Fig.7.Thisrisk-measureisthedistributionofcascade-sizesacrossthecombinednetwork consistingofboththePowerCriticalInfrastructureandtheTelecommunicationsCritical Infrastructure.Thevalueofthestochasticdependencescalingfactoris𝛼=1.

differentfocusmerelyrequiresthedefinitionofsomeotherrisk-measure ofone’schoosing.Thefigureillustratestwocascadesseparatedbya pe-riodofnormaloperationofallMEs.N(t)isthenumberofsimultaneously failedcomponentsattimet.Acascadeisdefinedasanycontinuous pe-riodoftimeforwhichatleastoneMEisinafailedstate.13Twomeasures

of interestrelatedtocascades arecascade-size andcascade-duration, bothdepictedhere.Thecascade-sizeisthemaximumnumberof simul-taneouslyfailedMEsduringacascade(e.g. thesizesofthedepicted cascadesareN(t1)andN(t3))whilethecascade-durationisthelength

oftimeforwhichacascadeoccurs(e.g.thedurationsofthedepicted cascadesare𝑡2−𝑡1and𝑡4−𝑡3).

6. Results:illustrativeinsightsfromthecase-study

UsingthePIAtoolkitdescribedin Section 1 above andthestages detailedinAppendix A ,theRomescenariomodelwasdevelopedand usedtoexploresystemicrisks14ofcascades.

6.1. Networkresilience

Typically,powernetworksareoperatedwiththeresilience require-mentthattheyshouldtoleratesinglefaults15[44,45] .Weobservethis

behaviourwiththemodelledpowernetwork(seeFig. 7 ),withmostof theobservedfailuresinthenetworkbeingsingle,isolatedfailuresthat donotresultincascades.Therisk-measureusedhereisthedistribution ofcascade-sizes.

ThereappearstobeacriticalnumberofMEs(approximately36) be-yondwhichalmostallcascadesizesarespectacular– thecollapseofthe entirepowernetwork.Thispropertyofthemodelisaconsequenceof boththeleveloffunctionalredundancyinthemodelandthemodel pa-rameterisation,bothchosenbytheIRRIISconsortium[40] tosimulate thepowernetworkoperatingatclosetoitsoperationalcapacity. How-ever,thismodelbehaviourisconsistentwiththefindingsof[46] who reportanonlinearrelationshipbetweenhowmuchofthetransmission

13Whilethisdefinitionofcascadedoesincludetrivialcases,suchasthefailureand

recoveryofasingleME,itsrealusefulnessliesinthefactthatitalsoencompassesso manyinterestingdynamicsequencesofthefailureandrecoveryofgroupsofMEs.For instance,acascadecanconsistofasequencethatbeginswith5MEfailures,followedby 4recoveries(so,atthispoint,only1componentis“failed”),followedby1newfailure, followedby…andsoon,tilltherearenofailedMEs.Thisdefinitionalsohastheadvantage thatitappearstobereadilyapplicabletodescribing“cascading” phenomenabothwithin andacrossverydifferentCI,partlybecauseitdoesnotrelyoncausalitytoexplainthese failureandrecoverysequences.Ofcourse,wherePIAisconcerned,thisismerelyone

choiceofrisk-measure–anymoresuitablerisk-measureshouldbeusedwhenrequired.

14Bythis,wemeantheriskimposedbyinterdependenciesinasystem,wherethefailure

ofasingleentityoragroupofentitiescancausecascadingfailure.

[image:10.595.58.272.57.252.2] [image:10.595.309.555.61.215.2]
(11)

lines’ capacityisusedandtheresultantdistributionofcascadesizein theirmodel:whentransmissionnetworksutiliseabove80%ofthelines’ capacity,theriskoflargecascadesissignificantlygreaterthanwhen lessthan80%isused.

Note,fromthedistributionofcascade-sizesassociatedwith𝛼=1in

Fig. 7 ,thatwhiletheprobabilityofspectacularcascades(e.g. approx-imately10−2forcascadesofsize119)issignificantlysmallerthanthe

probabilityofsinglefailures(approximately0.95)itis,however,ofthe sameorderofmagnitudeastheprobabilityofsignificantlysmaller cas-cades(e.g.cascadesofsize10).Thishintsatthepossibilitythatthe fail-ureofonlyafewMEsissufficientforspectacularcascades;behaviour thatisevidencedbythecircumstancesunderwhichspectacular black-outshaveoccurredinpractice[47] .

Maintaininganetworkatadesirablelevelofresilienceofteninvolves decisionsabouthowbesttoallocatefiniteresources.Itseemsreasonable thatsomerankingoftheMEsinorderofimportancemightbeauseful firststep16inmakingsuchadecision.Usingappropriaterisk-measures,

thereareanumberofalternativeapproachestosucharanking.For in-stance,shouldcomponentsberankedaccordingtotheirreliabilityor, instead,shouldtheyrankedaccordingtohowlikelytheyaretobe in-volvedinalargecascade?And,arealternativerankingsrelatedinsome identifiableway?Perhapsthereisasenseinwhichsomemeasuresare indicativeofothermeasures,butaresignificantlyeasiertocompute.We chosetostudythefollowingthreemeasures,eachcapturingadifferent senseof“neighbourhood” or“locality”:

1) Component(un)availability:theunavailabilityofeachME,which fo-cusesonthebehaviourofindividualMEsalone,

2) Componentconnectivity:thenumberofimmediateneighboursanME hasand,inthissense,isslightlylesslocalthanMEunavailability, and

3) Cascademembership:theprobability thatanME iscontainedin a cascadeofatleastsize17117,arelativelyglobalmeasurethatcan

takeintoaccountMEslocatedacrosstheentirenetwork.

Werankthecomponentsaccordingtotheir associatedvalues for thechosenmeasures.Sucharankinggivesanotionofcriticality:from sucharankingwecanidentifywhichMEsarethemostimportantand deservingofourattention.

TheresultsofourinvestigationareshowninFig. 8 .Thisconsistsof 3plots– oneforeachcriticalitytype.TheMEsareassigneduniqueIDs (all829ofthem)and,foreachnotionofcriticality,theMEsareranked accordingtotheircomputedcriticalities.UsingtheseIDs,wedepictthe MEscriticalityrankings,whereeachMEhasthreeassociatedcriticality valuesplotted– oneineachoftherespectiveplots.TheuniqueIDsofthe MEsareshownoneachhorizontalaxis,witheachverticalaxisshowing thepossiblecriticalityvalues.ThemostcriticalMEshavethehighest criticalityvalues.

Weseesignificantdisagreementbetweenthesethreenotionsof crit-icality,withsomeMEsbeingimportantintermsofbeingverylikelyto beinvolvedinlargecascades,butunimportantinthattheyhave rela-tivelysmalldowntime– thatis,theyarenoticeablymoreavailable– thanmanyotherMEs.

Thisobservationseemsimportantasitemphasiseshowtheranking cansignificantlydependuponthechosenrisk-measure.Ourown expe-riencewithcriticalinfrastructureanalysissuggeststhatresearchersand practitionersoftenuseagivenrisk-measuretoidentifycriticalnodes withoutdemonstratinganawarenessthattherankingobtainedthereby coulddependsignificantlyonthechosenmeasure.Asaresult,inmany ofthesecases,theselectionofasuitablemeasureappearstobeamatter

16Furtherinvestigationmayberequired.Forinstance,givenastatisticalidentification

ofasubsetofMEsasbeingcriticalandworthyofattention,furtherinvestigationmight revealimportantcausalrelationshipsbetweentheseMEs,suggestingthatlimitedresources canbetargetedtoanevensmallersubsetoftheseMEs.

17Inparticular,forwhenthepowernetworkwasoperatingclosetoitsoperationallimits,

117isthesizeofthelargestcascadeconsistingofpowernetworkcomponentsalone.

[image:11.595.307.558.57.360.2]

Fig.8.Acomparisonofthreenotionsofcriticality(with𝛼=1).Eachcriticalitynotion resultsinarankingofthe829modelledcomponents.Manyofthecomponentsineach plotsharethesamecriticalityvalue,18 resultinginawidevertical“gap”,ineachplot, withinwhichnocomponentsassumeanycriticalityvalues.Thesizeandlocationofthis “gap” differsacrossthecriticalitynotions.

ofconvenience,lackinginproperjustificationforitsuseotherthan“this measurehasbeenusedelsewhere” .Here,weshowthatthechoiceof measuredoesmatter.Byexploringalternativemeasures,anassessorcan gainanappreciationofhowtherankingchangesand,thereby,choose thosemeasureswhicharejudgedtobestcapturetheobjectivessought viasuitablerankings.Forinstance,itseemsquiteclearthatinvestingto improvecomponents’ individualavailability(see“component unavail-ability” inFig. 8 )isnotnecessarilyawiseinvestment,iftheactualeffect soughtisresilienceimprovementoftheentirecriticalinfrastructure.

6.2. Theimpactofmodelfidelityonmodelledrisk

Westudiedhowchangingamodel’slevelofdetailand sophistica-tionaffectstheriskofcascadesoccurringinthemodelbycomparing twoscenarios:onewithrelativelydetailedpowerand telecommunica-tionnetworkmodels(referredtoasthefullmodel),andanotherinwhich thefidelityofthetelecommunicationnetworkwasunchangedbutonly thosepower networkMEs whichweredirectlyphysically coupledto telecommunicationMEsweremodelled(referredtoasapartialmodel). Inbothscenariosavalueof𝛼=1wasused.Weibulldistributionswere usedasthefailuredistributionsforeachpowernetworkMEinthe par-tialmodel,theparametersofwhichwereobtainedbyfirstestimatingthe marginalfailuredistributionsfortherespectiveMEsinthefullmodel, andthenfittingthesedistributionstoWeibulldistributions.A compari-sonofthecascade-sizedistributionsforthetelecommunicationnetwork inbothexperimentsisshowninFig. 9 .

In particular,the partialmodel lacks correlatedfailureof power networkMEs;aproperty whichexistsinthefullmodelasaresultof

18Forexample,theMEshavethesamenumberofneighboursorareinvolvedinthe

(12)

Fig.9. Acomparisonofthedistributionofcascade-sizesintheTelecommunications Net-workundertwolevelsofabstraction:1)whenthetelecommunicationsnetworkiscoupled withadetailedmodelofthepowernetwork(fullmodel),and2)whenonlyasimplemodel ofthepowernetworkisusedwitheverythingelseremainingthesame(partialmodel). Thevalueofthescalingfactorforbothmodelsis𝛼=1.

overloadingpowerlines.Thatis,thepartialmodelhasindependently failingpowerMEs.Thismeansthatgeographicallyseparated telecom-munication sites experiencepower blackouts independently. We ob-servedthatthecascade-sizedistributioninthepartialmodel underesti-matestheprobabilityoflargecascades,withnocascadesgreaterthan size11occurring.19So,detailsabouthowcascadesariseinthepower

networkareclearlyimportantforriskestimationintheTelconetwork. Thisresulthighlightsachallengeforanyinterdependencyanalysisthat seekstoestimateriskinagivenCIwithoutsufficientlycharacterisingthe jointuncertaintyintheservicedeliveredatthecouplingpoints.Insuch cases,aprioritymustbethedevelopmentandapplicationofstatistical techniquesforinferringsuchuncertaintyfromlimited(coupling-point) observationaldata.

6.3. Stochasticdependencestrength

Thestrengthofstochasticdependence,𝛼,isausefulmodellingdevice forintroducingnonlinearityinsystembehaviour.Here,wegivedetails ofthesensitivityanalysisweconducted– studyingthebehaviourofthe modeloverplausiblerangesof𝛼values,usingdifferentmeasures.So far,thereportedresultsofouranalyseswereallbasedonexperiments whichset𝛼=1.Here,weshowhowvaryingthevalueof𝛼affectsthree risk-measuresofinterestinthefullmodel:

1. Thedistributionofcascadesize; 2. Thedistributionofcascadeduration;

3. Thedistributionofthe“loss” duetocascade.Forourpurposes,we definethe“loss” duetoacascadeastheproductofthecascadesize andcascadeduration.

It turns out that the model changes resulting from varying the stochasticstrengthshowdifferentpatternsastheparameter𝛼takes dif-ferentvalues.

Changesin𝛼resultinchangesinthedistributionofcascadesize(as definedearlierinFig. 6 ),butonlyoveraverysmallrangeof probabil-ities(seeFig. 10 ):theonlydifferencesoccurabovethe95percentile foreachofthedistributions.Thisisbecauseineachexperimentthe fre-quencyofsinglecomponentfailures(about100,000)issomuchlarger thanthefrequencyofthelargercascadesfoundinthetailofthecascade sizedistribution.

19Thisisbecausethefullmodel,takingintoaccountboththeTelcoandPowerMEs,

ex-hibitsapowerlawtrendforitscascade-sizedistribution,𝑃(Cascadesize=𝑥)≈𝑥−2.3,with

largercascadesbeingmorefrequentthanispredictedbytheexponentiallydistributed cascadesinthepartialmodel.

Fig.10. Cascade-sizedistributionsfor𝛼values1,10,150and500.Theupper95%of eachdistributionisdepictedabove,andtheentiredistributionsaredepictedbelow.

UponexaminingFig. 10 inthissmallrangeofprobabilitieswesee thatastochasticordering20existsbetweentherespectivedistributions

for𝛼=500and,say,𝛼=1.Thereisnoordering,however,betweenthe

𝛼=150and𝛼=250distributions(“250″isnotincludedintheplot). And,infact,withintherangeof𝛼-valuesfrom1to150,theobserved distributionsofcascadesizeareverysimilar.So,somewhereintherange of𝛼-values[150,500]thereisanoticeableglobal21changeinthemodel

behaviour.

Inaddition,thedifferentcascadesizeprobabilitymassfunctions(pmf) resultingfromdifferent𝛼valuesallpossessthesamegeneralshape,as showninFig. 11 .Depictedare6differentcascadesizepmfsresulting fromexperimentsconductedusing6differentvaluesof𝛼;thereislittle differencebetweenthem.FortheRomestudy,thissimilarityisa conse-quenceoftheinterplaybetweenthefollowingtwotypesofcoupling:

1. Functionalcouplingvianetworktopology:duetothefunctional couplingsbetweenthemodellednetworks,itonlytakesafew partic-ularMEstofailforacascadeofagivensizetooccur. Telecommunica-tioncentresinthemodelprovideexamplesoffunctionalcoupling. EachsuchcentrecontainsmultipletelecommunicationMEs(suchas Add-dropmultiplexers),andalloftheseMEsrelyonthesame pri-maryandsecondarypowersources.Thatis,viaasinglepower net-workME(suchasamediumvoltagepowercable)thepowernetwork providespowertoagiventelecommunicationcentre,andwhenthe powernetworkfailsabackupgeneratorsuppliespowertothe cen-treforsome50hoursonaverage.22Consequently,wheneverboth

20Inthisrange,onedistributionliesaboveanother. 21Thatis,overtheentireprobabilitydistribution.

22Consequently,inourmodel,thefailureofaPowernetworkMEthatisacoupling

[image:12.595.307.558.58.358.2] [image:12.595.39.289.58.211.2]
(13)

Fig.11. Cascade-sizeprobabilitymassfunctionsfor𝛼values1,10,100,150,250and500.

ofthesepowersourcesareunavailablealloftheMEsattheaffected telecommunicationscentrebecomeinoperable.

2. Stochasticassociation:Therelationshipbetweenastochasticchild anditsparentsissuchthatthevalueof𝛼– thestrengthofthe stochas-ticdependence– onlybeginstotakeeffectafteratleastoneofthe parentshasexperiencedfailure.Prior tosuchaninitial failure,if therearenoMEsanywhereinthemodelinafailedstate,the exper-imentshaveidenticalstochasticbehaviourregardlessof𝛼’svalue.

Consequently,formostoftheexperimentsreportedhere(apartfrom the𝛼=500),therelativefrequencywithwhichacouplingpointthatis apowerMEfails, followedbythefailureofabackup generatorand alloftherelianttelecommunicationMEsatagivencentre, isalmost unchangedbyvarying𝛼.

ComparethiswithFig. 12 whichdepictscascadeduration distribu-tions.Thereisalinearportionofthegraphindicatingexponential distri-butionsofcascadedurations.Wesee,however,thatthetailsofsomeof thedistributionsdeviatefromthis(theprobabilityoflongdurationsare greaterthanwhatwouldbeexpectedunderanexponentialprobability law),beginningatsomevalueof𝛼greaterthan150andlessthan250. Similartothedurationdistributions,nonlinearityalsooccursinthe tailsof“loss” distributions(seeFig. 13 ),howeverthesearenow notice-ableatsome𝛼valuegreaterthan250andlessthan500.

Analternativewayofseeingthisnonlinearityinthe“loss” distribu-tionisbycomparingtheproportionoflossduetoeachcascadesizein eachoftheexperiments.Foragivenvalueof𝛼theproportionofloss duetoacascadeofsizekiscomputedasfollows.LetL(i)betheloss

associatedwithcascadei.Then,theproportionis

𝑖

⎧ ⎪ ⎨ ⎪ ⎩

𝑐𝑎𝑠𝑐𝑎𝑑𝑒𝑠𝑜𝑓 𝑠𝑖𝑧𝑒𝑘

⎫ ⎪ ⎬ ⎪ ⎭

𝐿(𝑖)

𝑗∈{𝑎𝑙𝑙𝑐𝑎𝑠𝑐𝑎𝑑𝑒𝑠}𝐿(𝑗)

.

Theseproportionstakevaluesintheunitinterval[0,1]andare plot-tedinFig. 14 .Thehorizontalaxisdepictstheproportionsforcascade sizesinthe𝛼=1experimentwhiletheverticalaxisdepictsthe propor-tionsforcascadesizesinthe𝛼=1,250and500experiments.Thatis, eachdatapointisapairofproportionsrelatedtothesamecascadesize, atleastoneofwhichistheproportionfromthe𝛼=1experiment.Note thatthecascadesizerelatedtoeachpointisnotexplicitlyshowninthe figure.Intheplot,theproportionsfromthe𝛼=1experimentare repre-sentedastrianglesonthediagonalline.Datapointsthatdonotfallon thisdiagonal(theunitslope)lineindicatedeviationsbetweenthe𝛼=1

experimentandtheotherexperiments.

[image:13.595.90.510.54.436.2]
(14)

Fig.12. Cascade-durationdistributionsresultingfrom𝛼values1,10,100,150,250and500.

Fig.13. Distributionsof“Loss” duetocascadesunderdifferentvaluesof𝛼,wherethe“Loss” duetoacascadeisdefinedascascadesize×cascadeduration.

Fig.14. Theproportionoflossduetoacascadeofagivensizecandifferwithdifferent valuesof𝛼.

reached.And,theresultsofthissectionhighlighthowchangesin𝛼over certainrangesleadtonoticeablechangeforsome risk-measures,but notothers(comparethecascade-size,cascade-durationandcascade-loss distributions).Therangeof𝛼valueswehaveinvestigatedsuggestthat preciselywhich𝛼valuestriggernoticeablechangescanvaryfrom mea-suretomeasure.Anoteofcautionisinorder,therefore:itisprudent thatadiversecollectionof risk-measuresbeusedwhenapplyingPIA (asinanyrisk-modellingofsufficientcomplexity),studyingmodel be-haviouroverarangeofplausibleparametervalues,tofullyunderstand thepropertiesandlimitationsoftheresultingmodels.

7. Discussion

Thispaperdemonstrates,onarealisticexample,anapproachtothe evaluationofsystemicrisk andthesignificanceof interdependencies betweencriticalinfrastructures.

Thispaperpresentsasystematicmethodofbuilding, viaan itera-tiveprocessofmodelrefinement,modelstosupporttheanalysisofCI

resilience.Themethodallowsonetooperateatdifferentlevelsof ab-straction, rangingfrompurelyprobabilisticstudy,atoneextreme,to high-fidelityanalysisusinganumberofdeterministicmodelswhich cap-ture,explicitly,the“physics” oftheunderlyingCIs,attheotherextreme. In-betweentheseextremesliesamultitudeofhybridmodelswithboth stochasticanddeterministicphenomena.Onceahybridmodelof inter-dependentCIshasbeendeveloped,suitablerisk-measurescanbedefined tostudythesystempropertiesofinterest(suchassystemresilience). Whilethesemeasuresaredependentonthelevelofdetailusedinthe model(e.g.thecomponentrelatedrisk-measures,suchasthoseinFig. 8 , cannotbeusedunlessthemodelisdefinedatthecomponentlevel),the measures,themselves,donothavetobepartofthemodeldefinition.In fact,manyoftherisk-measuressummarizedinthispaperweredefined

after thesimulationswerecompleted,andcomputed usingthetraces ofthesystemstaterecordedduringthesimulations.Thisallowedusto runthesimulationcampaignsonlyonce,andsubsequentlyusethetraces tocomputedifferentrisk-measuresofinterestwhenevertheneedfora newoneoccurred.Thiswasimportantasthelengthofsimulationcan besignificant,sometimesrequiringanumberofdaystoobtainsufficient statisticalconfidenceintheresults.

WedemonstratethePIAmethodintheappendixandnotethatthe methodwasalsosuccessfullyappliedtobuildamodelofanothersystem ofsimilarcomplexity,inwhichthefocuswasonmodellingtheresilience ofpowersystemsagainstcyber-attacks[31,32] .Thisisanexampleof modelling, indetail,theeffectof anadverseenvironmenton critical infrastructure.

[image:14.595.137.460.60.188.2] [image:14.595.141.455.215.345.2] [image:14.595.45.290.382.513.2]

Figure

Fig. 1. PIA sources of dependencies between resources.
Fig. 2. PIA method stages.
Fig.
Fig. size6. This illustrates the evolution of two cascades. Each cascade has a duration and size that are random variables; only by observing a cascade to its conclusion can one knowwhat its size and duration is
+7

References

Related documents

CA Intellectual Property Office (CIPO) CA Intellectual Property Office (CIPO) CA Intellectual Property Office (CIPO) CA Intellectual Property Office (CIPO) CA Intellectual

Incentives matter and are found indeed to alter the way taxpayers assess the tax rate scale, making in turn the shape of the Laffer curve susceptible to the unit of measurement of

Patients with chronical diseases such as Diabetes Mellitus whose treatment requires a long time even a lifetime to note about the social economy, especially how

Places and the contexts surrounding them work together in a reciprocal process to generate rhetoric and drive material and rhetorical change, and Westlake Terrace and Idora Park

Based on the result of the research, it can be concluded that (1) thedynamic electricity interactive multimedia that develop based on problem-based learning can

Other studies of market pressure are reported in Logue ("On the Pricing of Unseasoned Equity Offerings, Journal of Financial and Quantitative Analysis, Jan. In the Pettway

Increased osteopontin expression in endometrial carcinoma is associated with better survival outcome.. Haneen Al-Maghrabi 1 , Wafaey Gomaa 2,3 , Jaudah