• No results found

Electron and species populations behind high enthalpy shock waves in low density air

N/A
N/A
Protected

Academic year: 2019

Share "Electron and species populations behind high enthalpy shock waves in low density air"

Copied!
283
0
0

Loading.... (view fulltext now)

Full text

(1)

ELECTRON AND SPECIES

POPULATIONS BEHIND HIGH

ENTHALPY SHOCK WAVES IN LOW

DENSITY AIR

By

Paul Anthony Taloni

A thesis submitted for the degree of Doctor of Philosophy

of The Australian National University

(2)

Statement of Authorship

The contents of this thesis, except where indicated by references, are entirely my own work.

(3)

A ck n ow led gem en ts

M any people hav e a ssiste d m e over th e course of m y P hD re se a rc h . To

th a n k th e m all in d iv id u ally w ould ta k e as m an y pages as I h av e u sed to

describe m y ex p erim en ts. T hose I do n o t m en tio n p erso n ally know th a t

I am sin cerely g rate fu l. A t some tim e or a n o th e r, every m em b er of th e

D e p a rtm e n t o f P h y sics h a s h e lp e d m e in som e w ay sh a p e or form .

S p ecifically I w o u ld lik e to th a n k m y s u p e rv is o rs P ro fe s s o r J o h n

S a n d e m a n a n d D r F r a n k H ouw ing. M an y th a n k s to J o h n S a n d e m a n

who w ould offer advice on som e a sp e c t of th e e x p e rim e n ta l tec h n iq u e

t h a t w o u ld in v a r ia b ly o v erco m e a n a p p a r e n t l y in s u r m o u n ta b le

p ro b lem . I am also in d e b te d to F r a n k H o u w in g w hose c o n tin u a l

e n c o u ra g e m e n t a n d ad v ice, n o t to m e n tio n h is e n d le s s su p p ly of

e n th u s ia s m , m ad e th e r e s e a r c h p ro g ra m a s p ro d u c tiv e a s i t w as.

T h a n k s a re due also to D r D on B one for th e coaching he gave m e in

s q u a s h a s w ell a s th e m a n y d is c u s s io n s we h a d o n a to m ic

spectroscopy. U n fo rtu n a te ly m y s q u a s h g am e did n o t s u b s ta n tia lly

im p ro v e, b u t m y u n d e rs ta n d in g of sp e ctro p h y sic s a n d spectroscopic

tech n iq u e c e rta in ly did. T h a n k s to D r H ans-A B ach o r w hose ex p ertise

in th is a re a w as often u tilize d . I m u s t also th a n k m y fellow s tu d e n ts

w ith w hom I e n d u re d th e rig o rs of e x p e rim e n ta l physics. T h a n k s to

J im T ay lo r, w ith w hom I h a v e s p e n t th e l a s t e le v en y e a rs of m y

schooling, for h is a ssista n c e in th e lab a n d h is good h u m o u r d u rin g th e

f r u s tr a tin g tim e s. To T im M c In ty re (now D r) a n d P h ilip R y an (still

M r) for th e m a n y f ru itfu l d isc u ssio n s c o n ce rn in g th e a r e a s of o u r

r e s e a r c h a s w ell a s th e le s s f r u itf u l, b u t e q u a lly e n te r ta in in g ,

d isp u ta tio n s over e x p e rim e n ta l tec h n iq u e . I w ould also lik e to th a n k

(4)
(5)

Abstract

E x p e rim e n ts w ere co n d u cted to te s t th e v a lid ity of th e o re tic a l m odels

w h ic h d e sc rib e th e b e h a v io u r of c h em ic al a n d th e r m a l re la x a tio n

p ro cesses a t h ig h te m p e r a tu re s a n d low d e n s itie s . In te rfe ro m e tric ,

em issio n a n d a b so rp tio n e x p e rim e n ts w ere p erfo rm ed to m e a s u re th e

e le c tr o n d e n s itie s , r o t a t io n a l t e m p e r a t u r e , a n d e m is s io n a n d

ab so rp tio n profiles for com parison w ith th eo ry .

E le c tro n p o p u la tio n s b e h in d h ig h e n th a lp y sh o ck w a v e s in low

p re s s u re a ir w ere m e a s u re d w ith s p a tia l a n d te m p o ra l re s o lu tio n a t

c o n d itio n s a p p lic a b le to th e flig h t re g im e s of th e NASA p ro p o se d

a e ro a s sis te d o rb ita l tr a n s f e r vehicle u s in g a n in fra re d in te rfe ro m e tric

te c h n iq u e . M e a s u re m e n ts u s in g th is te c h n iq u e w ere c o n firm ed by

o b serv in g th e S ta r k b ro a d e n in g of th e h y d ro g en ß tra n s itio n . I t w as

o b se rv ed t h a t th e e le c tro n p o p u la tio n s p la te a u to a lev e l t h a t is

sig n ifican tly less th a n t h a t p red ic te d by a one—te m p e ra tu re m odel, b u t

are in ex cellen t a g re e m e n t w ith v alu es p red ic te d by a two—te m p e ra tu re

m odel. T he m e a su re d ra te of io n isatio n a g reed fav o u rab ly w ith th e ra te

p re d ic te d by th e tw o - te m p e r a tu r e m odel, b u t w as a g a in sig n ific an tly

less th a n t h a t p red icted by th e o n e -te m p e ra tu re m odel.

T he b ro a d b a n d te m p o ra l em issio n c h a ra c te ris tic s of th e p la s m a w ere

s tu d ie d in o rd e r to d e te rm in e c h a ra c te ris tic re la x a tio n tim e s. T he

em issio n p ro files w ere in ex cellen t accord w ith th e p re d ic tio n s of th e

two—te m p e ra tu re m odel. No m e a su re of th e em issive pow er w as m ad e

how ever, a n d th e re fo re no com m ent is m ad e a s to th e re lia b ility of th e

(6)

T e m p o ra lly re s o lv e d e m is s io n m e a s u r e m e n ts w ere c o n d u c te d on

specific ro ta tio n a l tra n s itio n s in th e N 2+ m olecule in th e reg io n b e h in d

th e shock to d e te rm in e th e ro ta tio n a l te m p e ra tu re . T h is te m p e r a tu re

w as fo u n d to be co rrectly p re d ic te d by th e tw o—te m p e r a tu re m odel,

w hile th e one—te m p e ra tu re m odel, u n d e re s tim a te d th e te m p e ra tu re by

a factor of ab o u t 50%.

T he re la tiv e in te n s ity of tw o tr a n s itio n s in ato m ic a n d ionic oxygen

w ere m e a s u re d a n d co m p ared w ith th e o re tic a l p re d ic tio n s. I t w as

o b s e rv e d t h a t th e t h e o r e tic a l io n -to -a to m e m is s io n r a t i o w a s

su b s ta n tia lly la rg e r w hen described by a single te m p e ra tu re th a n w h en

d escrib ed by tw o te m p e ra tu re s . T he e x p e rim e n ta l r e s u lts su p p o rt th e

two—te m p e ra tu re d escrip tio n a n d len d su p p o rt to th e conclusion of th e

e le c tro n n u m b e r d e n s ity s tu d ie s , w h ich s u g g e s t t h a t th e o b se rv ed

d e crea se in th e s e p o p u la tio n s w as d u e to a lo w e rin g of th e e le ctro n

te m p e ra tu re .

An in fra re d CW diode la s e r a b so rp tio n e x p e rim e n t w as c a rrie d o u t in

oxygen on th e sam e t r a n s itio n a s in th e e m iss io n s tu d ie s . T h e

m e a s u r e d a b s o rp tio n w as c o m p a re d w ith t h a t p r e d ic te d by th e

two—te m p e r a tu re m odel, a n d found to be in fa ir a g re e m e n t, a lth o u g h

th e u n c e rta in ty in th e m e a su re m e n ts is high.

T he e x p e rim e n ta l r e s u lts le n d s u p p o rt to c u r r e n t th e o re tic a l w ork,

w hich proposes t h a t it is n e ce ssa ry to c h arac terize th e flow by d ifferen t

te m p e r a tu r e s to a c c u ra te ly m odel c o n d itio n s a t th e h ig h sh o ck

(7)

TABLE OF CONTENTS

Chapter 1. INTRODUCTION Page

1.1 Background

26

1.2 A review of relevant literature

30

1.3 An overview of the current experiments

44

1.4 The structure of this thesis

45

Chapter 2. IONISATION PROCESSES AND THE EMISSIVE

PROPERTIES OF SHOCK HEATED AIR

2.1 Introduction

47

2.2 Ionisation processes

48

2.2.1

Ionisation by atomic and molecular collision

48

2.2.2

Electron and ion impact ionisation

53

2.2.3

Photoionisation

56

2.2.4

Charge exchange

59

2.2.5 Electron attachment

60

2.3 The emissive properties of shock heated air

62

Chapter 3. THE TWO-TEMPERATURE KINETIC MODEL

3.1 Introduction

67

3.2 The need for a multi-temperature kinetic model

67

3.3 A three-temperature description

71

3.4 The two-temperature kinetic model

77

3.5 Vibrational excitation in the TTV model

81

3.5.1

Correction to the vibrational excitation cross

83

section

(8)

3.5.3 Preferential dissociation from excited states

87

3.6

The reaction kinetics in the TTV model

88

3.6.1

Reactions and rate controlling temperatures

88

3.7

Predictions of the TTV model

93

Chapter 4. THE EXPERIMENTS

4.1 The experimental objectives

95

4.2 The shock tube facilities

96

4.2.1

Construction and operation

96

4.2.2

Driver conditions

100

4.2.3

Timing and triggering

102

4.2.4

The test section

103

4.3 Ionisation diagnostics and their relative merits

104

4.4 Infrared Interferometry

109

4.4.1

The experimental arrangement

109

4.4.2

The Michelson interferometer

111

4.4.3

The tunable CW C02 laser

112

4.4.4

The HgCdTe infrared detectors

113

4.4.5 Data acquisition

116

4.5 Stark broadening of the Hß line

117

4.5.1

Introduction

117

4.5.2

The experimental arrangement

118

4.5.3

The Optical Multichannel Analyser

120

4.5.4

The photomultiplier

121

4.5.5

Triggering and timing

122

4.6 Emission from molecular nitrogen

123

4.6.1

The experimental arrangement

123

(9)

4.7

Emission from atomic and ionic oxygen

124

4.7.1

The experimental arrangement

124

4.7.2

The oxygen transitions

125

4.8

Infrared CW diode laser absorption by atomic oxygen

126

4.8.1

The experimental arrangement

126

4.8.2

The infrared CW diode laser

128

C h a p te r 5. D A T A R E D U C T IO N

5.1 Introduction

129

5.2 Infrared interferometric fringe analysis

129

5.3 Stark broadened Hß profile analysis

134

5.4 Emission from molecular nitrogen

135

5.4.1

Introduction

135

5.4.2

Molecular spectroscopy

136

5.4.3

The thermal distribution of the rotational levels

145

5.5 Atomic and ionic oxygen emission analysis

149

5.5.1

Atomic transitions as temperature indicators

150

5.6 Infrared CW diode laser absorption by atomic oxygen

153

C h a p te r 6. RESULTS

6.1 The experimental limitations

160

6.1.1

Test gas contamination

163

6.2 Infrared interferometry

165

6.2.1

Argon results

165

6.2.2

Nitrogen and air results

166

6.3 The Stark Broadened Hß Profile

172

6.4 Emission from molecular nitrogen

174

6.5 Atomic and ionic oxygen emission

179

(10)

Chapter 7. DISCUSSION

7.1 Electron number density measurements in air

7.2 Em ission from molecular nitrogen

7.3 Atomic and ionic oxygen emission

7.4 Infrared CW diode laser absorption by atomic oxygen

183 189

192

193

Chapter 8. CONCLUSIONS 196

REFERENCED LITERATURE

APPENDICES

A ppendix A

Appendix B

Appendix C

Appendix D

Appendix E

Reaction sequences for ionising atomic and

molecular collisions

Reaction sequences for the charge transfer

reactions

Reaction sequences for the electron attachm ent

reactions

Park's model - reactions and rate parameters

Reduction o f output in Species Mole Fractions to

(11)

LIST OF FIGURES AND TABLES

C h a p te r 2 A f t e r p a g e

T a b le 2.1 I o n is a tio n p o t e n t i a ls o f th e e x p e r im e n ta l sp e c ie s 58

F ig u r e 2.1 T h e o r e tic a l a n d o b s e r v e d io n is a tio n d is ta n c e s

b e h in d sh o c k w a v e s in a i r 62

T a b le 2.2 P a r a m e te r s f o r th e th e o r e tic a l e s tim a te s o f a i r

e m is s iv itie s r e p r o d u c e d f r o m P e n n e r (1 9 5 9 ) 64

F ig u r e 2 .2 P o te n tia l w e ll f o r N 2 a n d N 2+ 65

F ig u r e 2 .3 P o te n tia l w e ll fo r 0 2 65

F ig u r e 2 .4 P o te n tia l w e ll f o r N O 65

C h a p te r 3

F ig u r e 3.1 P it c h i n g m o m e n t c h a r a c te r is tic s o f th e

a e r o a s s is t f l i g h t e x p e r im e n t 68

F ig u r e 3 .2 E x p e r i m e n ta l a n d th e o r e tic a l s h o c k la y e r

th ic k n e s s o v e r a 45? co n e 68

F ig u r e 3 .3 S p e c ie s m o le fr a c tio n p r e d ic tio n s o f th e T T V

m o d e l 93

F ig u r e 3 .4 T e m p e r a tu r e a n d e m is s io n p r e d i c tio n s

o f th e T T V m o d e l 93

F ig u r e 3 .5 C h a r a c te r is tic r e la x a tio n t im e p a r a m e t e r

v ’s sh o c k v elo city 93

T a b le 3.1 T y p ic a l s h o c k tu b e te s t c o n d itio n s p r e d ic te d

(12)

Chapter 4

Figure 4.1 Schematic diagram o f the free piston shock tube 97

Figure 4.2 Relative movements o f the shock/ contact surface 99

interfaces.

Table 4.1 Driver conditions for DDT 102

Table 4.2 Driver conditions for T3 and T2 102

Figure 4.3 Exit of tube detailing Prandtl-Meyer expansion

fan lim iting steady flow to a Mach cone 104

Figure 4.4 Schematic diagram detailing the infrared

interferometric experiment 109

Figure 4.5 The electronics system used in the infrared

interferometric experiment 110

Figure 4.6 The Infrared detector and its hardware 115

Figure 4.7 Schematic detailing the Stark broadening,

molecular and atomic emission experiments 119

Figure 4.8 The electronics system used in the

aforementioned experiments 121

Figure 4.9 The flush mounted photodiode trigger housing 123

Figure 4.10 Energy level diagram o f the N 2 and N 2+ molecule 124

Figure 4.11 The energy level diagram o f the O atom 126

Figure 4.12 Schematic diagram detailing the infrared CW

laser absorption spectroscopy experiment 126

Chapter 5

Figure 5.1 Calculated FWHM for the H-Beta transition

as a function o f the electron number density 134

Table 5.1 Molecular constants used to determine the

(13)

Figure 5.2 H u n d ’s coupling cases (a) and (b) 141

Figure 5.3 Thermal distribution o f the rotational levels 146

Figure 5.4 Atom I ion level scheme 151

Chapter 6

Photographic plate #1 Observed im purity emission 164

Figure 6.1(a) Contaminated fringe shift 164

Figure 6.1(b) Un-contaminated fringe shift 164

Figure 6.2 Contaminated OMA emission spectrum 164

Figure 6.3 M ultiple fringe shift resulting from large

ionisation fraction in 133 Pa o f argon 171

Figure 6.4 M ultiple fringe shift resulting from large

ionisation fraction in 1333 Pa o f argon 171

Figure 6.5(a) Electron population v ’s distance behind shock

front for 133 Pa of argon 171

Figure 6.5(b) Electron population v ’s distance behind shock

front for 1333 Pa o f argon 171

Figure 6.6 Observed fringe shift v=10.2 kms-1 , 13 Pa o f air 171

Figure 6.7 Observed fringe shift v=10.9 km s'1 , 13 Pa o f air 171

Figure 6.8 Observed fringe shift v=10.8 km s'1 , 13 Pa o f N 2 171

Figure 6.9 Observed fringe shift v=10.2 km s'1 , 13 Pa o f air 171

Figure 6.10 Observed fringe shift v=10.5 km s'1 , 13 Pa o f N 2 171

Figure 6.11 Observed fringe shift v=10.5 kms-1 , 13 Pa o f air 171

Figure 6.12 Observed fringe shift v=10.6 km s'1 , 13 Pa o f air 171

Figure 6.13-26 Electron population v’s distance behind shock,

experiment plus theory at the varying conditions 171

Figure 6.27 Time resolved emission of Hß transition at

various detunings from line centre 173

(14)

Figure

6.29

Experimental

transition together with

the theoretical profile for Ne=1015 cm-3

173

Figure

6.30

Reduced

transition together with the

theoretical profile for

Ne=1015

and

1016 cm-3 173

Figure

6.31

Experimental time resolved broadband

emission labelled with the relaxation

parameters

178

Figure 6.32

Experimental time resolved broadband

emission (convoluted) together with the

emissive predictions of the TTV model

178

Figure

6.33

OMA spectrum of driver contaminants

178

Figure

6.34

OMA spectrum of driver contaminants

and some ro-vibrational structure

178

Figure 6.35

OMA spectrum of pure ro-vibrational

structure about band heads of N2+

178

Figure 6.36

OMA spectrum of three oxygen transitions

180

Figure 6.37

OMA spectrum of oxygen transitions

detailing the decrease in the emissive

power with decreasing pressure

180

Figure 6.38

Emissive power per particle v’s pressure

180

Figure 6.39

OMA spectrum of O and O

+transitions

after several OMA accumulation cycles

180

Figure 6.40 Theoretical ion-to atom intensity ratio for O

180

Figure 6.41

Observed and predicted diode laser absorption

at for the experimental parameters at

(15)

ACRONYMS AND NOTATIONS

This thesis is written in, and adheres to, the SI units system. On

occasion however, certain equations contain dimensioned constants.

In these instances, the equations are detailing either cross sectional or

spectroscopic parameters. It is common practice to employ the cgs

units system in these cases. For example, practically all spectroscopic

data is given in cgs units. The thesis therefore follows this convention

for those specific equations, namely, equations 2.3, 2.6, 2.7, 2.17, 2.19,

3.12, 3.16, 3.23, 4.7, 5.48 and 5.49.

The following acronyms and notations are presented in the order in

which they appear in the given chapter.

AOTV:

CW

:

FWHM:

HEO :

LEO

:

OTV :

TTV

:

aeroassisted orbital transfer vehicle

continuous wave

full-width-half-maximum

high earth orbit

low earth orbit

orbital transfer vehicle

pertaining to the two-temperature kinetic model of Park

(1989)

Chapter 2

a0

:

first Bohr radius

A^T)

:

forward rate constant for collisional ionisation

c

:

speed of light

(16)

Cx

d AE AE® E E* Ex E0 f fie) fi g h I k L m e n(v) n e % 2 nX Q

Q

Qe Q& Q1

m ean therm al velocity of species X

distance between the atomic or molecular fields of two particles

total internal energy of a system energy of reaction

im pact energy

energy difference between two electronic states of a molecule

activation energy for ionisation

lowest vibrational level of an upper state oscillator strength

local electron energy distribution function

characteristic oscillator strength of the ith band system ratio of the statistical weights

Plank's constant

total radiation intensity Boltzmann's constant

effective thickness of the reaction region electron mass

num ber density of photons with frequency v local electron num ber density

averaged num ber density of N2 molecules local density of species X (atom or molecule)

Total cross section for electron impact with atoms or ions velocity averaged cross section

cross section for ionising collisions

(17)

Q ix (e )

Q o Q s

R

Rxa0 T

t

rp*

Te

Ti

V

V e

W ix

X

cross section for electro n collisional io n isatio n

e lastic cross section

e x citatio n cross section

in te r n a l se p a ra tio n for collisional io n isatio n

c en tre of m ass d istan c e

tr a n s la tio n a l te m p e ra tu re

tim e

c h a ra c te ristic te m p e ra tu re for th e electronic s ta te

electro n te m p e ra tu re

c h a ra c te ristic te m p e ra tu re for th e ith b a n d sy stem

rela tiv e velocity of two p articles

electron velocity

th re s h o ld energy for species X

species type (atom or m olecule)

G reek sym bols

8 p la s m a th ic k n e s s

8 electro n energy

e e f f effective em m isivity

fo rw ard r a te coefficient for collisional io n isatio n

c h a ra c te ristic w av elen g th of th e ith b a n d sy stem

M- red u ced m ass of a sy stem

V ra d ia tio n frequency

P d en sity

Po den sity a t STP

* A I a u to io n isatio n lifetim e

T m ea n lifetim e before a u to io n isatio n occurs

collisional lifetim e

(18)

number of NO molecules

C h a p te r 3

A

C

c

C ™m

Cp

Cy

Dx

e

E

E,

e e

Ev

i=l, 2,.., 5 rate controlling constants

parameter dependent on the molecule type

reaction rate constant for vibrational excitation

average molecular speed

pitching moment coefficient

specific heat at constant pressure

specific heat at constant volume

dissociation energy of molecule X

average vibrational energy per unit mass of molecule s

effective diffusive coefficient for species s

electron charge

total energy per unit mass

sum of the electronic excitation energy and kinetic energy

of the electrons

activation energy of the reaction

vibrational energy per unit mass of species s at

temperature Te

vibrational energy at the electron temperature

vibrational energy per unit mass of species s at

temperature T

total electronic energy per unit mass of molecule s

vibrational energy

(19)

®v,s

Evib

E Vib,Eq :

flea

n v

Nx

P

Pe

Or

Qrad

R T

v ib ra tio n a l en erg y p e r u n it m ass of species s

av erag e v ib ra tio n a l ex citatio n en erg y p e r m olecule

av erag e v ib ra tio n a l ex citatio n en erg y p e r m olecule a t

e q u ilib riu m

electro n gas h e a t tra n s fe r

to ta l e n th a lp y p e r u n it m ass

electronic e n th a lp y p e r u n it m ass of species s

v ib ra tio n a l e n th a lp y p e r u n it m ass of species s

firs t io n isatio n p o te n tia l for species s

B o ltz m an n 's c o n sta n t

th e rm a l conductivity by th e electron gas

e q u ilib riu m c o n sta n t for th e rea ctio n

fo rw ard rea ctio n ra te for v ib ratio n a l ex citatio n

r a te coefficient for a tra n s itio n from s ta te v to v'

m ach n u m b e r

m o lecu lar w eig h t of species s

n u m b e r d en sity of th e Xth s ta te

n u m b e r d e n sity of free electrons

m o la r r a te of p ro d u ctio n of species s by ele ctro n im p a c t

io n isa tio n

n u m b e r d en sity of th e vth v ib ratio n a l s ta te

n u m b e r d en sity of th e xth s ta te

p re s s u re

e lectro n p re s s u re

ra d ia tiv e pow er loss

ra d ia tiv e en erg y tra n s fe r ra te

u n iv e rs a l gas c o n sta n t

(20)

t

time

T

A V

U 1, u J , u k

Vi

:

w

:

wg

:

X\ xj, xk

ys *•

atom temperature

= VTTv = geometrically averaged temperature

electron-electronic excitation temperature

rotational temperature

reaction dependent rate controlling temperature

heavy particle translational temperature immediately

behind the shock front

Vibrational-electron-electronic temperature

:

velocity vector in 3-D space i, j, k=l, 2, 3

diffusion velocity for species i

flow velocity

mass rate of production of species s

:

vector in 3-D space i, j, k=l, 2, 3

mole fraction of species s

Greek Symbols

A

evib Diss

£vE

^ei

£ v

y

moment of energy transfer

Kronecker delta

average vibrational excitation energy

average vibrational excitation energy per molecule at

equilibrium

average vibrational excitation energy per particle i

average vibrational excitation energy per molecule

ratio of specific heats (Cp/Cy) .

frozen thermal conductivity for

translational-rotational energy of heavy particles

(21)

K

P

Pm

Vi

P Pe Ps av

T

%

%

TVib

0

frozen th e rm a l co n d u ctiv ity for v ib ra tio n a l e n erg y due to

m o le cu la r collisions

e q u iv a le n t th e rm a l conductivity

to ta l viscosity

red u ced m o lecu lar m ass of th e colliding species

effective collision frequency for electro n s a n d h eav y

p a rtic le s

collision frequency of species i

to tal den sity

electro n d en sity

d en sity of species s

lim itin g cross sectio n for v ib ra tio n a l e x cita tio n a t in fin ite

te m p e ra tu re

v ib ra tio n a l re la x a tio n tim e corrected for th e lim itin g cross

section

v ib ratio n a l ex citatio n tim e by h eav y p article im p a ct

v ib ratio n a l re la x a tio n tim e for ex citatio n by electron

co llisio n s

electronic v ib ra tio n a l re la x a tio n tim e for species s

tra n s la tio n a l v ib ratio n a l re la x a tio n tim e for species s

v ib ra tio n a l re la x a tio n tim e for ex citatio n by h eav y p a rticle

collisions

trim angle of a tta c k

C hapter 4

a : speed of sound

C(Ne>T): S ta rk b ro ad e n in g coefficient

(22)

Als : Stark width

Io : initial radiation in ten sity

k1 V : absorption coefficient for the inverse B rem sstrahlung

process

k : spectral absorption coefficient

L : optical path length

M : m ach num ber

m : m olecular m ass

N e : electron num ber density

P : pressure

R : universal gas constant

r : distance from shock tube axis to the Mach cone

r' : distance from the Mach cone to the expansion fan

T : tem perature

u : shock velocity

z : distance from the shock tube exit

Subscripts

1 : undisturbed test gas

5 : com pressed driver gas

D : undisturbed driver gas

s : shock wave

R : reservoir

Greek Symbols

a : microwave attenuation factor

Y : ratio of specific heats (Cp/Cy)

(23)

A \ s : S tark broadened wavelength

H : Mach angle

C0r> p : plasm a frequency

C hapter 5

A : constant times the inverse moment of inertia of the electrons

4 i m E instein A coefficient

A

1 '■max maximum fringe am plitude

- ^ m in m inim um fringe am plitude

B : rotational constant

C : constant depending on the change of dipole m oment of a molecule

c : speed of light

C a b s & C e m : constants depending on the change of dipole moment

D y : centrifugal distortion constant

d : line shift

Ag : FWHM

e : electric charge E

^ e , v , r energies of electronic, vibration and rotation respectively

F : term values of rotational transitions for the nonrigid rotator

f i : oscillator strength

G : term values of vibrational transitions

S i : degeneracy of level i

Gs : Gladstone dale coefficient for species s H(<x,v) : Voigt profile

h : Planks constant

(24)

a x is

m o m en t of in e rtia of th e m olecule ab o u t a n axis

p e rp e n d ic u la r to th e in te rn u c le a r axis

tra n s itio n in te n s ity of th e j th level of a n atom

tra n s itio n in te n s ity of th e k th level of a n ion

in itia l in te n s ity

ro ta tio n a l q u a n tu m n u m b e r

to ta l a n g u la r m o m e n tu m vector

to ta l a n g u la r m o m e n tu m a p a r t from sp in

freq u en cy d e p en d e n t a b so rp tio n coefficient

a n g u la r m o m e n tu m of th e electrons

optical p a th le n g th

atom ic m ass

electro n m ass

refra ctiv e index

a n g u la r m o m e n tu m of n u c le a r ro ta tio n

electro n n u m b e r d e n sity

p o p u latio n of th e j th level

fringe o rd er n u m b e r

lin e profile as a fu nction of d e tu n in g

p h a s e

p a rtitio n function

p a rtitio n fu n ctio n

sp in v ecto r of th e electrons

H onl-L ondon fo rm u lae

te rm v a lu e s for th e electronic sta te s

v ib ra tio n a l q u a n tu m n u m b e r

(25)

y : v e rtica l fringe p osition a t th e im age p lan e

Z : effective n u c le a r charge

G reek Sym bols

a a

aE

A^d

Y

angle of two b eam s a t th e sp ectro m eter

ion b ro a d e n in g p a ra m e te r

io n isa tio n fractio n a t e q u ilib riu m

D oppler w idth

FW H M

Av A e o Kv X K ^nm V Vo P Ps Z 0) COiXe Q e l Pi

d e tu n in g from lin e cen tre

a n g u la r m o m en tu m of th e electro n s along th e in te rn u c le a r

a x is

p e rm ittiv ity of free space

sp ectral a b so rp tio n coefficient

ra d ia tio n w av elen g th

C om pton w av elen g th = h/mc

lin e cen tre frequency of th e tra n s itio n from s ta te n to m

ra d ia tio n freq u en cy

b a n d orig in

d en sity

d en sity of species s

projection of th e spin vector S along th e in te rn u c le a r axis

lifetim e of level i

w av en u m b er = 1/A,

m e a su re of th e a n h arm o n ic ity of th e oscillator

vector su m of A an d Z

io n isatio n te m p e ra tu re (0j=I/k)

(26)

Chapter 1 : Introduction 2 6

C h ap ter 1

IN T R O D U C T IO N

1 .1 B ack grou n d

In re c e n t y e ars w ith th e a d v e n t of th e space sh u ttle , m u ch a ctiv ity h a s

ta k e n p lace in th e low e a r th o rb it (LEO). T h is a ctiv ity h a s in clu d ed

scientific e x p lo ra tio n a s w ell a s com m ercial e n te rp ris e . M u ch of th e

co m m ercial a c tiv ity h a s in c lu d e d th e d e p lo y m e n t o f s a te llite s in to

v a rio u s o rb its ra n g in g from L EO 's, u p to 400 km , to h ig h e a r th orbits,

H E O 's, w ith d e p lo y m e n t a ltitu d e s a s h ig h a s 35,900 k m for th e

g eo sy n ch ro n o u s sites.

To d a te , th e s a te llite d ep lo y m en t vehicles h av e b een m u ltis ta g e ro ck et

sy stem s, co n sistin g of a low er stag e w hich tra n s p o rts th e p ay lo ad from

g ro u n d to a LEO , a n d a n u p p e r stag e b o o ster c o n tin u in g from th e LEO

to th e H E O . T h e s e u p p e r s ta g e ro c k e ts , w h ic h a re o f c o u rse

e x p e n d a b le , a re e x p e n siv e a n d of re la tiv e ly low re lia b ility . T he

s e rv ic in g o f b o th g e o s ta tio n a r y a n d e q u a to r ia l s a t e l li t e s , th e

e s ta b lis h m e n t of p e r m a n e n tly m a n n e d sp ace s ta tio n s a n d sp ace

m a n u fa c tu rin g , all re q u ire a tr a n s p o rta tio n sy stem m ore flexible th a n

th e s h u ttle , or u p p e r sta g e rocket, capable of tra v e l b e tw ee n th e LEO

an d th e HEO.

A co n sid erab le com m ercial a d v a n ta g e w ould be ach iev ed if th e u p p e r

(27)

Chapter 1 : Introduction 27

of a n o rb ital tra n s fe r vehicle, OTV, w hich em ploys rockets for its ascen t

a n d d escen t stag es. A h ig h price is p a id in fuel how ever, for th e ab ility

to re u se th e vehicle, as th e fuel re q u ire d for th e d escen t b u rn is c arried

a t th e ex p en se of cargo. To overcom e th is p ro b lem th e a e ro a s s is te d

o rb ita l tr a n s f e r vehicle, AOTV, h a s b een proposed. (F or a rev iew see

P a r k 1985a a n d 1987a). S u ch a vehicle h a s a n a ero d y n am ic su rface,

cap ab le of p ro d u cin g d ra g a n d a sm all a m o u n t of lift. I t is en v isag ed

t h a t su ch a vehicle, on r e tu r n to th e LEO from a H E O w ould c a rry out

a e ro b ra k in g a n d a e ro m a n e u v e rin g p ro ced u res a n d d e ce le rate by drag,

rem oving th e n eed for a d e ce le ratin g ro ck et b u m .

T he AOTV h a s a well defined flig h t regim e. T his vehicle is expected to

hav e a perigee a ltitu d e of ap p ro x im ately 80 km , w h ere th e a ir p re s su re

is a p p ro x im a te ly 13 P a , a n d , a t th is p o in t, tr a v e l a t n e a r escap e

velocities of a p p ro x im ate ly 10 k m s '1. C e rta in ly , a t th e s e a ltitu d e s , th e

a tm o sp h e re is v ery ten u o u s b u t proves to be h ig h ly reactiv e. T he shock

w aves a sso c ia te d w ith su ch a n e n v iro n m e n t a re ex p ected to produce

flow fields t h a t a re in a s ta te of chem ical a n d th e rm a l n o n eq u ilib riu m .

T h e a ir in th e s e flow fie ld s w ill u n d e rg o v ib r a tio n a l e x c ita tio n ,

disso ciatio n a n d sig n ifican t io n isatio n . T he stu d y of re e n try physics is

becom ing of sig n ific a n t im p o rta n c e , a n d th e d e v elo p m e n t o f su c h a

vehicle is s e t to becom e a m ajo r technological ch allen g e in th e com ing

d ecad es.

In o rd e r to develop th e AOTV, it w ill be n e c e s s a ry to o b ta in a n

u n d e rs ta n d in g of th e ch em ical k in e tic s a t th e flig h t re g im e s w h ere

th e se processes a re im p o rta n t. T he n o n e q u ilib riu m c h e m istry affects

(28)

Chapter 1 : Introduction 28

c ap a b ilitie s . U n lik e ch em ical k in e tic m odels a p p lie d to th e s tu d y of

shock h e a te d m on ato m ic g ases such as argon, m odelling th e c h em istry

of shock h e a te d a ir is in h e re n tly difficu lt due to th e la rg e n u m b e r of

species in th e p la s m a , th e ir ty p e a n d th e n u m b e r of possible rea ctio n s

in w hich th e y m ay p a rtic ip a te . E le v en species, n am ely , N 2, 0 2, N , 0 ,

N O , N +, 0 +, N 2+, 0 2+, N 0 + a n d e- m a y be in v o lv ed in som e fifty

re a c tio n s , m a n y o f w h ic h h a v e r a t e c o n s ta n ts t h a t a re c u rr e n tly

u n k n o w n . F u r t h e r m o r e , m o le c u la r s p e c ie s i n tr o d u c e o th e r

t e m p e r a t u r e s w ith w h ic h th e flow m a y be c h a r a c te r iz e d . A ny

chem ical k in e tic m odel th e re fo re , m u s t a d d re s s th e p ro b lem s o f larg e

species n u m b e rs , m u ltip le re a c tio n s a n d be cap ab le of a c c o u n tin g for

v ib ra tio n a l, ro ta tio n a l, electronic ex citatio n , electro n tr a n s la tio n a l an d

h eav y p a rtic le tr a n s la tio n a l te m p e ra tu re s ; n o t a triv ia l exercise. T hese

a re problem s faced by th e th e o rist. T he e x p e rim e n ta lis t too h a s c e rta in

lim ita tio n s t h a t h a m p e r th e stu d y of shock h e a te d a ir a t h ig h e n th a lp y

c o n d itio n s, a c o n se q u e n c e of th e n a tu r e of th e p la s m a a n d th e

d iffic u ltie s a s s o c ia te d w ith th e g e n e r a tio n o f s u c h flow s in th e

lab o rato ry .

S tu d y in g th e chem ical k in etics involves a n in v e s tig a tio n of th e v ario u s

species, th e ir p o p u la tio n h isto rie s a n d th e ir role in rea ctio n sequences.

L a s e r a b s o r p tio n a n d e m is s io n sp e c tro s c o p y a r e n o n - in tr u s iv e

e x p e rim e n ta l tec h n iq u e s t h a t len d th em se lv e s to su ch a stu d y . T h ere

a re p ro b lem s h o w ev er a sso c iated w ith spectroscopy in a n a ir p lasm a .

E m is s io n m e a s u r e m e n ts m a y be m a d e , for e x a m p le , in o rd e r to

d e te rm in e ro ta tio n a l a n d v ib ra tio n a l te m p e ra tu re s of excited s ta te s of

N 2+. H o w ev e r th is does n o t r e s u l t in a n y in fo rm a tio n on th e

p o p u latio n s of th e g ro u n d electronic sta te s. A bsorption te c h n iq u e s can

(29)

Chapter 1 : Introduction 2 9

N a rro w b a n d a b s o rp tio n is d iffic u lt to re d u c e h o w ev er, b e c a u s e a

know ledge of th e w id th s, sh ifts a n d sh a p es of ab so rb in g tr a n s itio n s is

e s s e n tia l a n d th e s e lin e sh a p e p a ra m e te rs a re p re s e n tly u n k n o w n for

m an y species in th e en v iro n m en ts of in te re s t.

U sefu l a b s o rp tio n m e a s u re m e n ts for m o le c u la r n itro g e n m u s t ta k e

place in th e u ltra v io le t. T he s tro n g e s t a b s o rp tio n b a n d s in th e 0 2

m olecule a re also in th e u ltra v io le t (th e S ch u m an n -R u n g e tra n s itio n s ).

T he ß a n d y tr a n s itio n s in th e NO m olecule lie in th e ra n g e 200 to 400 nm . S tro n g ato m ic a b so rb e rs in a n a ir p la s m a h a v e tr a n s itio n s

a p p ro a c h in g th e in f r a r e d . T h e s p e c tra l p o s itio n s of th e s e s tro n g

tra n s itio n s place severe re s tric tio n s on th e e x p e rim e n ta l d iagnostic.

D ue to th e la rg e n u m b e r of species of b o th th e m o le cu la r a n d atom ic

form to account for, m a n y possible tra n s itio n s of v a ry in g w a v ele n g th s

from th e v a c u u m u ltra v io le t to th e fa r-in fra re d a re p o ssib le, m a k in g

th e selectio n of a s u ita b le lig h t source or em issio n d e te cto r, difficult.

T u n a b le dye la s e r s a re re q u ire d for CW a b s o rp tio n in th e v isib le ,

ex cim er la s e r s m ay be u s e d as lig h t so u rces in th e u ltr a v io le t a n d

tu n a b le diode la s e rs a re n eed ed in th e in fra re d . B ro ad b an d c o n tin u u m

sources m u s t have a n effective blackbody te m p e ra tu re g re a te r th a n th e

p la s m a u n d e r stu d y . T h ese lig h t sources a n d th e ir d e te cto rs m u s t of

course be coupled w ith th e a p p ro p ria te optics.

A g r e a t d eal of th e o re tic a l w ork in th e a re a of io n ised a ir h a s b e en

c a rrie d o u t in th e la s t th ir ty y e ars. M ore recen tly , a tw o -te m p e ra tu re

k in etic m odel for io n isin g a ir h a s b een developed by P a r k (1989). H is

(30)

Chapter 1 : Introduction 30

th e flig h t regim e of th e AOTV a n d h a s m ade p red ictio n s on:

i) th e p o p u la tio n h is to rie s of th e elev en m o le cu la r, a to m ic an d

ionic species,

ii) th e ro ta tio n a l a n d v ib ra tio n a l te m p e ra tu re s c h a ra c te riz in g th e

flow a n d

iii) th e n o n e q u ilib riu m ra d ia tiv e em ission of th e p lasm a.

T h is code r e p r e s e n ts p e rh a p s th e m o st a c c u ra te a tte m p t to m odel

conditions b e h in d th e shock fro n ts asso ciated w ith th e AOTV.

O n th e e x p e rim e n ta l fro n t, v e ry little d a ta e x is ts for th e species

p o p u la tio n s a t th e s e conditions. T h ere a re d ifficu lties (to be d e ta ile d

la te r) a sso ciated w ith th e p ro d u ctio n of such h ig h e n th a lp y shock fro n ts

in th e lab o rato ry . I t is obvious t h a t no single body of ex p erim e n tal w ork

could possibly hope to m e a su re all of th e p a ra m e te rs p re d ic te d by any

k in e tic m odel for io n is in g a ir. R eco g n izin g th is fac t, th e p r e s e n t

in v e s tig a tio n looks specifically a t a few p a ra m e te r s in a n a tte m p t to

len d su p p o rt to th e th e o re tic a l w ork. In p a rtic u la r, th e io n isa tio n th a t

occurs b e h in d th e h ig h e n th a lp y shock w aves in low p re s s u re a ir a t

specific conditions is stu d ied in d etail. T herefore, th e lite ra tu r e review

t h a t follows, is devoted to th e e x p e rim e n ta l a n d th e o re tic a l w ork t h a t

h a s b een c a rrie d out in th e field of io n isatio n b e h in d shock w aves in air.

1.2 A r ev iew o f relev a n t litera tu re

W hile stu d y in g th e electrical conductivity of io n ised a ir, L am b a n d Lin

(1957) m ad e th e o b serv atio n t h a t th e io n isatio n r a te w as co n sid erab ly

fa s te r b e h in d th e shock w ave th a n h a d b een expected. T he io n isatio n

(31)

Chapter 1 : Introduction 31

co m p arab le s tre n g th in argon, w as sev eral o rd ers of m a g n itu d e slow er

th a n L am b a n d L in h a d observed; even allow ing for th e difference in

th e io n is a tio n p o te n tia ls b e tw e e n th e sp ecies o f a rg o n a n d th o se

c o n s titu e n ts of a ir. D u rin g th e ir in v e s tig a tio n , P e ts c h e k a n d B yron

em p lo y ed a sh o ck re fle c tio n te c h n iq u e t h a t d e te r m in e d th e local

electro n n u m b e r d e n sity by c o rre la tin g i t to th e in te n s ity of th e visible

lig h t e m itte d by th e shock h e a te d gas.

N ib le tt a n d B lack m an (1958) trie d to em ploy th e tec h n iq u e of P etsch ek

a n d B y ro n to d e te rm in e th e io n is a tio n re la x a tio n tim e b e h in d shock

w aves in a ir. A h y d ro m ag n e tic shock tu b e w as em ployed to produce

shock w aves w ith M ach n u m b ers from 11 to 17 tra v e llin g in to 133 P a of

air. T he a ssu m p tio n w as m ad e t h a t th e lu m in o u s reg io n follow ing th e

shock fro n t w as due to p ro cesses in v o lv in g free ele ctro n s. H ow ever,

w hile th e v isib le ra d ia tio n in sh o ck -h eated a rg o n is d u e p rim a rily to

free -free a n d free -b o u n d c o n tin u u m ra d ia tio n , th e v isib le ra d ia tio n

from sh o c k -h e a te d a ir h a s b e e n found to be d u e to m o le c u la r b a n d

system s (P en n er, 1959). As p o in ted o u t by L in et al (1962), th e p o in t of

o n set of in te n se ra d ia tio n b e h in d th e shock w ave w as m o st likely due to

th e a r r iv a l o f th e c o n ta m in a te d d r iv e r g a s fro m th e e le c tric a l

d isch arg e, a n d w as n o t due to th e io n isatio n as N ib le tt a n d B lack m an

h a d a s s u m e d . T h ese lu m in o s ity m e a s u r e m e n ts , p e rh a p s w ro n g ly

in te r p r e te d , w ere re p o rte d as b e in g ab le to d e m o n s tr a te t h a t th e

io n is a tio n tim e d e crea se s w ith in c re a sin g M ach n u m b e r.

A m eth o d , b a sed on th e m e a su re m e n t of th e a tte n u a tio n of m icrow aves

to d e te rm in e th e electron d e n sities a n d io n isatio n ra te s in shock-heated

air, w as em ployed by M a n h eim er-T im n at an d Low (1959). Shock w aves

(32)

Chapter 1 : Introduction 3 2

n itro g e n /o x y g e n m ix tu re s (99.75% / 0.25% by v o lum e) in th e M ach

n u m b e r ra n g e from 7.4 to 8.8, b o th in p re s s u re s ra n g in g from 0.13 to

1.33 k P a, w ere stu d ied . T he a u th o rs show ed th e re w as good a g re e m e n t

b e tw ee n th e e x p e rim e n ta lly d e te rm in e d e le ctro n n u m b e r d e n s ity an d

th e o re tic a l calcu latio n s b a se d on a th erm o d y n am ic e q u ilib riu m m odel.

E ig h t r e a c tio n s e q u e n c e s w e re c o n s id e re d in t h e i r m o d el, tw o

d isso c ia tio n re a c tio n s , one fo rm a tio n re a c tio n ( th a t of N O ) a n d five

io n isin g reactio n s. M icrow ave tec h n iq u e s te n d to suffer a fu n d a m e n ta l

lim it, n am ely , poor s p a tia l re so lu tio n , w hich is a co n seq u en ce of th e

long w av ele n g th s. T h is te n d s to m ak e good s p a tia l re s o lu tio n w ith in

th e r e la x a tio n zone d iffic u lt. M a n h e im e r-T im n a t a n d Low h a d a

r a t h e r sm a ll (12.7 m m d ia m e te r) t e s t se ctio n a n d a s su c h , th e ir

m icrow ave a tte n u a tio n sig n al w as p ro b ab ly re la te d to th e p resen c e of

shock w aves in th e w aveguide th a n to an y io n isatio n re la x a tio n b eh in d

th e shock w ave in th e te s t section.

L in et a l (1962) u s e d m a g n e tic -in d u c tio n a n d m icro w av e re fle c tio n

p robes in a 600 m m d ia m e te r shock tu b e to in v e s tig a te th e io n is a tio n

profile b e h in d stro n g shock w aves in a ir w ith M ach n u m b e rs ra n g in g

from 14 to 20 a t in itia l p re s s u re s of 2.6 to 26 P a . U sin g te c h n iq u e s

sim ila r to th o se u se d by L in & Kivel (1959) a n d M a n h e im e r-T im n a t &

Low (1959), th e y o b se rv ed th e p o w er re fle c tio n co efficien t of th e

m icrow ave probe in o rd er to deduce th e electro n n u m b e r d e n sity (m ore

p re c ise ly , th e e le c tro n d e n s itie s d e d u ce d fro m p ro b e s of d iffe re n t

fre q u e n c ie s u n d e r s im ila r e x p e rim e n ta l co n d itio n s w ere co m p ared ).

In co njunction w ith th is e x p e rim e n ta l tech n iq u e, L in et al em ployed a

m ag n etic-in d u ctio n process sim ila r to th a t u sed by L am b a n d L in (1957)

(33)

Chapter 1 : Introduction 33

in a ir w ith a s p a tia l reso lu tio n com parable to th e effective w id th of th e

a p p lie d m a g n e tic field . T h e m a in r e s u lt o f th is w o rk w a s th e

o b s e rv a tio n t h a t fo r th e ra n g e of sh o ck s tr e n g th s co v ered (shock

v e lo c itie s fro m 4.5 k m s '1 to 7 kms*1), th e io n is a tio n d is ta n c e w as

ap p ro x im ately 10 to 40 tim es th e m ea n free p a th of th e u n d is tu rb e d gas

a h e a d of th e shock fro n t a n d th a t th e electron n u m b e r d en sity ap p ea re d

to o v ershoot th e e q u ilib riu m v alu e, by a facto r of b etw een 2 a n d 3, for

som e d is ta n c e b e h in d th e shock fro n t before re la x in g b a c k to w a rd s

e q u ilib riu m .

In a c o m p le m e n ta ry p a p e r to t h a t of L in, N e a l a n d Fyfe (1962), an

e x te n siv e th e o re tic a l in te r p r e ta tio n w as m ad e o f th e e x p e rim e n ta l

re s u lts o b tain ed in th e afo rem en tio n ed w ork by L in a n d T eare (1963). A

c ritic a l e x a m in a tio n w a s m a d e of th e v a rio u s io n is in g r e a c tio n

sequences. E le ctro n im p a c t a n d ion im p a c t io n isatio n , p h o to io n isatio n ,

ch arg e exchange, e le ctro n a tta c h m e n t a n d io n is a tio n by n e u tr a l ato m

a n d m o lecu lar im p a c t w ere th e io n is a tio n p ro cesses considered. R ate

e q u a tio n s w ere d eriv e d for th e s e re a c tio n s a n d solved b y n u m e ric a l

in te g ra tio n . S ince th e low io n is a tio n reg im e w as s tu d ie d , L in an d

T e a re u se a ‘one-w ay co u p lin g ’ a p p ro x im a tio n b e tw e e n d isso ciatio n ,

io n is a tio n a n d ra d ia tiv e e x cita tio n . O ne-w ay co u p lin g re fe rs to th e

tech n iq u e w h ereb y th e te m p e ra tu re , d e n sity a n d species co n cen tratio n s

a re i n itia lly c a lc u la te d in d e p e n d e n t of io n is a tio n a n d r a d ia tiv e

e x citatio n , a n d th e n u se d to d e te rm in e th e r a te s for th e s e processes.

U pon n u m e ric a l in te g ra tio n , th e y produced, as a fu n ctio n of d istan c e

b e h in d th e shock fro n t, a n in s ta n ta n e o u s electron p ro d u ctio n r a te plus

electron a n d positive ion d en sities. As a re su lt, a d e ta ile d b reak d o w n of

(34)

Chapter 1 : Introduction 34

com piled. T he d o m in a n t io n isa tio n reactio n s in th e ir a n aly sis w ere th e

a to m -a to m re a c tio n s follow ed by p h o to io n is a tio n , e le c tro n -im p a c t,

a to m -m o le c u le a n d m o le c u le -m o le c u le c o llis io n a l io n is a tio n ; th e

im p o rtan c e of each re a c tio n b ein g a fu n ctio n of shock velocity. L in an d

T eare stre s s e d t h a t th e electro n im p a ct reactio n s c o n trib u te little to the

io n isa tio n a t shock velocities below a b o u t 5 kms*1 b u t m ay becom e th e

d o m in a n t io n is in g re a c tio n a t v elo cities g r e a te r t h a t 9 kins*1. The

d o m in a n t ato m -ato m process in th e low velocity reg im e w as considered

to be th e associative io n isatio n reactio n

N + O <=» N O + + e~. ...(R l)

T he n e t en erg y re q u ire d for th is io n isin g re a c tio n is c o n sid erab ly less

th a n th e full io n isatio n p o te n tia l of NO, as chem ical en erg y is rele ased

by th e a sso c ia tio n of th e N a n d O. O n c o m p a rin g th e ir th e o re tic a l

m odel w ith th e e x p e rim e n ts of L in et a l, L in a n d T e a re d e m o n s tra te d

t h a t th e r e w as r e a s o n a b ly close a g re e m e n t b e tw e e n th e o r y a n d

e x p erim e n t. T he conclusion w as m ad e t h a t for shock velo cities up to

9 km s*1, th e d o m in a n t electro n p ro d u cin g re a c tio n seq u en ces w ere th e

a to m -ato m io n isin g collisions, w h e re a s electro n im p a c t p ro cesses m ay

becom e p r e d o m in a n t a t sh o c k v e lo c itie s in ex cess o f 10 km s*1.

F u r th e r m o r e , a cc o rd in g to t h e ir c a lc u la tio n s, th e o v e rsh o o t of th e

e le c tro n n u m b e r d e n s ity w ould be ex p ected to d is a p p e a r a t shock

velocities less th a n 4 kms*1 a n d g r e a te r th a n 9 kms*1. T h e ir d e sire to

e x te n d th e m odel to sh o ck v e lo c itie s g r e a te r t h a n 9 km s*1 w as

h a m p e re d on tw o fro n ts. F irstly , a g r e a te r know ledge of th e electro n

im p a ct io n isatio n r a te s a t h ig h e r velocities w as re q u ire d a n d secondly,

th e ‘one-w ay co upling’ m u s t give w ay to a ‘tw o-w ay coupling’ b e tw ee n

(35)

Chapter 1 : Introduction 35

io n is a tio n a n d ra d ia tiv e p ro cesses o c cu rred s im u lta n e o u s ly w ith th e

c h e m ic a l p ro c e s s e s a n d a s su c h , t h e i r i te r a t i v e te c h n iq u e w as

u n s a tis fa c to ry .

W ilso n (1966) e x te n d e d th e e x p e rim e n ta l w o rk of L in et al a n d th e

th e o r e tic a l w o rk o f L in a n d T e a re . F ir s tly , W ilso n c o n d u c te d

e x p e rim e n ts a t shock velo cities from 9 to 12 k m s-1 a n d o b serv ed th e

in fra re d em issio n of th e sh o ck -h eated a ir a t w a v ele n g th s g r e a te r th a n

5 pm . Above 5 pm th e c o n tin u u m ra d ia tio n consists m ain ly of free-free

B re m s s tra h lu n g ra d ia tio n , th e in te n s ity of w hich is p ro p o rtio n a l to th e

s q u a re of th e e le c tro n n u m b e r d e n sity . W ilson p r e s e n ts a ‘sim p le ’

m odel for a ir in w h ich ‘in fin ite ly fa s t d isso c iatio n ’ is a ssu m e d . H ere

W ilson m ak es th e a ssu m p tio n t h a t a t shock speeds g re a te r th a n 8 kms*

1 in a ir, d isso c ia tio n r a te s a re in fin ite a n d th e g a s in s ta n ta n e o u s ly

ju m p s to a s ta te of th erm o d y n am ic eq u ilib riu m across th e shock. T his

m odel differs from t h a t of L in a n d T eare in t h a t th e ir m odel assum ed"

fin ite d isso c ia tio n a n d one-w ay coupling. W ilso n 's in f r a r e d r e s u lts

show som e c o rre la tio n w ith b o th th e p ro p o sed sim p le m odel a n d th e

m odel of L in a n d T e a re . H o w ev er th e r a d ia tio n in te n s ity in th e

c o n tin u u m show ed a ten d en cy to be low er th a n t h a t p red icted by c e rta in

m odels. T he conclusion w as m ad e t h a t below velocities of 9 km s-1, th e

a s s o c ia tiv e io n is a tio n re a c tio n ( R l) w as th e d o m in a n t io n is a tio n

p ro cess (as su g g e ste d by L in a n d T e a re ) a n d fu rth e rm o re confirm ed

t h a t a t velocities g r e a te r th a n 9.5 km s-1, th e electro n im p a c t processes

b eg in to d o m in ate. T h e rea ctio n (R l) how ever, is still th o u g h t to be an

im p o rta n t io n isin g re a c tio n beyond 9.5 km s-1. T he reactio n s,

(36)

Chapter 1 : Introduction 36

a n d

0 + 0<^>Ö2+e~, ...(R 3)

a re also s u g g e ste d a s b eco m in g im p o r ta n t a t h ig h e r te m p e r a tu re s .

W ilson observed th a t, above 9.5 kms*1, io n isatio n le n g th s d ecrease w ith

shock velocity. T h is r e s u lt le n d s su p p o rt to th e a s s u m p tio n th a t, for

v elocities g r e a te r th a n 9.5 k m s '1, electro n im p a c t io n is a tio n becom es a

process t h a t w ill s t a r t to com pete w ith rea ctio n (R l). In th e th eo re tic al

a n a ly sis of L in a n d T ea re, i t w as a ssu m e d t h a t th e en erg y in v e s te d in

io n is a tio n w as sm all co m p ared to th e e n th a lp y of th e shock h e a te d a ir

a n d w as th u s n e g le cted in th e en erg y c o n serv atio n e q u atio n . W ilson,

w ish in g to ex ten d th e velocity regim e beyond 9.0 kms*1, w as n o t able to

m a k e th is a s s u m p tio n . A bove 9.0 km s*1, th e e n e rg y in v e s te d in

io n is a tio n w as no lo n g er sm all com pared to th e e n th a lp y of th e shock

h e a te d a ir a n d h a d to be in clu d ed in th e energy co n serv atio n e q u atio n s

w h en c a lc u la tin g th e te m p e ra tu re . H ence a coupling h a d to be m ade

b etw een th e ra te e q u atio n s for ionic a n d n e u tra l sp ecies1.

C a lc u la tio n s w ere m ad e a n d m o d ellin g te c h n iq u e s d isc u sse d , for th e

d e te r m in a tio n of th e e le c tro n n u m b e r d e n s ity in th e sh o ck la y e r

s u r r o u n d in g a n u p p e r a tm o s p h e r e r e e n t r y v e h ic le b y E v a n s ,

S c h e x n ay d e r a n d H u b e r (1970). T he a u th o rs co n sid ered 54 re a c tio n

se q u e n c e s in v o lv in g 11 r e a c ta n ts . H o w ev er a re d u c e d s e t o f 18

s e q u e n c e s a n d 7 r e a c t a n t s w a s sh o w n to p ro d u c e a lm o s t

in d is tin g u is h a b le p re d ic tio n s for in te r m e d ia te v e lo c itie s . I t w as

d e m o n s tra te d t h a t th e electro n n u m b e r d e n sity profiles a re ex trem ely

s e n s itiv e to f in ite r a t e c h e m is try a n d t h a t th e p ro file s c a n be

l As dissociation tends to proceed faster than ionisation at higher shock speeds, the ionisation rate

(37)

Chapter 1 : Introduction 37

sig n ifican tly ch anged by finely a d ju stin g th e rea ctio n r a te c o n sta n ts.

I t h a s b e en e x p e rim e n ta lly o b serv ed (L in et a l, 1962 a n d A llen et al,

1962) t h a t a t shock v elo cities below 9.5 kms*1, th e n o n e q u ilib riu m

r a d ia tio n b e h in d th e shock fro n t is e le v a te d c o n sid era b ly above th e

e q u ilib riu m v a lu e . Z h e le sn y a k et al (1970) u n d e rto o k a th e o re tic a l

a n a ly s is o f r e la x a tio n a n d n o n e q u ilib riu m r a d ia tio n b e h in d shock

w aves in air. A calcu latio n w as m ad e as to th e expected p o p u latio n s of

atom ic a n d m o lecu lar ra d ia to rs . T h e ir a n aly sis p red icted th e in te n s ity

of ra d ia tio n from c e rta in sp e c tra l reg io n s to p a s s th ro u g h a m ax im u m

e x c e e d in g a n e q u ilib riu m le v e l. T h is n o n e q u ilib riu m r a d ia tio n

o v ersh o o t w as e x p la in e d as follows. As h a d b e e n d e m o n s tra te d by

A ppleton et al (1968), a decrease in th e disso ciatio n of N 2 r e s u lts in an

in cre ase in th e p o p u latio n of N 2 to g e th e r w ith a su b se q u e n t in cre ase in

th e a to m te m p e ra tu re T a. In a co m p lem en tary p a p e r A ppleton (1967)

also show ed t h a t a n in c re a s e in th e v ib ra tio n a l re la x a tio n tim e xv

in c re a se s th e v ib ra tio n a l te m p e ra tu re T v a n d so Tv ra p id ly ap p ro ach es

T a . T h is o c c u rs a t th e b e g in n in g of th e r e la x a tio n p ro c e ss .

Z h e le s n y a k et al propose t h a t th e s itu a tio n will change as th e electron

p o p u latio n in c re a s e s, as th e re is now a stro n g in te ra c tio n b e tw ee n th e

v ib ra tio n a l tr a n s itio n s a n d th e free electro n s. As su ch th e v ib ra tio n s

a re in te n s e ly “cooled” by ele ctro n collisions w ith th e r e s u lt t h a t T v

d e p a rts from T a a n d a p p ro ach es T e. A t h ig h e r v a lu e s of T a a n d T v, th e

e lectro n s a re f u r th e r h e a te d by th e in te ra c tio n s w ith th e v ib ra tio n a l

levels of N 2 a n d T e co n sid era b ly exceeds its local e q u ilib riu m v alu e.

T h is local o v e rh e a tin g of th e ele ctro n s ta k e s p lace in th e re la x a tio n

zone c au sin g th e em issio n from th e m o lecu lar tra n s itio n s to overshoot

Figure

Table 2.1Ionisation potentials for the atoms, molecules and ions present in
Figure 2.1Theoretical and observed ionization distances behind shockwaves in air. Figure is reproduced from Wilson (1966).
Table 2.2Values of c it T[y nL,predominant emitters in shock heated air. The first negativeamongst the lowest characteristic temperatures and highest /*• and A
Figure 2.2 +Potential wells for the N 2 cind N2molecules; the dominantradiating transitions, are shown
+7

References

Related documents

After you have configured some basic features of your ix4-300d Network Storage, you may also want to set up a LenovoEMC Personal Cloud, security, or file sharing.. You can set up

The private car policy of ICICI Lombard covers the claim damage incurred while use of the vehicle for any purpose.. However, certain uses of the vehicle are excluded from the

Comparison between university undergraduates and school teachers’ perceptions on the role of information technology in teaching and learning in Morogoro municipality.. Kira,

This article goal is to present theoretical details regarding the possible relation between supply chain governance practices and supply chain performance, one issue less

In the parsimonious price equations, lagged changes in broad money (or the second difference, depending on the order of integration of the variables) are found to have a positive

becomes an author in reverse. The true reader does not rewrite the book, but he is apt to return, drawn by an imperceptible pull, toward the various prefigurations of the reader

Geostatistical methods were applied to study the spatial distribution of main rock mass characteristics, such as the horizontal intercept and the Volumetric Joint

The provision of surveillance and reporting systems regarding the extent of damage is addressed in the Local Disaster Management Plan (LDMP) Sub Plan 12 - Impact Assessment..