• No results found

The evolution of parental cooperation in birds

N/A
N/A
Protected

Academic year: 2019

Share "The evolution of parental cooperation in birds"

Copied!
45
0
0

Loading.... (view fulltext now)

Full text

(1)

This is a repository copy of The evolution of parental cooperation in birds.

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/94270/

Version: Accepted Version

Article:

Remes, V., Freckleton, R.P., Tokolyi, J. et al. (2 more authors) (2015) The evolution of

parental cooperation in birds. Proceedings of the National Academy of Sciences , 112 (44).

pp. 13603-13608. ISSN 1091-6490

https://doi.org/10.1073/pnas.1512599112

eprints@whiterose.ac.uk Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by

(2)

Classification!

1!

Biological!Sciences,!Evolution!

2!

!

3!

Title

-4!

The-evolution-of-parental-cooperation-in-birds

-5!

-6!

Short-title!

7!

Parental!cooperation!in!birds!

8!

!

9!

Authors-10!

Vladimír-Remeš

a

,-Robert-P.-Freckleton

b

,-Jácint-Tökölyi

c

,-András-Liker

d

,-Tamás-Székely

e,f

!

11!

!

12!

Author-affiliation!

13!

aDepartment!of!Zoology!and!Laboratory!of!Ornithology,!Palacky!University,!17.!listopadu!50,!77146!

14!

Olomouc,!Czech!Republic!

15!

bDepartment!of!Animal!and!Plant!Sciences,!Alfred!Denny!Building,!University!of!Sheffield,!Sheffield!S10!

16!

2TN,!UK!

17!

cMTATDE!“Lendület“!Behavioural!Ecology!Research!Group,!Department!of!Evolutionary!Zoology,!

18!

University!of!Debrecen,!Egyetemtér!1,!4032!Debrecen!

19!

dDepartment!of!Limnology,!University!of!Pannonia,!Wartha!Vince!u.!1.,!HT8201!Veszprém,!Hungary!

20!

eDepartment!of!Biology!and!Biochemistry,!University!of!Bath,!Bath!BA2!7AY,!UK!

21!

fState!Key!Laboratory!of!Biocontrol!and!College!of!Ecology!and!Evolution,!Sun!YatTsen!University,!

22!

Guangzhou!5102275,!China!

23!

!

24!

Corresponding-author!

25!

Vladimír!Remeš,!Department!of!Zoology!and!Laboratory!of!Ornithology,!Palacky!University,!17.listopadu!

26!

50,!77146!Olomouc,!Czech!Republic!

27!

tel:!+420T585634221!

28!

(3)

!

30!

Abstract!

31!

Parental!care!is!one!of!the!most!variable!social!behaviors!and!it!is!and!excellent!model!system!to!

32!

understand!cooperation!between!unrelated!individuals.!Three!major!hypotheses!have!been!proposed!to!

33!

explain!the!extent!of!parental!cooperation:!sexual!selection,!social!environment,!and!environmental!

34!

harshness.!Using!the!most!comprehensive!dataset!on!parental!care!that!includes!659!bird!species!from!

35!

113!families!covering!both!uniparental!and!biparental!taxa,!we!show!that!the!degree!of!parental!

36!

cooperation!is!associated!with!both!sexual!selection!and!social!environment.!Consistent!with!recent!

37!

theoretical!models!parental!cooperation!decreases!with!the!intensity!of!sexual!selection!and!with!skewed!

38!

adult!sex!ratios.!These!effects!are!additive!and!robust!to!the!influence!of!lifeThistory!variables.!However,!

39!

parental!cooperation!is!unrelated!to!environmental!factors!(measured!at!the!scale!of!whole!species!

40!

ranges)!as!indicated!by!a!lack!of!consistent!relationship!with!ambient!temperature,!rainfall!or!their!

41!

fluctuations!within!and!between!years.!These!results!highlight!the!significance!of!social!effects!for!

42!

parental!cooperation!and!suggest!that!several!parental!strategies!may!coTexist!in!a!given!set!of!ambient!

43!

environment.!

44!

!

45!

!

46!

Significance-Statement!

47!

Parents!in!many!animal!species!care!for!their!offspring.!In!some!species!males!care!more,!in!other!species!

48!

females!care!more,!whereas!in!still!other!species!the!contribution!of!the!sexes!is!equal.!Yet,!we!do!not!

49!

know!what!explains!these!differences!among!species.!Using!the!most!comprehensive!analyses!of!parental!

50!

care!to!date,!here!we!show!that!parents!cooperate!more!when!sexual!selection!is!not!intense!and!the!adult!

51!

sex!ratio!of!males!to!females!is!not!strongly!skewed.!However,!the!degree!of!parental!cooperation!is!

52!

unrelated!to!harshness!and!predictability!of!the!ambient!environment!during!the!breeding!season.!Our!

53!

work!therefore!suggests!that!several!types!of!parental!care!may!coTexist!in!a!given!set!of!ambient!

54!

environment.!

55!

(4)

Parental!cooperation,!defined!here!as!the!extent!of!biparental!care,!varies!along!a!continuum!from!

57!

approximately!equal!share!by!the!male!and!female!to!obligate!uniparental!care,!whereby!one!parent!(the!

58!

male!or!the!female)!provides!all!care!for!the!young!(1,!2).!By!cooperating!with!each!other,!the!male!and!the!

59!

female!parent!increase!growth!and!survival!of!their!young!in!various!insects,!fishes,!amphibians,!birds,!

60!

and!mammals!(3–5).!Thus!the!extent!of!parental!cooperation!may!influence!reproductive!success!and!

61!

population!dynamics.!Parental!care!is!an!excellent!model!system!for!investigating!interactions!between!

62!

two!unrelated!individuals!(6,!7),!and!it!is!one!of!the!prime!examples!of!gameTtheoretic!analyses!of!conflict!

63!

and!cooperation!both!theoretically!and!empirically!(8–11).!Therefore,!understanding!the!drivers!of!

64!

parental!cooperation!is!one!of!the!lynchpins!of!breeding!system!evolution!and!cooperative!behavior.!

65!

!

66!

Sexual!selection,!social!environment,!and!ambient!environment!have!been!proposed!to!explain!variation!

67!

in!the!extent!of!cooperation!between!parents!(7,!12–14).!First,!cooperation!between!parents!should!

68!

decrease!with!the!intensity!of!sexual!selection!(10,!15,!16)!and!a!reason!for!this!reduction!may!be!that!

69!

sexual!selection!favors!the!sex!with!higher!variance!in!mating!success!to!reduce!his!(or!her)!care!

70!

provisioning!(17–19).!Moreover,!high!mating!effort!might!further!decrease!the!ability!of!the!sex!under!

71!

stronger!sexual!selection!to!contribute!to!parental!care!(20).!Furthermore,!high!rates!of!extraTpair!

72!

paternity!should!lead!to!the!evolution!of!reduced!care!provisioning!by!males!(21–25).!This!evolutionary!

73!

reduction!of!paternal!care!in!species!with!high!extraTpair!paternity!would!translate!into!reduced!parental!

74!

cooperation.!Second,!the!sex!that!is!in!short!supply!in!the!population!has!an!increased!mating!opportunity!

75!

and!is!thus!less!likely!to!provide!care!than!the!more!abundant!sex!(26–28).!Therefore,!social!environment!

76!

(i.e.,!sex!ratio!of!adults!in!the!population)!is!expected!to!influence!parental!behavior!(8,!23,!29,!30).!Third,!

77!

environmental!factors!are!known!to!influence!complex!social!behavior!in!vertebrates!(31–33).!More!

78!

specifically,!demanding!environmental!conditions!imposing!higher!costs!of!living,!such!as!low!food!supply!

79!

or!harsh!and!unpredictable!climates,!should!promote!parental!cooperation!(34–36)!and!limit!social!

80!

conflict!(37),!and!this!idea!has!been!recently!backed!by!extensive!modeling!(38–39).!Although!previous!

81!

tests!of!these!hypotheses!provided!important!insights!into!the!potential!drivers!of!parental!cooperation,!

82!

no!study!has!yet!tested!all!three!hypotheses!across!a!broad!range!of!taxa!and!assessed!their!relative!

83!

importance.!

84!

!

85!

Here,!we!use!data!on!parental!cooperation!in!659!bird!species!from!113!families!to!test!these!three!major!

86!

hypotheses.!Birds!are!one!of!the!most!suitable!organisms!to!test!these!propositions,!since!they!exhibit!the!

87!

(5)

on!parental!behavior!of!a!broad!range!of!taxa!from!wild!populations.!Since!parental!care!is!a!complex!trait,!

89!

we!compiled!data!on!8!components!of!care!(40)!and!quantified!parental!cooperation!based!on!sexTspecific!

90!

contribution!to!care!in!these!parental!activities!spanning!the!whole!parental!care!period!(full!Materials!

91!

and!Methods!are!available!in!SI!Appendix,!Supplement!S1).!We!focused!on!care!provisioning!by!the!male!

92!

and!the!female!parent,!and!the!extent!of!parental!cooperation!was!estimated!on!a!scale!that!varied!

93!

between!−1.5!when!only!one!parent!(the!male!or!the!female)!provides!all!care!and!1.5!when!the!male!and!

94!

the!female!parent!share!provisioning!approximately!equally!(frequency!distribution!of!parental!

95!

cooperation!across!659!species!of!birds!is!available!in!SI!Appendix,!Fig.!S1).!

96!

!

97!

Using!phylogenetic!analyses!we!test!the!following!predictions:!i)!sexual!selection:!parental!cooperation!is!

98!

higher!in!socially!monogamous!species!and!in!species!with!low!rates!of!extraTpair!paternity!(EPP),!than!in!

99!

polygamous!and!high!EPP!species,!respectively;!ii)!social!environment:!species!with!balanced!adult!sex!

100!

ratios!(ASR,!proportion!of!males!in!the!adult!population)!exhibit!more!parental!cooperation!than!species!

101!

with!biased!ASR;!and!iii)!ambient!environment:!species!that!live!in!environments!with!harsh!and!variable!

102!

climates!exhibit!high!parental!cooperation.!

103!

!

104!

Results-and-Discussion!

105!

The!extent!of!parental!cooperation!is!usually!conserved!within!major!clades!(Fig.!1),!which!is!consistent!

106!

with!high!values!of!phylogenetic!signal!(λ ≈!0.9,!Table!1;!exact!estimated!λ!values!are!available!in!SI!

107!

Appendix,!Table!S1).!At!the!same!time,!parental!cooperation!is!highly!variable!between!clades!across!

108!

birds.!For!example,!grebes,!woodpeckers,!and!sparrows!are!characterized!by!extensive!parental!

109!

cooperation,!whereas!others!exhibit!low!cooperation!(e.g.!ducks,!pheasants!and!grouse,!and!owls,!Fig!1).!

110!

Several!clades,!however,!exhibit!high!interTspecific!variation!in!parental!cooperation;!for!example!snipes,!

111!

sandpipers!and!allies,!and!Old!World!warblers!(Fig.!1).!

112!

!

113!

Both!sexual!selection!and!social!environment!predict!parental!cooperation!as!shown!by!phylogenetic!

114!

generalized!least!squares!analyses!(41)!using!the!most!recent!complete!avian!phylogeny!(42)!(Table!1,!

115!

Figs.!2,!3;!for!details!of!these!relationships!see!SI!Appendix,!Table!S1!and!Fig.!S2).!First,!intense!sexual!

116!

selection!as!indicated!by!extensive!sexual!size!dimorphism!(43)!and!high!rates!of!extraTpair!paternity!are!

117!

consistently!associated!with!low!parental!cooperation!(Figs.!2,!3).!To!confirm!that!our!predictions!also!

118!

hold!when!testing!the!male!involvement!in!care,!we!also!analyzed!relative!male!care,!which!is!a!proxy!of!

119!

(6)

of!relative!male!care!across!659!species!of!birds!is!available!in!SI!Appendix,!Fig.!S1).!Our!predictions!are!

121!

supported,!since!male!care!(relative!to!female!care)!is!low!in!species!with!maleTbiased!sexual!size!

122!

dimorphism!and!high!in!species!with!femaleTbiased!dimorphism.!Moreover,!males!provide!little!care!in!

123!

species!with!high!extraTpair!paternity!(Fig.!3;!summarized!results!are!available!in!SI!Appendix,!Table!S2!

124!

while!detailed!results!are!available!in!SI!Appendix,!Table!S3!and!Fig.!S3).!

125!

!

126!

These!results!are!in!line!with!theories!of!the!evolution!of!parental!cooperation!(2,!17,!25,!44).!Specifically,!

127!

our!results!are!consistent!with!the!prediction!that!the!larger!sex!(usually!the!male!in!birds),!which!is!often!

128!

under!stronger!sexual!selection!than!the!smaller!sex,!reduces!its!care!provisioning!(17,!19),!translating!

129!

into!lower!contribution!to!care!on!macroevolutionary!timescales.!Similarly,!our!results!support!the!

130!

prediction!that!high!rates!of!extraTpair!paternity!will!lead,!on!a!macroevolutionary!timescale,!to!a!

131!

reduction!in!male!care!(22–25)!and!consequently!to!reduced!parental!cooperation.!At!the!same!time,!this!

132!

result!is!far!from!trivial,!because!some!models!predict!variable!relationships!between!male!care!and!extraT

133!

pair!paternity!depending!on!model!assumptions!(45)!and!results!of!previous!empirical!studies!are!also!

134!

conflicting!(e.g.!22,!46–48,!reviewed!in!25).!It!is!worth!stressing!that!the!relationship!we!document!is!the!

135!

most!comprehensive!in!any!major!taxon!and!makes!a!significant!contribution!to!previous!theoretical!and!

136!

empirical!investigations!of!extraTpair!paternity!and!parental!care.!The!macroevolutionary!response!of!

137!

male!care!to!extraTpair!paternity!may!not!depend!on!the!ability!of!males!to!perceive!paternity!loss!in!their!

138!

contemporary!broods!and!respond!to!it!by!facultative!reduction!of!paternal!care!(21,!22,!24,!46),!although!

139!

this!ability!seems!to!be!widespread!among!animals!(25).!Reduction!of!male!parental!contribution!due!to!

140!

female!promiscuity!might!lead!to!lower!overall!parental!effort!(49),!and!eventual!breakdown!of!biparental!

141!

breeding!systems!(21).!

142!

!

143!

Second,!parental!cooperation!decreases!with!biased!adult!sex!ratios!(Table!1,!Figs.!2,!3).!This!result!is!in!

144!

line!with!theoretical!prediction!that!biased!sex!ratios!will!promote!divergent!parental!sex!roles,!because!

145!

individuals!of!the!rare!sex!reduce!their!care!due!to!high!mating!success,!while!members!of!the!more!

146!

common!sex!get!most!reproductive!success!from!caring!for!existing!offspring!(8,!23).!This!interpretation!is!

147!

supported!by!modeling!of!relative!male!care,!which!is!low!in!species!with!femaleTbiased!sex!ratio!and!high!

148!

in!species!with!maleTbiased!sex!ratio!(Fig.!3;!summarized!results!are!available!in!SI!Appendix,!Table!S2!

149!

while!detailed!results!are!available!in!SI!Appendix,!Table!S3!and!Fig.!S3).!Our!results!are!also!in!line!with!

150!

previous!findings!in!shorebirds,!where!ASR!strongly!predicted!conventional!and!reversed!parental!sex!

151!

(7)

causality!might!be!reversed.!Unequal!parental!roles!might!lead!to!biased!sex!ratios!because!the!sexes!

153!

engage!unequally!in!parental!duties,!have!different!time!budgets,!and!consequently!experience!different!

154!

mortality!rates!(50).!Accordingly,!sexTbiased!mortality!rates!are!often!correlated!with!biased!ASR!across!

155!

populations!and!species!(51–53).!Moreover,!some!authors!suggest!positive!feedbacks!between!changes!in!

156!

ASR!and!parental!sex!roles!and!thus!the!relationship!may!even!be!bidirectional!(8,!23,!54).!

157!

!

158!

The!aforementioned!results!are!not!confounded!by!phylogeny!since!we!use!phylogenyTbased!comparative!

159!

analyses,!and!remain!robust!to!alternative!phylogenetic!hypotheses!and!incorporating!potential!

160!

confounds!in!the!models!(for!phylogenetic!robustness!of!our!results!see!SI!Appendix,!Tables!S1!and!S3).!In!

161!

addition!to!sexual!selection!and!social!environment,!we!find!a!positive!relationship!of!parental!

162!

cooperation!to!adult!body!mass,!although!this!effect!is!less!consistent!between!analyses!(Table!1,!Fig.!3).!

163!

Body!mass!is!a!typical!allometric!correlate!of!life!history,!including!breeding!cycle!duration!(for!the!

164!

relationship!of!breeding!cycle!duration!to!adult!body!mass!in!our!dataset!see!SI!Appendix,!Fig.!S4)!and!

165!

adult!mortality!rate!(correlation!in!our!dataset!r!=!−0.57,!n!=!323!species),!and!of!pair!bond!duration!and!

166!

divorce!rate!(55,!56).!Consequently,!it!seems!that!longTlived!species!with!prolonged!pair!bonds!and!low!

167!

divorce!rates!would!be!expected!to!cooperate!more,!but!more!direct!tests!of!this!hypothesis!are!needed.!

168!

We!find!that!chick!development!(altricial!vs.!precocial)!is!not!associated!with!the!extent!of!cooperation!or!

169!

relative!male!care!(Table!1,!Fig.!3),!suggesting!that!chick!demand!does!not!affect!parental!cooperation!

170!

strategies!across!birds.!We!highlight!that!sexual!selection!and!social!environment!together!with!body!

171!

mass!explain!a!large!proportion!of!variance!in!parental!cooperation!(approx.!30T35%;!summary!in!Table!1!

172!

and!details!in!SI!Appendix,!Table!S1),!although!these!values!are!somewhat!lower!for!relative!male!care!

173!

(approx.!12T26%;!summary!in!SI!Appendix,!Table!S2!and!details!in!SI!Appendix,!Table!S3).!We!also!

174!

emphasize!that!recent!work!suggests!that!ASR!relates!to!sexual!selection!(57)!and!the!precise!relationship!

175!

between!ASR,!demographic!processes,!and!sexual!selection!are!far!from!understood!(53).!Nevertheless,!

176!

our!results!demonstrate!large!additive!effects!of!major!selective!forces!that!were!theoretically!predicted!

177!

to!facilitate!parental!cooperation!in!animals.!

178!

!

179!

Finally,!climatic!conditions!during!the!breeding!season,!thought!to!drive!the!evolution!of!cooperation!(33,!

180!

34,!58),!do!not!predict!parental!cooperation!as!none!of!the!climatic!factors!is!significantly!associated!with!

181!

parental!cooperation!either!in!bivariate!or!multiple!regression!analyses!(Table!1,!Fig.!3;!for!details!of!these!

182!

relationships!see!SI!Appendix,!Table!S1!and!Fig.!S2).!Our!analyses!thus!suggest!that!climatic!conditions!

183!

(8)

cooperation!strategies.!This!conclusion!agrees!with!observations!that!species!with!extremely!contrasting!

185!

parental!care!systems!(e.g.!with!reversed!vs.!conventional!sex!roles)!may!breed!sideTbyTside!sharing!much!

186!

of!the!environment!(see!ref.!27!for!examples).!Weak!or!inconsistent!effects!of!climate!have!previously!

187!

been!identified!in!largeTscale!analyses!of!climatic!correlates!of!cooperative!breeding!and!sexual!size!

188!

dimorphism!in!birds!(34,!58–60).!Taken!together!with!our!new!results!presented!here,!this!body!of!work!

189!

suggests!that!sexual,!social,!and!parenting!strategies!in!birds!are!largely!independent!of!climatic!effects!on!

190!

the!scale!of!whole!breeding!ranges!of!species!and!instead!might!be!driven!by!ecoTevolutionary!feedbacks!

191!

between!social!behavior,!life!history,!and!demography!(29,!61).!It!is!also!possible!that!parental!

192!

cooperation!may!covary!with!environmental!factors!at!finer!spatial!scales!not!captured!by!our!analyses!of!

193!

breeding!rangeTwide!environment,!for!example!as!seems!to!be!the!case!of!mating!systems!and!sexual!

194!

selection!(31,!32,!35,!60).!We!suggest!that!detailed!analyses!of!the!plasticity!of!parental!cooperation!

195!

within!species!in!relation!to!environmental!conditions!on!smaller!spatial!scales!(e.g.!food!supply,!ambient!

196!

temperature)!will!shed!critical!light!on!this!important!question.!

197!

!

198!

In!conclusion,!we!show!that!the!evolution!of!parental!cooperation!is!predicted!by!sexual!selection!and!

199!

social!environment!at!least!in!birds,!whereas!climatic!conditions!at!the!scale!of!the!whole!species’!

200!

breeding!ranges!do!not!predict!parental!cooperation.!Thus,!several!parental!cooperation!strategies!may!be!

201!

adaptive!in!a!given!set!of!climatic!conditions,!depending!on!the!species'!social!and!genetic!mating!systems!

202!

and!demographic!structure.!These!patterns!are!valid!across!a!broad!range!of!bird!species!and!clades!that!

203!

breed!in!diverse!settings.!They!highlight!the!significance!of!feedbacks!between!sexual!selection,!social!

204!

environment,!and!parental!care,!since!all!of!these!have!mortality!consequences!and!are!thus!linked!in!ecoT

205!

evolutionary!feedback!loops!(61).!

206!

!

207!

Further!works!are!needed!to!advance!parental!cooperation!research.!First,!drivers!of!the!effects!we!

208!

identify!are!sometimes!unclear.!For!example,!it!is!not!clear!whether!evolutionary!changes!in!parental!

209!

cooperation!are!driven!by!sexual!selection!acting!on!male!behavior!(24,!46),!on!female!behavior!(62)!or!on!

210!

both!sexes!simultaneously.!Second,!further!studies!should!explore!which!sex!is!more!responsive!and!

211!

whether!sexTspecific!parenting!abilities!can!bias!responses!to!intense!sexual!selection!(10,!11).!Third,!new!

212!

phylogenetic!comparative!analyses!are!needed!to!test!whether!sexual!selection!and!social!environment!

213!

may!influence!parental!cooperation!in!nonTavian!taxa,!for!instance!in!fishes,!frogs,!and!mammals.!Whilst!

214!

the!details!of!care!differ!between!these!major!clades,!our!results!here!establish!the!working!hypotheses!

215!

(9)

have!important!effects!on!parental!cooperation.!For!example,!food!availability!predicts!cooperation!during!

217!

nestling!feeding!in!several!avian!groups!(35,!36),!and!the!generality!of!this!relationship!should!be!tested!

218!

using!largeTscale!data!sets.!Moreover,!our!rangeTwide!analyses!might!have!missed!the!importance!of!

219!

ecological!factors!operating!on!smaller!spatial!scales.!We!encourage!researchers!to!evaluate!potential!

220!

effects!of!smallTscale!ecological!factors!on!parental!cooperation.!Finally,!insights!gained!by!our!

221!

comparative!study!should!be!further!tested!in!the!natural!habitat!of!animals.!These!fieldTbased!

222!

observations!and!experimental!manipulations!combined!with!comparisons!across!populations!and!longT

223!

term!population!monitoring!data!will!be!immensely!useful!to!tease!apart!various!social!and!ecological!

224!

effects!and!allow!evolutionary!ecologists!to!test!the!positive!and!negative!feedbacks!that!underpin!mating!

225!

systems!and!parental!care.!

226!

!

227!

Materials-and-Methods!

228!

Data!collection!

229!

We!quantified!sexTspecific!contribution!to!care!on!an!ordinal!scale!from!0!to!4!as!follows:!0!T!no!male!

230!

contribution,!1!T!male!contribution!1T33%,!2!T!male!contribution!34T66%,!3!T!male!contribution!67T99%,!4!

231!

T!male!contribution!100%.!Thus,!this!score!varied!from!femaleTonly!care!(0)!to!approximately!equal!care!

232!

by!male!and!female!(2)!to!maleTonly!care!(4).!Scores!were!gathered!separately!for!nest!building,!

233!

incubation,!nest!guarding!(i.e.,!guarding!and!defending!the!nest!during!incubation),!chick!brooding,!chick!

234!

feeding,!chick!guarding!(i.e.,!guarding!and!defending!the!brood!after!hatching),!postTfledging!feeding!of!

235!

chicks,!and!postTfledging!guarding!of!chicks!(i.e.,!guarding!and!defending!the!brood!after!fledging,!for!

236!

details!see!ref.!40).!To!represent!the!extent!of!biparental!care,!the!eight!parental!activities!were!reTcoded!

237!

on!a!3!level!scale!so!that!0!represented!exclusive!uniparental!care!by!the!male!or!female!(original!scores!0!

238!

or!4),!1!represented!biparental!care!biased!toward!either!the!male!or!the!female!(original!scores!1!or!3),!

239!

and!2!represented!approximately!equal!contribution!by!the!male!and!female!(original!score!2).!Finally,!we!

240!

calculated!parental!cooperation!by!averaging!the!statistically!centered!extent!of!biparental!care!across!the!

241!

eight!activities.!The!resulting!parental!cooperation!ranged!from!minimum!parental!cooperation!to!

242!

maximum!parental!cooperation!(frequency!distribution!of!parental!cooperation!across!659!species!of!

243!

birds!is!available!in!SI!Appendix,!Fig.!S1)!and!varied!across!the!phylogeny!(Fig.!1).!Here,!minimum!

244!

cooperation!is!when!all!activities!are!carried!out!by!one!sex!(the!male!or!the!female,!ca.!around!the!value!

245!

of!−1.5),!whereas!the!maximum!cooperation!is!when!all!parental!care!activities!are!shared!approximately!

246!

equally!between!the!male!and!the!female!(ca.!around!the!value!of!1.5).!To!test!hypotheses!that!predict!

247!

(10)

standardized!relative!male!care!based!on!the!original!scores.!Relative!male!care!ranged!from!−2!(strongly!

249!

femaleTbiased!care)!to!3!(strongly!maleTbiased!care;!frequency!distribution!of!relative!male!care!across!

250!

659!species!of!birds!is!available!in!SI!Appendix,!Fig.!S1).!Data!collection!was!designed!to!cover!the!broad!

251!

phylogenetic!diversity!and!full!variability!of!breeding!systems!exhibited!by!birds.!Our!data!set!contained!

252!

659!species!from!113!avian!families.!

253!

!

254!

We!used!two!proxies!of!sexual!selection!that!are!widely!available:!sexual!size!dimorphism!and!extraTpair!

255!

paternity!(63).!We!note!that!the!relationship!between!the!strength!of!sexual!selection!and!EPP!is!complex.!

256!

However,!by!using!several!indices!of!sexual!selection!(sexual!size!dimorphism,!EPP)!we!hope!to!provide!

257!

comprehensive!analyses!and!characterize!broad!range!of!processes!that!underpin!sexual!selection,!

258!

including!maleTmale!competition!and!female!choice.!We!calculated!size!dimorphism!index!as!SDI!=!body!

259!

mass!of!the!heavier!sex!divided!by!body!mass!of!the!lighter!sex!minus!one!and!made!the!values!positive!

260!

for!maleTbiased!dimorphism!and!negative!for!femaleTbiased!dimorphism.!We!then!also!calculated!absolute!

261!

SDI!by!taking!absolute!values!of!the!original!SDI.!Greater!values!of!absolute!SDI!thus!mean!greater!

262!

difference!in!body!masses!between!sexes,!suggesting!differential!selection!acting!on!males!and!females!

263!

that!may!indicate!sexual!selection!(15,!43).!ExtraTpair!paternity!(EPP)!was!expressed!as!%!of!broods!

264!

containing!at!least!one!extraTpair!offspring,!in!accordance!with!recent!studies!(64).!However,!to!check!the!

265!

sensitivity!of!our!analyses!to!this!particular!choice,!we!also!repeated!all!analyses!with!%!of!extraTpair!

266!

offspring!in!the!population!(EPY).!Although!this!variable!strongly!decreased!sample!size,!results!were!

267!

largely!robust!to!the!choice!of!EPP!vs.!EPY!(details!of!these!sensitivity!analyses!are!available!in!SI!

268!

Appendix,!Tables!S1!and!S3).!Social!environment!was!characterized!by!adult!sex!ratio!(ASR),!which!was!

269!

expressed!as!the!proportion!of!males!in!the!adult!population!(52,!65).!We!then!calculated!the!absolute!

270!

deviation!from!ASR!of!0.5!to!express!the!degree!of!bias!in!the!frequency!of!males!vs.!females!in!the!

271!

population.!This!value!was!always!positive!and!increased!with!increasing!deviation!from!ASR!of!0.5!(ASR!

272!

bias).!

273!

!

274!

To!characterize!ambient!environment,!first!we!recorded!breeding!season!for!each!species!from!literature.!

275!

Second,!based!on!digitized!ranges!(66)!and!global!climatic!layers!(CRU!Dataset,!

276!

http://www.cru.uea.ac.uk/),!we!extracted!climatic!conditions!in!the!breeding!range!of!every!species!

277!

during!its!breeding!season.!We!extracted!i)!the!average!monthly!temperature!(∘C)!and!rainfall!(mm);!ii)!

278!

withinTyear!variation!as!SD!of!breeding!season!monthly!averages!for!temperature!and!rainfall;!and!iii)!

279!

amongTyear!variation!as!SD!across!49!years!(1961T2009)!of!monthly!averages!for!temperature!and!

(11)

rainfall!during!the!species'!breeding!season.!To!control!for!potential!lifeThistory!confounds,!we!included!

281!

adult!body!mass!(g)!and!chick!development!(altricial!vs.!precocial)!in!the!models.!

282!

!

283!

Phylogenetic!analyses!

284!

We!used!phylogenetic!generalized!least!squares!(PGLS)!approach!implemented!in!a!fast!likelihood!

285!

algorithm!(67)!in!the!R!language!(68).!In!PGLS!models,!we!estimated!the!phylogenetic!signal!by!optimizing!

286!

the!λ!parameter!(41).!We!used!500!phylogenetic!trees!extracted!from!www.birdtree.org!(Hackett!

287!

constraint,!ref.!42).!We!ran!the!PGLS!analyses!across!all!the!trees!and!then!summarized!the!resulting!500!

288!

parameter!estimates.!

289!

!

290!

Parental!cooperation!and!relative!male!care!were!the!main!response!variables!in!our!models.!First,!we!

291!

fitted!bivariate!PGLS!models!between!parental!cooperation!and!the!following!predictors:!sexual!size!

292!

dimorphism!(log!absolute!SDI),!extraTpair!paternity!(sqrt!EPP),!adult!sex!ratio!(sqrt!ASR!bias),!climatic!

293!

variables!(means!and!amongT!and!withinTyear!variations!in!temperature!and!rainfall),!adult!body!mass!

294!

(logTtransformed),!and!chick!development!(altricial!vs.!precocial).!Predictors!were!the!same!for!relative!

295!

male!care,!except!that!we!used!SDI!instead!of!absolute!SDI,!ASR!instead!of!ASR!bias,!and!we!did!not!use!

296!

climatic!variables!due!to!lacking!predictions!for!relative!male!care.!Second,!we!fitted!PGLS!models!with!

297!

several!explanatory!variables.!To!use!the!maximum!number!of!species!in!each!analysis,!we!fitted!four!

298!

models!structured!according!to!our!three!main!hypotheses!while!controlling!for!lifeThistory!variables.!For!

299!

parental!cooperation,!these!were:!Sexual!selection!model!–!absolute!SDI,!EPP,!adult!body!mass,!chick!

300!

development!(n!=!226!species);!Social!environment!model!–!ASR!bias,!adult!body!mass,!chick!development!

301!

(n!=!165!species);!Climate!model!–!ambient!temperature,!rainfall,!adult!body!mass,!chick!development!(n!

302!

=!659!species);!Full!model!–!absolute!SDI,!EPP,!ASR!bias,!ambient!temperature,!rainfall,!adult!body!mass,!

303!

chick!development!(n!=!80!species).!For!relative!male!care,!these!were:!Sexual!selection!model!–!SDI,!EPP,!

304!

adult!body!mass,!chick!development!(n!=!226!species);!Social!environment!model!–ASR,!adult!body!mass,!

305!

chick!development!(n!=!165!species);!Full!model!–!SDI,!EPP,!ASR,!adult!body!mass,!chick!development!(n!=!

306!

80!species).!We!did!not!fit!the!climatic!model!due!to!lacking!predictions!for!relative!male!care.!Full!details!

307!

of!Materials!and!Methods!are!available!in!SI!Appendix,!Supplement!S1.!

308!

!

309!

Acknowledgments!

310!

We!appreciate!tremendous!work!of!generations!of!field!ornithologists.!This!work!would!not!be!possible!

311!

(12)

University!(IGA!PrF_2015_011).!A.L.!was!supported!by!a!Marie!Curie!IntraTEuropean!Fellowship,!and!by!

313!

the!grants!OTKA!K!112838!and!TÁMOPT4.2.2.BT15/1/KONVT2015T0004.!T.S.!was!a!Mercator!Visiting!

314!

Professor!at!the!University!of!Bielefeld,!and!a!Humboldt!Award!holder!at!the!University!of!Göttingen!

315!

whilst!working!on!this!paper,!and!was!supported!by!an!open!project!of!State!Key!Laboratory!of!Biocontrol,!

316!

Sun!YatTsen!University,!Guangzhou.!!J.T.!was!supported!by!TÁMOPT4.2.2.CT11/1/KONVT2012T0010!

317!

project,!coTfinanced!by!the!European!Social!Fund!and!the!European!Regional!Development!Fund.!

318!

!

319!

References

320!

1.!CluttonTBrock!TH!(1991)!The$Evolution$of$Parental$Care!(Princeton!University!Press,!Princeton).!

2.!Royle!NJ,!Smiseth!PT,!Kölliker!M!eds.!(2012)!The$Evolution$of$Parental$Care!(Oxford!University!Press,! Oxford).!

3.!McGraw!L,!Székely!T,!Young!LJ!(2010)!Pair!bonds!and!parental!behaviour.!Social$Behaviour:$Genes,$

Ecology$and$Evolution,!edsSzékely!T,!Moore!AJ,!Komdeur!J!(Cambridge!University!Press,!

Cambridge),!pp!271–301.!

4.!Balshine!S!(2012)!Patterns!of!parental!care!in!vertebrates.!The$Evolution$of$Parental$Care,!eds!Royle!NJ,! Smiseth!PT,!Kölliker!M!(Oxford!University!Press,!Oxford),!pp!62–80.!

5.!Trumbo!ST!(2012)!Patterns!of!parental!care!in!invertebrates.!The$Evolution$of$Parental$Care,!eds!Royle! NJ,!Smiseth!PT,!Kölliker!M!(Oxford!University!Press,!Oxford),!pp!81–100.!

6.!Lessells!CM!(2012)!Sexual!conflict.!The$Evolution$of$Parental$Care,!eds!Royle!NJ,!Smiseth!PT,!Kölliker!M! (Oxford!University!Press,!Oxford),!pp!150–170.!

7.!Klug!H,!Alonzo!SH,!Bonsall!MB!(2012)!Theoretical!foundations!of!parental!care.!The$Evolution$of$ Parental$Care,!eds!Royle!NJ,!Smiseth!PT,!Kölliker!M!(Oxford!University!Press,!Oxford),!pp!21–39.!

8.!McNamara!JM,!Székely!T,!Webb!JN,!Houston!AI!(2000)!A!dynamic!gameTtheoretic!model!of!parental! care.!J$Theor$Biol!205(4):605–623.!

9.!Harrison!F,!Barta!Z,!Cuthill!I,!Székely!T!(2009)!How!is!sexual!conflict!over!parental!care!resolved?!A! metaTanalysis.!J$Evol$Biol!22(9):1800–1812.!

10.!Barta!Z,!Székely!T,!Liker!A,!Harrison!F!(2014)!Social!role!specialization!promotes!cooperation!between! parents.!Am$Nat!183(6):747–761.!

11.!McNamara!JM,!Wolf!M!(2015)!Sexual!conflict!over!parental!care!promotes!the!evolution!of!sex! differences!in!care!and!the!ability!to!care.!Proc$R$Soc$London$B!282(1803):20142752.!

12.!Wilson!EO!(1975)!Sociobiology:$The$New$Synthesis!(Harvard!University!Press,!Cambridge).!

13.!Olson!VA,!Liker!A,!Freckleton!RP,!Székely!T!(2008)!Parental!conflict!in!birds:!comparative!analyses!of! offspring!development,!ecology!and!mating!opportunities.!Proc$R$Soc$London$B!275(1632):301– 307.!

14.!Webb!TJ,!Olson!VA,!Székely!T,!Freckleton!RP!(2010)!Who!cares?!Quantifying!the!evolution!of!division! of!parental!effort.!Methods$Ecol$Evol!1(3):221–230.!

(13)

16.!Adrian!O,!Brockmann!I,!Hohoff!C,!Sachser!N!(2005)!Paternal!behaviour!in!wild!guinea!pigs:!a!

comparative!study!in!three!closely!related!species!with!different!social!and!mating!systems.!J$Zool! 265(1):97–105.!

17.!Queller!DC!(1997)!Why!do!females!care!more!than!males?!Proc$R$Soc$London$B!264(1388):1555–1557.!

18.!GonzalezTVoyer!A,!Fitzpatrick!JL,!Kolm!N!(2008)!Sexual!selection!determines!parental!care!patterns!in! cichlid!fishes.!Evolution!62(8):2015–2026.!

19.!Jennions!MD,!Kokko!H!(2010)!Sexual!selection.!Evolutionary$Behavioral$Ecology,!eds!Westneat!DF,!Fox! CW!(Oxford!University!Press,!Oxford),!pp!343–364.!

20.!Magrath!MJL,!Komdeur!J!(2003)!Is!male!care!compromised!by!additional!mating!opportunity?!Trends$ Ecol$Evol!18(8):424–430.!

21.!Kokko!H!(1999)!Cuckoldry!and!the!stability!of!biparental!care.!Ecol$Lett!2(4):247–255.!

22.!Sheldon!BC!(2002)!Relating!paternity!to!paternal!care.!Philos$Trans$R$Soc$London$B$Biol$Sci! 357(1419):341–350.!

23.!Kokko!H,!Jennions!MD!(2008)!Parental!investment,!sexual!selection!and!sex!ratios.!J$Evol$Biol! 21(4):919–48.!

24.!Alonzo!SH,!Klug!H!(2012)!Paternity,!maternity,!and!parental!care.!The$Evolution$of$Parental$Care,!eds! Royle!NJ,!Smiseth!PT,!Kölliker!M!(Oxford!University!Press,!Oxford),!pp!189–205.!

25.!Griffin!AS,!Alonzo!SH,!Cornwallis!CK!(2013)!Why!do!cuckolded!males!provide!paternal!care?!PLoS$Biol! 11(3):e1001520.!

26.!Forsgren!E,!Amundsen!T,!Borg!AA,!Bjelvenmark!J!(2004)!Unusually!dynamic!sex!roles!in!a!fish.!Nature! 429(6991):551–554.!

27.!Liker!A,!Freckleton!RP,!Székely!T!(2013)!The!evolution!of!sex!roles!in!birds!is!related!to!adult!sex!ratio.! Nat$Commun!4:1587.!

28.!Parra!JE,!Beltrán!M,!Zefania!S,!Dos!Remedios!N,!Székely!T!(2014)!Experimental!assessment!of!mating! opportunities!in!three!shorebird!species.!Anim$Behav!90(4):83–90.!

29.!Székely!T,!Webb!JN,!Cuthill!IC!(2000)!Mating!patterns,!sexual!selection,!and!parental!care:!An! integrative!approach.!Vertebrate$Mating$Systems,!eds!Apollonio!M,!FestaTBianchet!M,!Mainardi!M! (World!Scientific!Publishing,!Singapore),!pp!159–185.!

30.!Kokko!H,!Jennions!MD!(2012)!Sex!differences!in!parental!care.!The$Evolution$of$Parental$Care,!eds! Royle!NJ,!Smiseth!PT,!Kölliker!M!(Oxford!University!Press,!Oxford),!pp!101–118.!

31.!Alexander!RD!(1974)!The!evolution!of!social!behavior.!Annu$Rev$Ecol$Syst!5:325–383.!

32.!Jarman!PJ!(1974)!Social!organization!of!antelope!in!relation!to!their!ecology.!Behaviour!48(1):215– 267.!

33.!Rubenstein!DR!(2011)!Spatiotemporal!environmental!variation,!risk!aversion!and!the!evolution!of! cooperative!breeding!as!a!betThedging!strategy.!Proc$Natl$Acad$Sci$USA!108(Suppl!2):10816T10822!

34.!Jetz!W,!Rubenstein!DR!(2011)!Environmental!uncertainty!and!the!global!biogeography!of!cooperative! breeding!in!birds.!Curr$Biol!21(1):72–78.!

(14)

36.!Leisler!B,!Winkler!H,!Wink!M!(2002)!Evolution!of!breeding!systems!in!acrocephaline!warblers.!Auk! 119(2):379–390.!

37.!Shen!STF,!et!al.!(2012)!Unfavourable!environment!limits!social!conflict!in!Yuhina$brunneiceps.!Nat$ Commun!3:885.!

38.!Smaldino!PE,!Schank!JC,!McElreath!R!(2013)!Increased!costs!of!cooperation!help!cooperators!in!the! long!run.!Am$Nat!181(4):451–463.!

39.!Smaldino!PE,!Newson!L,!Schank!JC,!Richerson!PJ!(2013)!Simulating!the!evolution!of!the!human!family:! Cooperative!breeding!increases!in!harsh!environments.!PLoS$ONE!8(11):!e80753.!

40.!Székely!T,!Remeš!V,!Freckleton!RP,!Liker!A!(2013)!Why!care?!Inferring!the!evolution!of!complex!social! behaviour.!J$Evol$Biol!26(7):1381–91.!

41.!Freckleton!RP,!Harvey!PH,!Pagel!M!(2002)!Phylogenetic!analysis!and!comparative!data:!a!test!and! review!of!evidence.!Am$Nat!160(6):712–726.!

42.!Jetz!W,!Thomas!GH,!Joy!JB,!Hartmann!K,!Mooers!AØ!(2012)!The!global!diversity!of!birds!in!space!and! time.!Nature!491(7424):444–448.!

43.!Fairbairn!D,!Blanckenhorn!W,!Székely!T!(2007)!Sex,$Size$and$Gender$Roles!(Oxford!University!Press,! Oxford).!

44.!Lukas!D,!CluttonTBrock!TH!(2013)!The!evolution!of!social!monogamy!in!mammals.!Science! 341(6145):526–530.!

45.!Houston!AI,!McNamara!JM!(2002)!A!selfTconsistent!approach!to!paternity!and!parental!effort.!Philos! Trans!R!Soc!B!Biol!Sci!357(1419):351T362.!

46.!Matysioková!B,!Remeš!V!(2013)!Faithful!females!receive!more!help:!the!extent!of!male!parental!care! during!incubation!in!relation!to!extraTpair!paternity!in!songbirds.!J$Evol$Biol!26(1):155–162.!

47.!Møller!AP,!Birkhead!TR!(1993)!Certainty!of!paternity!covaries!with!paternal!care!in!birds.!Behav$Ecol$ Sociobiol!33(4):261T268!

48.!Schwagmeyer!PL,!et!al.!(1999)!Species!differences!in!male!parental!care!in!birds:!a!reexamination!of! correlates!with!paternity.!Auk!116(2):487–503.!

49.!Matysioková!B,!Remeš!V!(2014)!The!importance!of!having!a!partner:!male!help!releases!females!from! time!limitation!during!incubation!in!birds.!Front$Zool!11(1):24.!

50.!Liker!A,!Székely!T!(2005)!Mortality!costs!of!sexual!selection!and!parental!care!in!natural!populations! of!birds.!Evolution!59(4):890–897.!

51.!Arendt!JD,!Reznick!DN,!LópezTSepulcre!A!(2014)!Replicated!origin!of!femaleTbiased!adult!sex!ratio!in! introduced!populations!of!the!Trinidadian!guppy!(Poecilia$reticulata).!Evolution!68(8):2343–2356.!

52.!Székely!T,!Liker!A,!Freckleton!RP,!Fichtel!C,!Kapperel!PM!(2014)!SexTbiased!survival!predicts!adult!sex! ratio!variation!in!wild!birds.!Proc$R$Soc$London$B!281(1788):20140342.!

53.!Székely!T,!Weissing!FJ,!Komdeur!J!(2014)!Adult!sex!ratio!variation:!Implications!for!breeding!system! evolution.!J$Evol$Biol!27(8):1500–1512.!

54.!Lehtonen!J,!Kokko!H!(2012)!Positive!feedback!and!alternative!stable!states!in!inbreeding,!cooperation,! sex!roles!and!other!evolutionary!processes.!Philos$Trans$R$Soc$B$Biol$Sci!367(1586):211–221.!

(15)

Sociobiol!63(1):1–9.!

56.!Botero!CA,!Rubenstein!DR!(2012)!Fluctuating!environments,!sexual!selection!and!the!evolution!of!

flexible!mate!choice!in!birds.!PLoS$One!7(2):e32311.!

57.!Liker!A,!Freckleton!RP,!Székely!T!(2014)!Divorce!and!infidelity!are!associated!with!skewed!adult!sex!

ratios!in!birds.!Curr$Biol!24(4):880–884.!

58.!Rubenstein!DR,!Lovette!IJ!(2007)!Temporal!environmental!variability!drives!the!evolution!of!

cooperative!breeding!in!birds.!Curr$Biol!17(16):1414–1419.!

59.!Gonzalez!JTCT,!Sheldon!BC,!Tobias!JA!(2013)!Environmental!stability!and!the!evolution!of!cooperative!

breeding!in!hornbills.!Proc$R$Soc$London$B!280(1768):20131297.!

60.!Friedman!NR,!Remeš!V!(2015)!Global!geographic!patterns!of!sexual!size!dimorphism!in!birds:!support!

for!a!latitudinal!trend?!Ecography$38,!in!press!(doi:!10.1111/ecog.01531).!

61.!Alonzo!SH!(2010)!Social!and!coevolutionary!feedbacks!between!mating!and!parental!investment.!

Trends$Ecol$Evol!25(2):99–108.!

62.!Head!ML,!Hinde!CA,!Moore!AJ,!Royle!NJ!(2014)!Correlated!evolution!in!parental!care!in!females!but!not!

males!in!response!to!selection!on!paternity!assurance!behaviour.!Ecol$Lett!17(7):803–810.!

63.!Dunn!PO,!Whittingham!LA,!Pitcher!TE!(2001)!Mating!systems,!sperm!competition,!and!the!evolution!of!

sexual!dimorphism!in!birds.!Evolution!55(1):161–75.!

64.!Cornwallis!CK,!West!SA,!Davis!KE,!Griffin!AS!(2010)!Promiscuity!and!the!evolutionary!transition!to!

complex!societies.!Nature!466(7309):969–972.!

65.!Donald!PF!(2007)!Adult!sex!ratios!in!wild!bird!populations.!Ibis$149(4):671–692.!

66.!BirdLifeTInternational,!NatureServe!(2011)!Bird$Species$Distribution$Maps$of$the$World!(Cambridge!

and!Arlington).!

67.!Freckleton!RP!(2012)!Fast!likelihood!calculations!for!comparative!analyses.!Methods$Ecol$Evol!

3(5):940–947.!

(16)

Figure-legends!

Fig.!1.!Phylogenetic!distribution!of!parental!cooperation!in!659!species!of!birds!included!in!this!study! (Bayesian!maximum!credibility!tree!of!500!phylogenies).!The!figure!shows!parental!cooperation!for!each! species!(black!bars!refer!to!parental!cooperation;!tall!bars!indicate!high!cooperation)!and!phylogenetic! reconstruction!along!the!branches!(using!plotBranchbyTrait!{phytools}!function!of!R!software;!red!=!high! cooperation,!yellow!=!low!cooperation).!

!

Fig.!2.!Parental!cooperation!in!relation!to!sexual!size!dimorphism!(log!absolute!Sexual!Dimorphism!Index),! extraTpair!paternity!(sqrt!EPP),!and!adult!sex!ratio!(sqrt!ASR!bias)!in!birds.!Variables!in!each!panel!were! statistically!adjusted!for!other!predictors!in!a!phylogenetic!generalized!least!squares!(PGLS)!model!and! the!residuals!from!statistical!models!are!plotted!(Sexual!selection!model!for!Sexual!size!dimorphism!and! ExtraTpair!paternity,!and!Social!environment!model!for!Adult!sex!ratio,!see!Table!1).!Ordinary!least! squares!regression!lines!are!included.!

!

Fig.!3.!Parental!cooperation!and!relative!male!care!(for!their!frequency!distribution!across!659!species!of! birds!see!SI!Appendix,!Fig.!S1)!in!relation!to!sexual!selection!(orange),!social!environment!(red),!climate! (green),!and!lifeThistory!traits!(pink).!The!figure!shows!effect!sizes!(mean!standardized!regression! coefficients!±!2SE)!from!the!phylogenetic!generalized!least!squares!analyses!of!parental!cooperation!and! relative!male!care.!Models!were!either!bivariate!(circles)!or!multiple!regressions!(other!symbols).!Multiple! regression!models!parallel!our!hypotheses:!sexual!selection!model!(squares),!social!environment!model! (diamonds),!climate!model!(upward!facing!triangles),!and!full!model!(downward!facing!triangles;!see!also! Table!1).!In!analyses!of!parental!cooperation,!we!used!absolute!SDI!and!ASR!bias,!whereas!in!analyses!of! relative!male!care,!we!used!SDI!and!ASR!(see!Materials!and!Methods!and!SI!Appendix,!Supplement!S1).! LifeThistory!covariates!(body!mass,!chick!development)!were!included!in!all!models.!Horizontal!error!bars! not!intercepting!the!vertical!zero!line!indicate!statistically!significant!effects.!Note!that!climate!was!not! fitted!in!models!of!relative!male!care.!

!

!

(17)

Table&1!!Parental(cooperation(in(relation(to(sexual(selection,(social(environment,(and(climate(in(

birds.'In'all'models'parental'cooperation'was'the'response'variable'and'predictors'included:'sexual'

size%dimorphism%(log%absolute%Size%Dimorphism%Index),%extra!pair%paternity((sqrt(EPP),(adult(sex(

ratio&(sqrt&ASR&bias),&temperature&(first&axis&from&PCA&on&climatic&variables:&higher&values&mean&hot&

environments*with$low$temperature$variability;!factor'loadings'available'in'SI#Appendix,#Table&S!),#

rainfall'(second'axis'from$PCA$on$climatic$variables:$higher$values$mean$dry$environments!with%high% rainfall'variability;'factor'loadings'available'in'SI#Appendix,!Table&S4),#body#mass#(log!

transformed),-and$chick$development$(altricial$vs.$precocial).$We$use$phylogenetic$generalized&least&squares&

approach'and'present'means'from'500'analyses'using'different'phylogenetic'trees'(see'detailed'

results'in'SI#Appendix,#Table&S1).&Estimates&are&standardized&regression&coefficients&and&λ"indicates)

the$strength%of%the%phylogenetic%signal!"

"

Model&and&predictors" Estimate((SE)" F"(P)

"

Sexual'selection'(R!!="0.17,"λ"="

0.76,&df&=&4,221)" " "

Sexual'size'dimorphism" !0.258&(0.057)" 20.62%(<0.001)

"

Extra!pair%paternity" !0.264&(0.061)" 18.55%(<0.001)

"

Body%mass" 0.299%(0.115)" 6.83%(0.011)

"

Chick&development" !0.157&(0.151)" 1.12$(0.308)

"

" " "

Social'environment'(R!!="0.07,"

!!="0.91,"df"="3,161)" " "

Adult&sex&ratio" !0.186&(0.056)" 11.05%(0.001)

"

Body%mass" 0.087%(0.135)" 0.43%(0.524)

"

Chick&development" !0.084%(0.261)" 0.12%(0.750)

"

" " "

Climate((R!!="0.01,"λ"="0.90,"df#

="4,654)" " "

Temperature" 0.041%(0.033)" 1.60%(0.214)

"

Rainfall" 0.037%(0.031)" 1.47%(0.233)

"

Body%mass" !0.019%(0.074)" 0.09$(0.795)

"

Chick&development" !0.084%(0.145)" 0.35%(0.564)

"

(18)

Full$model$(R!!="0.29,"λ"="0.82,"

df#=#7,72)" " "

Sexual'size%dimorphism" !0.168&(0.098)" 2.93%(0.093)

"

Extra!pair%paternity" !0.230%(0.106)" 4.70%(0.034)

"

Adult&sex&ratio" !0.234&(0.083)" 7.88$(0.007)

"

Temperature" 0.027%(0.105)" 0.08$(0.796)

"

Rainfall" 0.034%(0.087)" 0.16%(0.696)

"

Body%mass" 0.334%(0.178)" 3.54%(0.066)

"

Chick&development" 0.020$(0.223)" 0.03$(0.900)

"

"

(19)

Ratites

Gees & Swans

Ducks

Me gap

ode s, Q

uail & a llies

Ph

easa

nts, G

ro use & allies Sa nd gro use & G re bes St orks , H ero ns & allie s C uck oo s & Bu st ard s C ran es & R a ils N igh tja rs , H u mmi ng b ird Pl o ve rs , St ilt s & a llie Gu lls, Te rns & a

llie s

Ja ca

na s &

alli es

Sn ipe

s, Sa nd

pip ers

& a llie

s

Vultu res,

Haw ks &

Eagl es

Owls

Wood hoop

oes & Hornb

ills

Bee− eaters

& Kingf ishers

Barbets & Touca

ns

Woodpe ckers

Falcons

Parrots

Antbirds, Cotingas & Manakins Tyrant−flycatchers

Bowerbirds & Austr. TreecreepersFairy−wrens

Honeyeaters &

Thornbills Austr. Ba

bblers

& Logrunne rs Cro

ws, Vi reos

& allies

Au stra

lasi an R

ob ins Tits &

Chicka dees La rks Sw allow s & Ma rtins O ld W W arb lers & a llies W re ns & a llies St a rlin g s , Th ra sh e rs & a llies T h rush e

s & Flyca tch e rs Su nb ird s Wa xb ills & W

ea ve rs Sp arro ws Pipi ts &

Wag tails

Finch es

& H oneycre

epers

Card inal

s & Tana

gers

Wood Warb

lers

NW Bla ckbirds

(20)

2

1

0

1

1.0 0.5 0.0 0.5 1.0 1.5

Se

xu

a

l si

ze

d

imo

Parental cooperation

4

2

0

2

1.0 0.5 0.0 0.5 1.0 1.5

Ext

ra

p

a

ir

p

a

te

Parental cooperation

0

.3

0

.2

0

.1

0

.0

0

.1

1.5 1.0 0.5 0.0 0.5 1.0

Ad

u

lt

se

x

ra

tio

(21)

Chick development

Body mass

Rainfall

Ambient temperature

Adult sex ratio

Extra

pair paternity

Sexual size dimorphism

(22)

Supporting Information for:

The evolution of parental cooperation in birds

Authors

Vladimír Remeš, Robert P. Freckleton, Jácint Tökölyi, András Liker, Tamás Székely

Supplement S1. Full Materials and Methods.

Fig. S1. Frequency distribution of parental cooperation and relative male care in birds.

Fig. S2. Scatterplots of parental cooperation in relation to predictors as modeled by PGLS multiple

regressions.

Fig. S3. Scatterplots of relative male care in relation to predictors as modeled by PGLS multiple

regressions.

Fig. S4. Scatterplots of the durations of different phases of breeding cycle (nest building, egg incubation,

chick care before and after fledging) in relation to adult body mass.

Fig. S5. Estimates of semivariograms and Moran’s I for residuals from i) the four PGLS models of parental

cooperation with EPP, and ii) the three PGLS models of relative male care with EPP.

Table S1. Full results of PGLS models of parental cooperation run across 500 phylogenies.

Table S2. Summary of results of PGLS models of relative male care.

Table S3. Full results of PGLS models of relative male care run across 500 phylogenies.

(23)

Supporting Information for:

The evolution of parental cooperation in birds

Authors

Vladimír Remeš, Robert P. Freckleton, Jácint Tökölyi, András Liker, Tamás Székely

Supplement S1

Full Materials and Methods

Data collection

We quantified sex-specific contribution to care on an ordinal scale from 0 to 4 as follows: 0 - no male

contribution, 1 - male contribution 1-33%, 2 - male contribution 34-66%, 3 - male contribution 67-99%, 4

- male contribution 100%. Thus, this score varied from female-only care (0) to approximately equal care

by male and female, (2) to male-only care (4). Although this scoring system does not quantify absolute

parental effort, it quantifies relative participation of sexes, which is the metric we were interested in here.

Scores were gathered separately for nest building, incubation, nest guarding (i.e., guarding and defending

the nest during incubation), chick brooding, chick feeding, chick guarding (i.e., guarding and defending the

brood after hatching), post-fledging feeding of chicks, and post-fledging guarding of chicks (i.e., guarding

and defending the brood after fledging, for details see (1)). Scoring was a necessity rather than preference,

since quantitative data were not available for many species. This is a common practice in comparative

studies; see (2–6) for similar approaches. Our scoring was significantly repeatable (sensu (7)) between

two independent observers who scored a subset of species (intraclass correlation, repeatability of mean

score of all care components: rICC = 0.79, F = 8.6, p < 0.001, n = 31 species). These scores also correlate with

an independent measure of care (i.e., sex differences in the length of care, see (8)). Data collection was

designed to cover the broad phylogenetic diversity and full variability of breeding systems exhibited by

birds. Our data set contained 659 species from 113 avian families. Sample size differed between individual

analyses, because not all traits were available for all species (see below). There were too many missing

values in some of the parental activities to allow data enhancement by imputation.

To represent the extent of biparental care, the eight parental activities were re-coded on a 3 level scale so

that 0 represented exclusive uniparental care by the male or female (original scores 0 or 4), 1 represented

(24)

were available for all species (average number of activities = 4.83, SD = 1.56, n = 659 species; all activities

were available only for 28 species). At the same time, means for different parental activities ranged from

0.58 for incubation to 1.69 for post-fledging feeding across species. Consequently, differences between

activity-specific means could have introduced bias into the calculation of parental cooperation for every

species depending on which activity happened to lack for a particular species. Therefore, before averaging

across activities we centered the extent of biparental care for each activity by subtracting the mean from

the original score. The resulting parental cooperation ranged from minimum parental cooperation to

maximum parental cooperation (frequency distribution of parental cooperation across 659 species of

birds is available in Fig. S1) and varied across the phylogeny (Fig. 1). Here, minimum cooperation is when

all activities are carried out by one sex (the male or the female, ca. around the value of −1.5), whereas the

maximum cooperation is when all parental care activities are shared approximately equally between the

male and the female (ca. around the value of 1.5). To test specific hypotheses that predict effects on the

scale from female-biased to male-biased care, we calculated in the same way as above centered values of

the original scores of sex-specific engagement in parental care. Resulting values of this relative male care

ranged from −2 (strongly female-biased care) to 3 (strongly male-biased care; frequency distribution of

relative male care across 659 species of birds is available in Fig. S1). Note that for sake of simplifying the

analyses, we worked with the ordinal scores as if they were continuous variables (for the necessity to

work with ordinal scores see above).

We used two proxies of sexual selection that are widely available: sexual size dimorphism and extra-pair

paternity (9). We calculated size dimorphism index as SDI = body mass of the heavier sex divided by body

mass of the lighter sex minus one and made the values positive for male-biased dimorphism and negative

for female-biased dimorphism. We then also calculated absolute SDI by taking absolute values of the

original SDI. Greater value of the absolute SDI thus means greater difference in body masses between

sexes, suggesting differential selection acting on males and females that may indicate sexual selection (10,

11). Indeed, when we quantified percentage of polygamous pairings of males and females and calculated

absolute difference between the sexes, this difference correlated positively with absolute SDI (r = 0.28, n =

496 species). This showed that extensive sexual size dimorphism was correlated with divergent mating

strategies of the two sexes indicating strong sexual selection. Extra-pair paternity was expressed as % of

broods containing at least one extra-pair offspring (EPP), in accordance with recent studies (12). However,

to check the sensitivity of our analyses to this particular choice, we also repeated all analyses with % of

extra-pair offspring in the population (EPY). Although this variable dramatically decreased sample size,

results were robust to the choice of EPP vs. EPY (details of these sensitivity analyses are available in Tables

(25)

Social environment was characterized by adult sex ratio (ASR), which was expressed as the proportion of males in the adult population (13, 14). We then calculated the absolute deviation from ASR of 0.5 to express the degree of bias in the frequency of males vs. females in the population. This value was always positive and increased with increasing deviation from ASR of 0.5 (ASR bias).

To characterize ambient environment, first we recorded breeding season for each species from literature. Second, based on digitized ranges (15) and global climatic layers (CRU Dataset,

http://www.cru.uea.ac.uk/), we extracted climatic conditions in the breeding range of every species during its breeding season. We extracted i) the average monthly temperature (∘C) and rainfall (mm); ii)

within-year variation as SD of breeding season monthly averages for temperature and rainfall; and iii) among-year variation as SD across 49 years (1961-2009) of monthly averages for temperature and rainfall during the species' breeding season. Rainfall was log-transformed prior to all calculations. We excluded seabirds from all the analyses, as climatic variables do not affect their food supply in the same way as in terrestrial birds (Procellariiformes, Sphenisciformes, Alcidae, Fregatidae, Sulidae, Pelecanidae, some Sternidae, Laridae, Stercorariidae, and Phalacrocoracidae).

To control for potential confounds, we included the following life-history traits in the models. For every species in our dataset, we obtained estimates of body mass of males and females (g) and used their average, and chick development (altricial vs. precocial). Body mass captures many aspects of species’ life history, including adult mortality (16), and thus pair bond duration and divorce rate (17, 18). Demanding chicks (i.e. altricial) preclude the evolution of reduced parental care (19–21). In a previous study of shorebirds, species with less demanding (i.e. precocial) young exhibited uniparental care with higher probability than species with more demanding (i.e. semiprecocial) young (20). Thus, chick development could influence parental cooperation by setting overall offspring demand. Since the length of breeding cycle might influence parental cooperation (22), we also recorded durations of breeding cycle phases (nest building, incubation, chick feeding, post-fledging care). However, we were able to find durations of all four phases only for 214 out of our 659 species. All these durations correlated well with body mass (for the relationship of breeding cycle duration to adult body mass in our dataset see Fig. S4) and thus to avoid decreasing the sample size, we modeled only adult body mass.

Phylogenetic analyses

We used phylogenetic generalized least squares (PGLS) approach implemented in a fast likelihood

(26)

parameter estimates. In Table 1 in the main text, we present average values of parameters and test

statistics, whereas in this Supporting Information we also present their 95% CIs. The non-random

distribution of species ranges across the globe could potentially introduce spatial autocorrelation,

therefore we checked for spatial autocorrelations in residuals from our models by i) fitting

semi-variograms and ii) estimating Moran’s I based on the latitude and longitude of the centroid of each species’

range. Indeed, there was no indication of significant spatial autocorrelation in residuals from our models

(Fig. S5).

Parental cooperation and relative male care were the main response variable in our models. First, we

fitted bivariate PGLS models between parental cooperation and the following predictors: sexual size

dimorphism (log absolute SDI), extra-pair paternity (sqrt EPP), adult sex ratio (sqrt ASR bias), climatic

variables (means and among- and within-year variations in temperature and rainfall), adult body mass

(log-transformed), and chick development (altricial vs precocial). Predictors were the same for relative

male care, except that we used SDI instead of absolute SDI, ASR instead of ASR bias, and we did not use

climatic variables due to lacking predictions for relative male care. Second, we fitted PGLS models with

several explanatory variables. To reduce the number of predictors in these multiple regression models, we

performed a Principal Components Analysis on all six climatic variables and extracted the first two PCs,

which represented temperature (PC.temperature: higher values mean hot environments with low

temperature variability) and rainfall (PC.rainfall: higher values mean dry environments with high rainfall

variability), respectively (Table S4). These two axes explained 76.4% of variation in climatic variables. We

used these PCs as predictors in multiple PGLS regression models to reduce multicollinearity of predictors.

To use the maximum number of species in each analysis, we fitted four models structured according to our

three main hypotheses while controlling for life-history variables. For parental cooperation, these were:

Sexual selection model – absolute SDI, EPP, adult body mass, chick development (n = 226 species); Social

environment model – ASR bias, adult body mass, chick development (n = 165 species); Climate model –

PC.temperature, PC.rainfall, adult body mass, chick development (n = 659 species); Full model – absolute

SDI, EPP, ASR bias, PC.temperature, PC.rainfall, adult body mass, chick development (n = 80 species). For

relative male care, these were: Sexual selection model – SDI, EPP, adult body mass, chick development (n =

226 species); Social environment model –ASR, adult body mass, chick development (n = 165 species); Full

model – SDI, EPP, ASR, adult body mass, chick development (n = 80 species). We did not fit the climatic

(27)

1. Székely T, Remeš V, Freckleton RP, Liker A (2013) Why care? Inferring the evolution of complex social behaviour. J Evol Biol 26(7):1381–91.

2. Silver RAE, Andrews H, Ball GF (1985) Parental Care in an Ecological Perspective: A Quantitative Analysis of Avian Subfamilies. Am Zool 25:823–840.

3. Møller AP, Cuervo JJ (2000) The evolution of paternity and paternal care in birds. Behav Ecol 11(5):472– 485.

4. Arnold KE, Owens IPF (2002) Extra-pair paternity and egg dumping in birds: life history, parental care and the risk of retaliation. Proc R Soc London B 269:1263–1269.

5. Bennett PM, Owens IPF (2002) Evolutionary Ecology of Birds (Oxford University Press, Oxford).

6. Olson V a, Liker a, Freckleton RP, Székely T (2008) Parental conflict in birds: comparative analyses of offspring development, ecology and mating opportunities. Proc R Soc London B 275(1632):301– 307.

7. Lessells CM, Boag P (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121.

8. Liker A, Székely T (2005) Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59(4):890–897.

9. Dunn PO, Whittingham LA, Pitcher TE (2001) Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55(1):161–75.

10. Andersson M (1994) Sexual Selection (Princeton University Press, Princeton).

11. Fairbairn D, Blanckenhorn W, Székely T (2007) Sex, Size and Gender Roles (Oxford University Press, Oxford).

12. Cornwallis CK, West SA, Davis KE, Griffin AS (2010) Promiscuity and the evolutionary transition to complex societies. Nature 466:969–972.

13. Donald PF (2007) Adult sex ratios in wild bird populations. Ibis 149:671–692.

14. Székely T, Liker A, Freckleton RP, Fichtel C, Kapperel PM (2014) Sex-biased survival predicts adult sex ratio variation in wild birds. Proc R Soc London B 281:20140342.

15. BirdLife-International, NatureServe (2011) Bird species distribution maps of the world (Cambridge and Arlington).

16. Sæther B-E (1989) Survival Rates in Relation to Body Weight in European Birds. Ornis Scand 20(1):13– 21.

17. Jeschke JM, Kokko H (2008) Mortality and other determinants of bird divorce rate. Behav Ecol Sociobiol

63(1):1–9.

18. Botero CA, Rubenstein DR (2012) Fluctuating Environments, Sexual Selection and the Evolution of Flexible Mate Choice in Birds. PLoS One 7(2):e32311.

(28)

20. Thomas GH, Székely T (2005) Evolutionary pathways in shorebird breeding systems: sexual conflict, parental care, and chick development. Evolution 59(10):2222–30.

21. Székely T, Kosztolányi A, Küpper C, Thomas GH (2007) Sexual conflict over parental care: a case study of shorebirds. J Ornithol 148(S2):211–217.

22. Webb TJ, Olson VA, Székely T, Freckleton RP (2010) Who cares? Quantifying the evolution of division of parental effort. Methods Ecol Evol 1:221–230.

23. Freckleton RP (2012) Fast likelihood calculations for comparative analyses. Methods Ecol Evol 3(5):940–947.

24. R-Core-Team (2013) R: A language and environment for statistical computing. Available at: http://www.r-project.org/.

25. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic Analysis and Comparative Data : A Test and Review of Evidence. Am Nat 160(6):712–726.

(29)

Fig.%S1.!Frequency!distribution!of!parental!cooperation!and!relative!male!care!in!birds!(n!=!659!species).!

Parental!cooperation!varies!between!1.5!when!the!male!and!the!female!parent!share!care!provisioning!

approximately!equally!and!−1.5!when!only!one!parent!(the!male!or!the!female)!provides!all!care,!with!most!

species!clustered!around!0!when!the!share!of!the!two!sexes!is!roughly!2:1.!Relative!male!care!varies!from!

strongly!femaleIbiased!(ca.!−2)!to!strongly!maleIbiased!(ca.!3).!The!bottom!panel!shows!graphically!how!

relative!male!care!was!recoded!to!express!parental!cooperation.!Note!that!the!scales!of!both!parental!

cooperation!and!relative!male!care!are!arbitrary!and!based!on!our!system!of!scoring!(Supplement!S1).!

Parental cooperation

N

o

.

o

f

sp

e

ci

e

s

More biparental care More uniparental care

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0

2

0

4

0

6

0

8

0

Relative male care

N

o

.

o

f

sp

e

ci

e

s

2 1 0 1 2 3

0

5

0

1

0

0

1

5

0

1.0 0.5 0.0 0.5 1.0

1

0

1

2

Parental cooperation

R

e

la

ti

v

e

ma

le

ca

re

(30)

Fig.%S2.!Parental!cooperation!in!relation!to!predictors!(see!Table!1):!sexual!size!dimorphism!(log10I

transformed!absolute!Sexual!Dimorphism!Index),!extraIpair!paternity!(squareIroot!transformed!EPP),!adult!

sex!ratio!(squareIroot!transformed!ASR!bias),!ambient!temperature!(PC1!from!PCA!on!climatic!variables,!

factor!loadings!available!in!Table!S4),!rainfall!(PC2!from!PCA!on!climatic!variables,!factor!loadings!available!in!

Table!S4),!body!mass!(log10Itransformed!adult!body!mass),!and!chick!development!(categorical!variable!coded!

as!altricial!vs.!precocial).!Raw!data!and!a!lowess!smoother!line!are!depicted.!

−4 −3 −2 −1 0

− 1 .0 0 .0 1 .0

Sexual size dimorphism

P a re n ta l co o p e ra ti o n

0 2 4 6 8 10

− 1 .0 0 .0 1 .0

Extra−pair paternity

P a re n ta l co o p e ra ti o n

0.0 0.1 0.2 0.3 0.4 0.5

− 1 .0 0 .0 1 .0

Adult sex ratio

P a re n ta l co o p e ra ti o n

−0.6 −0.2 0.2 0.4

− 1 .0 0 .0 1 .0 Ambient temperature P a re n ta l co o p e ra ti o n

−0.4 0.0 0.2 0.4

− 1 .0 0 .0 1 .0 Rainfall P a re n ta l co o p e ra ti o n

2 4 6 8 10 12

(31)

Fig.%S3.!Relative!male!care!in!relation!to!predictors!(see!Table!S2):!sexual!size!dimorphism!(Sexual!

Dimorphism!Index),!extraIpair!paternity!(squareIroot!transformed!EPP),!adult!sex!ratio!(ASR),!body!mass!

(log10I!transformed!adult!body!mass),!and!chick!development!(categorical!variable!coded!as!altricial!vs.!

precocial).!Raw!data!and!a!lowess!smoother!line!are!depicted.!An!extreme!value!of!Sexual!Dimorphism!Index!=!

2.14!(Great!Bustard!Otis%tarda)!is!excluded!from!the!first!panel.!

!

−1.0 0.0 0.5 1.0

1

0

1

2

Sexual size dimorphism

R e la ti ve ma le ca re

0 2 4 6 8 10

1

0

1

2

Extra−pair paternity

R e la ti ve ma le ca re

0.3 0.4 0.5 0.6 0.7

1

0

1

2

Adult sex ratio

R e la ti ve ma le ca re

2 4 6 8 10 12

Figure

Table S1. Full results of PGLS models of parental cooperation run across 500 phylogenies
Table S3. Full results of PGLS models of relative male care run across 500 phylogenies
Table S4. Factor loadings of climatic variables on the first two principal components

References

Related documents

Network Virtualization, Router Virtualization, Software De- signed Networking, Virtual Networks, Xen, OpenFlow, Flow-

Amount of vitellogenin in the plasma of adult female Murray River rainbowfish (Melanotaenia fluviatilis) after 14 days of exposure to 40 and 400 ng/L of 17 α trenbolone..

Signi fi cant increase in the weight of the granulation tissue and hydroxyproline content ( p &lt;0.05) were also observed in animals treated with the same concentration of

Taking Figures 3b and 3c together, we see that an increase in the primary labor share by 16 percentage points goes hand in hand with a decrease in the corruption perceptions index

Although paralabral cysts are thought to communicate with the joint space via an associated labral tear, it is not documented in the peer- reviewed literature how often there is

Solution 3: off-card verification Bytecode verifier signed, typed bytecode Signature checker Non-defensive virtual machine. Trusted 3rd-party Loading time

This paper examines the Romanian political crisis during the summer of 2012 to show that crowdsourcing geography is not so much about collaboratively distributing the

Wind Horse (Lung- ta) flags are by far the most common prayer flag, so much so that many people think that the word lung-ta means prayer flag.. Their purpose is to raise the