(1)Comparison of the in-stream fauna and resources of Tasmanian river reaches lined with willows or with other riparian types.. by. Martin Read B.Sc. (Hons).. UTAS �ubmitted in fulfilment of the requirements for the degree of Doctor of Philosophy) University of Tasmania (July) 1999).

(2) This thesis contains no material which has been accepted for a degree Of diploma by the. University or any other institution, except by way of background information which is duly acknowledged in the text. To the best of my knowledge this thesis contains no material. previously published or written by another person, except where due acknowledgment is made in the text.. Access to this thesis. The tpesis copy held in the University Library shall be made available for loan and limited copy in accordance with the Copywright Act 1 968..

(3) Table of Contents. ABSTRACT. .................................................................................................... ..... ........... ..... .... .................. V. ACKNOWLEDGMENTS ........................................................................................................................ VII. CHAPTER 1. GENERAL INTRODUCTION I�JTRODUCTlON . .. .. .. ... .. .. .... ...... ... .. .. .... ... . . . ........... ........................ .... ..... .. .. ...... ..... .. .. .............................................. . .. .... ...... .. ... .... .. .. .. .... .. ..... . . .... .. .. ... . . . .. .. ... ... .. ... .. .. .. ..... . 1. ............... ... . ... .. . . . . 1 ... .. .. .. ... .. CHARACTER ISTICS OF SALiX SPP............................................................................................................ 2 E>USTJNG RESEARCH AND ANECDOTAL EVIDENCE OF IN-STREAM EFFECTS OF WILLOWS CORE RESEARCH AREAS . .. .... ..... .. .. .. .. ......... . .. . . . . . ... . . . . . .. .. .. ... ... .. ... .. .. .. ... PROJECT AIMS AND RESEARCH STRATEGY . ... . .... .. ... ... ... .... .. .. .. .. . ... ... .... .. . ... .. RATIONALE FOR lHE USE OF SURVEYS IN THIS STUDY . ...... ... .. .. ..... ..... .... .... ............ .. .. ...... ..... ..... .. . .. .. .. ..... ... .. . .. . . .. .. ... .. .. .. .. .. ... .. .... . .. ... ..... ....... . . ... ........ Approach adopted in this study. ........ .... .. .. .. .... ... .. .. ..... .. ..... .. ..... . .. . ... ... .... .. ... .. . .. ... ............ .. ... ... .. . . .. .. .. ... .. .. ... .. . . . ... .. ....... .. .. ... .. ... .... .. . ... .. ... ..... ..... ... .... .. ... . .... .. ...... ... .. ...... .. .6. ... .... .. . ... 7. . .. . .. .. .... .. OvetView of approaches in environmental impact assessment . ... .. .... . . .. ... .. .... .. . . . . ... ... . 4. .. .. .... .. . ... . . .. 8. ..... ........ .. .. .. . ... ..... ... .. .. . 8 ... .... 10. ........ 14. .......... 14. .... .... .. CHAPTER 2. SEASONAL COMPARISONS OF BENTHIC COMMUNITIES ADJACENT TO RIPARIAN NATIVE EUCALYPT AND INTRODUCED WILLOW VEGETATION. INTRODUCTION .. .... ...... . ... .. .. .. ... .. .. METHODS AND MATERIALS ..... . ... ... ..... .. ........ .. .. .. .. .. . ... Study sites . . ....... .. .. .. ... ..... .. .. .. .... . .. Habitat measurements. ... .... ..... .. .. ....... ... . . .. . ... ... ........ ... .... ...... ... .. .. .... . . .. . . .. .. ... .. ... .. .. .. .. .. . .... Benthic Macroinverlebrates. ... . .. ... .. ..... .. .... .. .. ... .... ...... .. ....... . .. .. ... .. . . . .. .. .. ... .. .... ... .. ..... .. ...... .. . . . . . .. .. ... ... .... ... .. ...... .... .. .. .. ... . . . . .. .. .. ... .. .. . .. . .. .. ... .. ........ ..... ........ .. .. .. ... .... .. . . . ... ... . .. ... .. .. .. .. .... .... ... .... . .... ... .. ... .. ....... ........ ..... ...... . .. . .. ... Habitat conditions. .. ... ........ .... .. ..... .... . . ..... .. .. .... ..... .. ...... ... . .. .. .. .. .. .. .... ..... . ... .. ..... .. ... .. .. . . ... ..... .. .......... ..... .. ..... ..... ... . . .. ... .. ... ....... .. ... ... .. .... .. . . ............. . . . . ... . .. . .. .. .. . .. .. .... ... .. .. .. .. .. .. .. .. .. .... .. . . . . .. . . .. . . .. ... .. ... .. .. ... ... .. The invertebrates .. ..... ...... . . . . .. .. ...... .... . .. ... ... ...... .. .. .... ... ... Biomass of food resources .. ..... .. ... .. .. .. ... ... .. ... ... ... .. . . . . . . .. . . .. .... .... .... ...... .. . .. ... ... .. ... ...... .. .... ... . . .. ...... .... .... ... .... .. .... ... .. .. ........ ........ .... . .. .. ... .... .. ..... ..... ..... .... ... . .. .. .. ... . .. . .. ... ... .. ........ .... ..... .. ... ... .. ... .. .. .... ... .... .... ....... ..... ... .. 16. ..... ... .. ... . . ..... .. .. .... .. .. ...... . . .... .. .. . .. .. . ..... . . ... .. .. .. . . . .... .. .. .. ............. .. ... .. ...... ... ..... ..... ... .. .. ........ . . . . .. . ... .. . .. ... .. .. .... 16 17. . 20. 23. .. ... .. .. . ... ..... ...........•...................................................................... ............................................................ ....... .... . . ..... .. ... .... ... ... .. ... . . . . . . . ....... . .. ... . .. ... .... .. . . .. . .. ... . . .. ... ... .. 22. ... ...... ... .. ........ .... .... ANA!.VSIS .. .. .. ... .... .. ... ... .. 20. .. .... ... .. .. ... ... RESUlTS. .... . . .. . ..... .. . .. �uTVey Design .. ... .. . . . ... ... ... .... .......................... .. ...... .. .. .. .. ..... .... ... ... .... 23. .... . 25. .... .. .. . ... ... .. 28.

(4) DISCUSSION. .................. . .......... .. ... ... .. .......... .. .... •.. . .. . .... .. . ....... · ·. · · · · · · •· •· · · · ... . . . . · ·. . ·•· . . . . · · • · · • · · · · · · · · · . . · • •• .. . . . . · . . .. . . 36 ·. .. CHAPTER 3. EFFECTS OF RIPARIAN WILLOW REMOVAL ON MACROINVERTEBRATES AND FJSH. .................. .. ........................................ ..... .............................. .......... ............ ....... ....... ......... ......... ... 1NTRODUCfiON. .. . ... . . . . .... . .. . . . . . . . . . . . . . . ... . . . . . . . . . . .. .............. .. .. ..... .... .. . ............................. , ........................ 43 ... .. .. .. METHODS AND MATERIALS ...................... ... ... .. ......................................... .. SuNe y Design. ..... ... ... .. .. Study sites. ... ... . . . .. .. .. ... .. ... . ... ... .. .. .. . . . . . . . . . . .. .... . ....... . . . . . .. .. ··················. . . ··· ...... ·······. .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ............................ .. 43. . . . . . . ... .. .. 46. .... ....... 46. ... .. .. .. . . . . ... ... ......... ..... ... ................ ... . .. . .. . . . 50. .... .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. ... .. ... .. Habitat measurements . . . .... . ....... . . ............ . .... . .. . ........ .... .......... ........ ....... . .. ... ....... 50 .. .. .. .. .. .. .. .. .. .. Benthic Macroinvertebrates. . . . . .. .. .. .. . . . . . . . . . . . . . . . . .. .. .. ... . . . ... .. .. .. . .. . . . .. . . . . .. Fish...... . ........... . ............ ... . ...... ... ........ ....... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. . . . . . . .. . . . . . . .. . . . . . . .. .. .. . . . . . .. . . . . . . .. . . .. . .. . . . . .. ... ....... .... .. . ...... ......... ...... ... .. .. .. . .. .. .. 50. .. .. .... ....... 51. ..... ... .. .. ANALYSIS ............ ...... ................ .............. . ... . ...................... .................... ...... ............. ............... 52 .. .. Habitat conditions. .. •. Macroinverlebrates. •. .. .. .. RESULTS. . . . . .. . . . . . . . . . . . . . . .. .... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... Macroinvertebrates. Fish. .. .. .. .. .. .... .. .. .. .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52. shallow rivers.. . . ........ . ........... . .. . . .......... . ............. ......... . . .. ....... 52 .. .. .. .. .. .. .. .. .. ... .. ... ... .. .. ... ... deep rivers............ . .... ...... ... .... . ...... ....... . .. .... ....... ......................... 55 ... .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. ... . . . . .. . . . . .. .. ... .. .. .. . . . . . . . . . . . . . . . . . . . . . .. . . .. ........ . . ... ................ 56. ................................ ... ............................................................ ........................................ 56 .. .. .. Habitat conditions· shallow reaches. .... . .... . . ...... ...... .. ...... .......... ... .. ..... ... . ......... ......... 56 .. Habitat conditions- deep reaches. . . . . . . . .. .. .. .. .. ... ..... .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... �iomass of food resources - shallow habitats ........ Macroinverlebrates. .. .... ...... .... .. ............. . . . .. . ... DISCUSSION ... ... .. .. .. . . . . . . . . . . .. . . . . . .. ... .. .. .. ... .. .. .. . . . . . . . . .. . .. . . . . . .. . . . . . . . . . . . . . . . . .. ......... .. . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. .. .. . .. .. .. 57 58. .. . . . . . . . . . . . . . . . . . . . . . . . .. .. .. . . . ...... . . ....... .... .. .. .. ... .. .. ... ........ . .. . . . . .. 64. .... 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. Fish.. .. 73. .... ...................... ........................... ................................................................... 79. . ... .. Shallow Reaches. . .... . Deep reaches. ... .. .. . . .. . . . . . . . . . . . . . . . . . .. .. ... . .. . . . . . . . . . . . . . . . . . . . . . . . .. Community similarity- deep and shallow water reaches .. . . ........ . . . .. .. .. Densities and community indices for shallow water habitats ..... .............. 63. •. Functional feeding groups- shallow water habitats. Fish. .. .. .. .. ... .. .... ..... . .. . ....... .... . .... . .. .. ..... ..... . ..... . ............... ..... ................... 79 .. . . .. . . . ... . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . . . .. . . . . .. . .. . . . . . . . .. . . . . . . .. . . . . . . . . . .. .. .. .. . . . . .. . ... ... .. .. .. . .. . . . . .. . . . . .. . . . . .. . . . . .. .. . . . ... ....... .. . . . .. 85. ... .... . .... .. . . .... .... ....... . .. . ... .... . ...... ... .... .. .... ............... ... . .. .... .... . .... ...... 85 .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. . .. .. .. Summary .... ........ .......... .... ...... .... . ........ ..... .. . ........... ....... ............ ..... .................. ............ 88 .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. II.

(5) CHAPTER 4. THE ROLE OF LARGE WOODY DEBRIS OF DIFFERING RIPARIAN TYPES IN. TASMANIAN RIVERS. INTRODUCTION. ........................................................................................................................... 91. .................................................................................... ................... ................. . . . . . . . . . . . .. 91. SiTE SElECTION. .. . . . . ...... ............ .. .............. .. ............ Assessment of LWD standing stocks Assessment of LWD as habitat. METHODS AND MATERIAlS. .. ................. .. .. ............................. .. ................. .................. .. .......................................... .................... .................. . . . . . . . . . . . . . . . . . . .. .. .. Assessment of invertebrates Analysis of invertebrates. .. ....... .......................................... 94. ... ..... 96. .. .......................................... .. ...... 96. ........................ 99. .. ... 100. ............................................................................... ........ ....................... 101. ...... ........................ .. ................................................... .................... Assessment of fs i h .. 103. .. ..... 103. ........................................................................ .................................................................... 104. Analysis offish. ............ . . . . . . ..................................... ........ .. ............................. .. ................ .. .. ............................... .. ..... .......................................................... .. ........................... Invertebrates-willow vs. native wood . .. ....... . . . . . . ........... ....... .. .. ..... .................. ............ .. ................ .. 104 106. . 106. ....... ................ ....................... .......... 1 09. .................................................... 112. ................. Invertebrates on native wood under different riparian types. ...... .. .. .................................................................................... Invertebrates� benthic and wood habitats. .. ............................... ................................................................................... LWD standing stocks Invertebrates. .. .. ................. . .. .. ... RESUlTS. 93. . . . . . . . ........................... . . . . . . .. .................................................................... .. ........................ 93. .. ......... Assessment of LWD standing stocks . Analysis of LWD standing stocks. .. ......... .......................... ........................................................... ... .................................... .. ... ........ . . . . . . ....... ............ .. Relationships between fish and LWD.......................................................................................... 118. DISGUSSION. .......................................... .. ............. . . . . . . ............. ................... . . . . . . . . . . . .. LWD standing stocks. ......................... .. .......................... .. .. .............. . . . . . . . ................ .......... . . ... ................ .. ........................... 124. . 124. Relationships between invertebrates and LWD .......................................................................... 127 Relationships between fish and LWD.......................................................................................... 132 Conclusions. ....... .. ..... ............. .. .............. .. ...... .. ............. .. .. . . . . . . . ....................... ................................ .. ....... .. ... 134. Ill.

(6) €HAPTER 5. GENERAL DISCUSSION ···'":. .. INTRODUCTION. . ... .... .. . . . ..... .. .. ...... .. ........ .... ..... _, ..... �. ......... . M .......... M. .. .. ................................. . .. . .. ... . ...... .. .. .. ..... .. .. . .. ..................... . . ... . .. .. .... ..... ................. ......... . .. ... ........... ... .. ..... .. ... . ... 136. ....... ... ......... . 136 ... O VE RVIEW. .......................................................................................................................................... CAVEATS AND IMPliCATIONS OF THIS RESEARCH. ............... .............................................................. ..... 136 140. '. HOW ARE WillOWS BEING MANAGED NOw?. .. ................................................ ...... .. ................ .................. 143. FuruRE RESEARCH............................................................................................................................ 145. Research oriented toWards evaluating management practices. ............................................. ....... Other research CONCLUSIONS. .. ................................... .. .. ........... .. .... ....... 148. ..................... ......... 151. .............................. .......... . . . . .... ...................................................... .......................................... . . . . .. RE.FERENCES .. .. .................. ...... .. . ........ .. . ... ........ . ......... . .... . . .. .. . . ... ...... ... .. ... . . . . .. .... .. .. .... .. ... .... .. .. .... .. .. .. .. ... .. .. .. .. ... .. 145. ... ... .... .. .. ... .. ... ....... 152. .... APPENDIX A. ANOVA TABLES FOR BIOLOGICAL AND HABITAT DATA -CHAPTER 2. APPENDIX B. ANOVA TABLES FOR BIOLOGICAL AND HABITAT DATA. •. CHAPTER 3. APPENDIX C. SITE PHOTOGRAPHS OF REACHES SURVEYED. APPENDIX D. PAPER ACCEPTED FOR PUBLICATION IN FRESHWATER BIOLOGY. APPENDIX E. LIST OF ALL TAXA SAMPLED AND RATIONALE FOR THE ASSIGNMENT OF FEEDING GROUP. iv.

(7) The widespread di stributi on of wi llow trees(Salixfr agilis) has been thought to i mpact deleteriously oni n-stream faunasi n south-eastern Australi an ri vers. Thi s thesi s ai med to address some of the speculati oni n the li terature regardi ng thei mpacts of wi llows through three main research areas. Fi rstly, a survey was used to compare ri pari anfuncti on of wi llow vegetation to nati ve ri pari an vegetati on and associ atedi mpacts on macroi nvertebrate populati ons. Secondly, the same approach was used to exami ne di fferencesi n macroi nvertebrate andfish populati ons between wi llowed vegetati on and reaches where wi llows has been removed. Fi nally, the role of wi llow large woody debri s(L WD) i n Tasmanian ri vers wasi nvesti gated. Thi si nvolved a census of large woody debri s standi ng stocksi n 142 reaches onTasmani an ri vers. The ecologi cal role of wi llowL WD was i nvesti gated vi a a compari son ofi n-stream nati ve wood to wi llow wood and the associ ated effects on macroi nvertebrate andfish populati ons. In thi s thesi s, large woody debri s(L WD) refers to large organi c woody materi al defined conventi onally as greater than 1 .0 m i n length and0 . 1 m i n di ameter(Gi ppel, 1 995).. The pri nci pal effects of wi llow vegetati on on the bi ota occurredi n summ er and were due to a combi nati on of shadi ng effects and decreased waterquali ty and alterati ons to channel morphologyi n wi llowed reaches. Whi le reachesi n nati ve ri pari an zones supported hi gher densi ti es and numbers of taxa, these were si gnificantly loweri n wi llowed reaches. A sli ght effectwas observedi n autumn as macroi nvertebrate di versi tyi n wi llowed reaches was lower than nati ve reaches. I concluded that wi llows act as a poor surrogate for nati ve ri pari an vegetati on.. Compari sons between wi llowed reaches and reaches where wi llows had been removed revealed major di fferencesi n resources deri vedfr om ri pari an vegetati on. Wi llowed reaches had hi gh organi c matter standi ng stocks and usually low epi li thi c growth on the substrate. In contrast, removal reaches had lower organi c matter standi ng stocks and hi gher epi li thi c bi omass. The macroi nvertebrate populati ons refl ected these di fferences. Although no. v.

(8) differences were observedin summar y variables such as density or taxon number, differences were found betweenfunctional feeding groups. Groupings generally reflected the food sources available in either a vegetated reach with a high organic input and a dense canopy or a non­ vegetated reach with no canopy, higher incidental sunlight and therefore a denser epilithic cover. A separate study revealed that in extreme situations willowed reaches are severely impacted with a large decline in waterquality and high organic standing stocks eliminating most intolerant taxa. Fish populations at these sites were also depauperate, while at remaining sitesfish species showed a strong relationship with their preferred habitat.. Census estimates of woody debris revealed that rainforest vegetation has the highest standing stock ofL WD across a spectrum of ripariap. types. Usually removal of woody native vegetation oftenin concert with active removal of in-streamL WD accounts for lower wood loadings in theTasmanian rivers surveyed. WillowL WD is not common in rivers in Tasmania and is a poor ecological substitute for the more complex native debris, which supported higher densities and richness of macroinvertebrate taxa than willow wood; however, both wood types supported similar community composition. L WD provided important habitat for thefish populations surveyed and reduced or negligible standing stocks ofL WD corresponded to a reductionin the number and size of particular fish species.. The findings confirm some of the speculations regarding the impact of willows on rivers in south-eastern Australia. Wiflows were foundto be a poor surrogate for native vegetation althoug h they provided important riparian resources in the absence of any vegetation atall. The restoration of riparian zones and selective and strategic removal of willowed vegetation over the long term and replacement with endemic vegetation should minimise the ecological impacts of riparian vegetation removal on macroinvertebrates and fish.. vi.

(9) Acknowledgments I. would like to thank my supervisorDrL eonBarmuta for his advice, assistance and continual. support throughout the course of this thesis. His constructive criticism was always appreciated and his support very much valued.. I. would also like to thankDr PeterDavies for his advice and encouragement.. I. would like to thank theL and andWaterResourcesResearch andDevelopmentCorporation. forfinancial assistance in the form of aPostgraduateResearch Scholarship and for top up funding under theNationalRiparian Program( Sub- ProgramBl- Sources ofEnergy) for work onL WD.. I. would also like to thank various volunteers who provided technical andfield assistance. throughout the course of the project. These areRomaRead, BelindaRobson, Ed Chester, GrahamO'Meagher, AngelaMcGaffin, DerekTurnbull, PaulL ewis, L ouisJaclido, David Oldmeadow, HenryMaxwell andJonWaters.. Thanks toGlenMcPherson andDavidRatkowsky for assistance with design and analysis.. Special thanks to workmate$, BryceGraham for assistance with analysis and graphical presentation andDavidFuller( my boss) for support during the latter stages of this study.. To thenumerous property owners who allowed property access to various rivers in the study and the manyL andcare groups who provided valuable information and anecdotal evidence on sites studied and willow removal issues.. Finally none of this would have been possible without the continual emotional support and love of my wifeGail to whomI owe the completion of this thesis to. Her ability to single handedly care for our two childrenMalcolm andElizabeth is something whichI will always treasure in our commitment and love for one another. I cannot thank her enough.. vii.

(10) 1. General Introduction. Riparian vegetation is recognised as having a key influence on in-stream biological function through shading and inputs of litter (Cumm ins, 1993), and the relationship between different types of riparian vegetation and the impacts of human disturbance on riparian vegetation has been well documented (Hawkins et al., 1982; Dudgeon, 1989; Quinn et al., 1992b; Townsend. et al., 1997). By contrast, far less is known about riparian-stream linkages in Australian lotic systems (Bunn, 1994). In particular, the in-stream impacts of a number of invasive exotic riparian species in rivers have been the subject of much speculation but remain poorly documented with any empirical data, and this situation is exemplified by the widespread introduction of willows (Salix spp.) in many temperate lowland rivers in Australia.. Willows were first introduced to Australasia in the 191h century and are now the dominant riparian tree in many lowland rivers in south-eastern Australia (Mitchell & Frankenberg, 1993; Cremer et al., 1995) and New Zealand (Collier, 1993; Glova& Sagar, 1994; Lester et a/., 1994a). Their expansion along rivers is contentiousl with willows being promoted for their value in bank stabilisation and "soft" river engineering works by some (e.g. Strom, 1962; Nanninga et al., 1994)) or reviled by others because of the hydraulic problems they sometimes '. cause and their putative impacts on in-stream fauna (e.g. Standing Consultative Committee on river improvement, 1983; Frankenberg, 1995; Ladson et al., 1997). Despite the controversy, there have been very few formal investigations of their in-stream ecological impact (Schulze & Walker, 1997), while the few investigations that have taken place have generally been inconsistent in their findings (Latta, 1974; Besley, 1992; Glova &Sagar, 1994; Lester et a!., 1994a). This is probably due to site specificity, with all of the published studies being restricted to a few (generally <3) sites, which are usually located in the same river system. This narrow empirical base prompted this study, where I sought to find general patterns across a variety of small to medium-sized rivers in Tasmania.. 1 IIJ.

(11)

New documents

In this paper, we demonstrated that, by simply adding skip connections between all layer pairs of a neural network, we are able to achieve similar perplexity scores as a large stacked

Then the intravascular heat exchange cooling technique combined with plasmapheresis was applied, and the patient’s body temperature and elimination of the thyroid hormone was

TABLE 5: Indexes of Cost of Materials, Salaries and Wages, Total Costs and Remainder of Net Output Per Unit of Output, in Exposed, Sheltered and All Transportable Goods Industries,..

In the fu- ture, we plan to extensively compare the learning of word matrix representations with vector space models in the task of sentiment analysis on several datasets... References

We explore transfer learning based on model adaptation as an approach for training ASR models under constrained GPU memory, throughput and training data.. We conduct several systematic

In blood lipid profile, serum TG level had no signifi- cant difference P > 0.05 in two groups; serum cholesterol levels TC, HDL-C and LDL-C were significantly lower than the control

If this implication seems to clash with experience of small open economies, it is worth noting, however, that in a dynamic, Harrod-Domar, version of such a model, the balance of trade

Figure 2: Pseudo-code for a simple Θn2 time and Θn space algorithm for computing the cardinality of a circle graph’s maximum independent sets... Input: The σ-representation of an n

Other multilingual sentence representation learning techniques include BAE Chandar et al., 2013 which trains bilingual autoencoders with the objective of minimizing reconstruction error

1Center for Hepatobiliary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, China; 2Department of Gastroenterology, The Second