• No results found

Conical twist fields and null polygonal Wilson loops

N/A
N/A
Protected

Academic year: 2019

Share "Conical twist fields and null polygonal Wilson loops"

Copied!
34
0
0

Loading.... (view fulltext now)

Full text

(1)

City, University of London Institutional Repository

Citation:

Castro Alvaredo, O., Doyon, B. & Fioravanti, D. (2018). Conical twist fields and

null polygonal Wilson loops. Nuclear Physics B, 931, pp. 146-178. doi:

10.1016/j.nuclphysb.2018.04.002

This is the published version of the paper.

This version of the publication may differ from the final published

version.

Permanent repository link:

http://openaccess.city.ac.uk/19459/

Link to published version:

http://dx.doi.org/10.1016/j.nuclphysb.2018.04.002

Copyright and reuse: City Research Online aims to make research

outputs of City, University of London available to a wider audience.

Copyright and Moral Rights remain with the author(s) and/or copyright

holders. URLs from City Research Online may be freely distributed and

linked to.

(2)

ScienceDirect

Nuclear Physics B 931 (2018) 146–178

www.elsevier.com/locate/nuclphysb

Conical

twist

fields

and

null

polygonal

Wilson

loops

Olalla

A. Castro-Alvaredo

a,

,

Benjamin Doyon

b

,

Davide Fioravanti

c

aDepartment of Mathematics, City, University of London, 10 Northampton Square, EC1V 0HB, UK bDepartment of Mathematics, King’s College London, Strand, WC2R 2LS, UK

cSezione INFN di Bologna, Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio 46, Bologna, Italy

Received 16October2017;receivedinrevisedform 17February2018;accepted 5April2018 Availableonline 11April2018

Editor: HubertSaleur

Abstract

UsinganextensionoftheconceptoftwistfieldinQFTtospace–time(external)symmetries,westudy conicaltwistfieldsintwo-dimensionalintegrableQFT.Thesecreateconicalsingularitiesofarbitraryexcess angle.Weshowthat,uponappropriateidentificationbetweentheexcessangleandthenumberofsheets, theyhavethesameconformaldimensionasbranch-pointtwistfieldscommonlyusedtorepresentpartition functionsonRiemannsurfaces,andthatbothfieldshavecloselyrelatedformfactors.However,weshow thatconicaltwistfieldsaretrulydifferentfrombranch-pointtwistfields.Theygeneratedifferentoperator productexpansions(shortdistanceexpansions)andformfactorexpansions(largedistanceexpansions).In fact,weverifyinfreefieldtheories,byre-summingformfactors,thattheconicaltwistfieldsoperator prod-uctexpansionsarecorrectlyreproduced.Weproposethatconicaltwistfieldsarethecorrectfieldsinorderto understandnullpolygonalWilsonloops/gluonscatteringamplitudesofplanarmaximallysupersymmetric Yang–Millstheory.

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In quantumfieldtheory(QFT)anysingularityinanotherwiseflatspace–timeisassociated withaquantumfieldlocalizedonthesingularity.Sincethestress-energytensorTμν isthefirst

* Correspondingauthor.

E-mail addresses:o.castro-alvaredo@city.ac.uk(O.A. Castro-Alvaredo), benjamin.doyon@kcl.ac.uk(B. Doyon),

fioravanti@bo.infn.it(D. Fioravanti).

https://doi.org/10.1016/j.nuclphysb.2018.04.002

(3)
[image:3.485.179.292.69.121.2]

Fig. 1.ApictorialrepresentationoftheconicaltwistfieldVα(x,τ ).Theredhorizontallinerepresentsthebranchcut

inducedbytheconicalsingularity,andthearrowsrepresentthecontinuouspathalocalfieldtakeswhencontinuedaround theposition(x,τ ).Whenreachingthecut,thelocalfieldisaffectedbyaclockwiserotationofangleα.Effectively, a wedgeofangleαisaddedtothefullcyclearoundthepoint(x,τ ).(Forinterpretationofthecoloursinthefigure(s), thereaderisreferredtothewebversionofthisarticle.)

orderresponsetoasmallmetrictransformation,onemayexpectthatmetricsingularitiescanbe representedasexponentialsofthestress-energytensor.Naturalexamplesofmetricsingularities areconicalsingularitiesinanotherwise(two-dimensional)Euclideanflatspace:pointsofinfinite curvaturewithexcessangleα=0 (thecurvatureispositive(negative)forα <0 (α >0)).The goalofthepresentpaper istopropose aquantum field,thatwe willcallaconicaltwist field, expressedintermsofthestress-energytensor,andthatrepresentsagenericconicalsingularity ofexcessangle α.InthepictureofEuclideanfieldtheory,itisafieldwhoseposition(x,τ )is theend-pointofabranchcutextendingtowardsitsright,throughwhichotherfieldsareaffected byarotationclockwiseofangleαwithrespectto(x,τ ).Thisisanextensionofthewellknown conceptoftwistfields[1–9] tospace–timesymmetries,insteadofinternalsymmetries.SeeFig.1. LetRμ(y)(withμ=1,2 representingspaceandimaginarytimerespectively)1bethe con-servedcurrentassociated torotationsymmetrywithrespecttothe point(x,τ ).Theproposed conicaltwistfield,positionedat(x,τ )andaddingawedgeofangleα >0 centred at(x,τ ),isof theform

Vα(x, τ )=

eαx∞dyR2(y,τ )

(1)

wherethesquarebracketsindicateanappropriaterenormalizationofthefield.Wewilldefinea renormalizationprocedurethatmakestheexponentialfiniteandwelldefined.Wewillshow,by adirectcomputationof theeffectofscaletransformations,thattheresultingfieldisaspinless scalingfieldwithscalingdimension2α givenby

α=

c

24

α+2π

2π

2π α+2π

. (2)

Thisdirectcomputationofthescalingdimensionissubtle.Asusual,oneseparatesthe renormal-izedfieldintothemultiplicativerenormalizationε−2αtimesaregularizedexponential,andone

showsthatthelattertransformstrivially.Buttrivialtransformationonlyoccursiftherotation cur-rentR2(y,τ )ischosentoincludeanappropriatetermproportionaltotheidentityoperator,which affectsthechoiceofthemultiplicativerenormalization.TheproofsarereportedinAppendixA

(seeinparticularAppendicesA.1andA.3).

Thisconicaltwistfieldhastheunusual-lookinghermiticityproperty

V

α= (3)

1 OurconventionisthatifO(x)isaspinlessfield,then[

RdyR2(y,τ ),O(x+x,τ )]=x∂τO(x+x,τ ).Inparticular

(4)

andgeneratestheoperatorproductexpansion(OPE)

Vα(z)Vα(0)=+α

α,α z

2α−2α+2α+αV

α+α(0)+ · · · (4)

whereCα,αα+α arethe(yetunknown)three-pointcouplings.Inparticular,

Vα(z)Vα(0)=z−2α−2α1+. . . (5)

where we take conformal field theory (CFT) normalization to fix the structure constant to

C0

α,α =1. Note that thanks to(1),conical twist fields can inprinciple be seenas

exponen-tialsofVirasoromodes,orVirasorovertexoperators.Suchexponentialsimplementconformal transformationsandwerestudiedinquitesomegeneralityin[10].Inthissense,theconicaltwist fieldVα(0)implementsthesingularconformaltransformationzz1/(1+α/2π ).

In the study of QFT on branched Riemann surfaces, branchpoints of nth-root type, with integern,arenegativecurvatureconicalsingularitiesofexcessangleαthataremultiplesof2π:

α=2π(n−1). (6)

FieldsassociatedwithconicalsingularitiesonRiemannsurfaceshavebeenstudiedalongtime agointhecontextoforbifoldCFT[11–14].Morerecently,thishasbeenunderstoodingeneral 1+1-dimensionalQFT:suchsingularitiescanbestudiedusingbranch-pointtwistfieldsT (and their conjugate T˜) [15]. These are fields whichexist in an n-copy replicamodel andwhich are associatedtothe(or any)generatorofthe Zn-symmetryof thereplicamodel.Theconical

twistfieldisofadifferent(butrelated)nature,anddoesneitherrequirentobeaninteger(αto be amultiple of 2π) northe model toconsistof n replicas(it existsina singlecopyof the model).Itsscalingdimension(2) agreeswiththatofthebranch-pointtwistfieldwhen nisan integerandisrelatedtoαasin(6),althoughweemphasisethatthecomputationweprovidefor thescalingdimensionoftheconicalfieldisbasedon(1) andindependentfromtheconceptof branch-pointtwistfield.Asweshallseeinmoredetaillater,conicalfieldformfactorsagreewith aparticularsubsetofthoseofthebranch-pointtwistfield[15] whereallparticleslieonthesame copy.However,thehermiticityproperty(3) andtheOPE(4) differfromthoseofbranch-point twistfields.Branch-pointtwistfieldsaregenericallynotself-conjugate,andtheirOPEsdonot involvebranch-pointtwistfieldsatdifferentvaluesofn(asnisapropertyofthemodel,notof the field),butratherdifferentelementsof theZn-symmetry.Further,theformfactorseriesfor

the vacuumtwo-point functionT(0)T˜( )n containssumsoverreplicaindices,from 1ton,

as theseparametrizethe particlesof thereplicamodel.In contrast,thatof conicaltwistfields doesnotinvolvesuchsums.Conceptually,thedifferencebetweentheconicaltwistfieldandthe branch-point twist fieldis thatthe latterreproducesbothametricsingularityandaparticular branching(ofnth-roottype),whiletheformerreproducesonlythemetricsingularity,addingor deletingspacewithtrivialbranching.

Partition functionsonRiemannsurfaceswithbranchpointshavereceivedalotofattention recentlyduetotheiruse,withinthe“replicatrick”,fortheevaluationofthevonNeumannand Rényientanglemententropies[16,17,15,18,19] andthelogarithmicnegativity[20–23].Inmost of these applications,one establishes the result for integer n, and thenperforms an analytic continuationtorealvaluesofn,whichisingeneralhardtodefineuniquelyandinvolvesacertain amountofguesswork.However,inthecaseoftheentanglemententropyforasinglehalf-infinite intervalinanyQFT,oneknowstheexactreduceddensitymatrix[24–27]2:itistheexponential

2 Theworks[24,25],wheretheresultwasobtainedforthefirsttime,arerigorousandbasedonthealgebraicformulation

(5)

oftheintegral oftherotationcurrent,exactlyasin(1) (asaconsequence ofglobalconformal invariance,onethenalsoknowsitfor asingleinterval ofany lengthinCFT,seefor instance [28]).Inthiscasetheanalyticcontinuationissimple,andthisexplainsvariousaspectsof the so-calledentanglementspectrum[29].Also,inthiscasethereduced densitymatrix isinfact proportionaltoaspecialcaseoftheconicaltwistfieldaswedefineitin(1) (andaverageswith respecttopowersofthereduceddensitymatrixarecorrelationfunctionswithasingleinsertion oftheconicaltwistfield).Here,westudy(1) forthefirsttimeasaquantumfield,takingproducts ofconicalfields,anddiscussingtheirOPEsandformfactors.

Ourmotivationfortheconsiderationofthisfieldinpartcomesfromrecentworksongluon scatteringamplitudesinplanar(Nc→ ∞)N =4 SuperYang–Mills(SYM)theory,whichare

equaltoexpectationvaluesof null polygonalWilsonloops(WLs) [30].In the simplest, non-trivialcase,thesixgluonamplitude,orequivalentlythehexagonalWL,wastentativelyidentified by[31],inthe strongcoupling regime,withthe formfactorseries forthe two-pointfunction

T(0)T˜( )n of a branch point twist field T and its hermitian conjugate T˜ in the massive

O(6)non-linearsigmamodel(NLSM).Strictlyspeaking,thisappliestothecontributionofthe scalarexcitationstotheWL,wherethereare differentexpressionsforall (particle)form fac-tors3[31–34],althoughtheirdetailedderivationisstillmissing.Aposteriori,thisidentification wassupportedbythefactthatashort-distancere-summationoftheseriesreproducestheright conformallimit andscalingdimension forthe twistfield[31–34] (with differentcomputation strategies,asmentionedbelow).

However,the formfactorseriesofT(0)T˜( )n,asfirstobtainedin[15],isinfact,strictly

speaking,differentfromthatfoundforsixgluonamplitudeorhexagonalWL.Indeed,as men-tioned,theformfactorexpansionofT(0)T˜( ) ncontainssumsoverreplicaindices.Incontrast,

sixgluonamplitudesorhexagonalWL,althoughformedoutofthesamebuildingblocks (mod-ulussquareof twistfieldformfactors) [31],donot containreplicasums.Furthermore, inthe amplitude/WLcasethevalueofnissetton=p4=54 –throughapictorialanalogywitha pen-tagon,wheretheparticlejumpp=5 timesonthe edgestogobacktoitsstartingpoint, into whichthehexagonisdecomposed.Yetnmustbeanintegerinorderforbranch-pointtwistfields tobedefined,asitcountsthenumberofreplicas;non-integervaluesofnareobtainedbyanalytic continuationsanddon’tstrictlycorrespondtotwo-pointfunctions.

Instead,wewillarguethatsixgluonamplitudes/hexagonalWLsmaybeexpressedas two-pointfunctionsVα(x)Vα(0) oftheconicaltwistfieldsintroducedabove,withα=π/2.Indeed,

the formfactorseries for Vα(x)Vα(0) isingeneral of the sameformas the series

describ-ingthesixgluonamplitudeorhexagonalWL,inparticularwithoutsumoverreplicaindex.In addition,as perthe prescription for theform factorsof ,the formfactorsinthe seriesfor

Vπ/2(x)Vπ/2(0) coincidewiththoseof thetwistfieldT whereallparticlesare onthesame

copyfor the choice n= 54, inagreement withthe amplitude/WLresult. In [31] an OPE was identified,whichcanbewrittenas

2(z)Vπ2(0)z

−4π

2+2πOhexa+ · · ·. (7)

InthisOPE,Ohexa wasinterpretedas associatedtoan“hexagon”amplitudewithformfactors

equaltothoseofthebranchpointtwistfieldT for n=32 (againwithallparticlesonthesame

thennotetheknownfactthattheTTtheorypredictsthestatetosatisfytheKubo–Martin–Schwingerconditionwith respecttotheTTmodularoperator.Inphysicsparlance,thisimpliesthatthereduceddensitymatrixistheexponentialof theLorentzboostgenerator.

(6)

copy).ThisleadstotheidentificationOhexa=,whichagainagreeswiththegeneralconical

fieldOPE(4),andfurthersupportsourconjecture.Thepowerin(7) is4π

2 −2π=

c

180.In

particular, for c=5 asinthe O(6)NLSM,thisgivesexponent 361 whichhasbeenrecovered very preciselybyre-summingthe formfactorexpansionin[31–34].In [32,33] thiswasdone by applyingtotheasymptotically freeO(6)NLSMthewell-knowncumulantexpansion [35] reviewedandemployedbelow.

Inotherwords,withthedefinitiongivenhereoftheconicaltwistfieldwehavesetonsolid groundtheinterpretationoftheformfactorseriesobtainedforgluonscatteringamplitudes/null polygonalWLs.TheexactinterpretationwasmadeinthemasslesslimitoftheO(6)NLSM, re-alisedbytheinfinite’tHooftcouplinglimit.But,assupportedinthefollowingbytheformfactor propertieswederive,wewouldexpectthisidentificationtobetrueforthemassiveO(6)NLSM realisedbythestrongcouplingregime,andsimilarconicalfieldstobeinvolvedinthefullstring NLSMreplacingtheO(6)NLSM([36] andreferencestherein)atanycoupling.Further,onecan generalisetootherpolygons:intheWLpicture,k-sidedpolygonalWilsonloopscorrespondto

(k−4)-pointcorrelationfunctions(theheptagoncorrespondstothethreepointfunction,the oc-tagontothefourpointfunction,andsoon).Finally,forthefulltheoryweexpectthattheconical twistfieldformfactorsareassociatedtoanintegrabletheorywithscatteringmatrixdefinedon theGKPvacuum[37–39].

Thepaperisorganisedasfollows:insection2weprovidearigorousQFTdefinitionof coni-caltwistfieldsanddiscusstheirpropertiesatandnearconformalcriticalpoints.Inparticularwe arguethat,unlikethemorestandarddefinitionofatwistfieldinQFTasafieldassociatedwith aninternalsymmetryofthetheory,conicaltwistfieldsareassociatedwithrotationalspace–time symmetry(henceanexternalsymmetry)andinsertconicalsingularitiescorrespondingtoexcess rotationangle α.Theymaythereforebeformally expressedas (appropriatelyregularised) ex-ponentials ofintegralsoftherotationNoethercurrentoverthelinethatstartsatthetwistfield insertion pointandextendsuptoinfinity.Insection3 wecharacterisethesamefieldsthrough theirformfactorsandwritethecorrespondingformfactorequationsforintegrable1+1 dimen-sionalQFTswithdiagonalscattering.Wegivethegeneralformofthetwo-particleformfactor and,forfreetheories,givealsoclosedformulaeforallhigherparticleformfactors.Insection4

wereview thestandardcumulantexpansion of two-pointfunctionsof localfields intermsof theirformfactorsandspecializeittoconicaltwistfieldtwo-pointfunctionsinfreetheories.For freetheoriesweobtain anexactresummationoftheleadingshort-distancecontributiontothe correlators.Insection5wetestourformfactorformulaebynumericallyevaluatingouranalytic expressionsfortheleadingshort-distancebehaviourofthecorrelatorVα(0)Vα( ) andfinding

thattheyexactlymatchtheexpecteddecayfromtheconformalOPEs.Inparticular,weobserve thattheformfactorresummationbecomessubtlewhenanyof theexcessanglesisnegativein whichcasesadetailedanalysisoftheintegrands’polestructureisrequired.Thisisreminiscent ofthekindofissuesthatarisewhenanalyticallycontinuingthecorrelatorsofbranchpointtwist fieldsfromnintegerton≥1 andreal.Wepresentourconclusionsinsection6.Aderivationof fourdefiningpropertiesoftheconicaltwistfieldispresentedinappendixA.

2. Conicaltwistfieldsinquantumfieldtheory

Theconstructionoftheconicaltwistfieldisbasedonthestandardtheoryoftwistfields asso-ciatedwithinternalQFTsymmetries.Recallthatinthequantizationontheline,atwistfield,

(7)

Vσ(x, τ )O(y, τ )=

σ·O(y, τ )Vσ(x, τ ) (y>x)

O(y, τ )Vσ(x, τ ) (y<x) (8)

whereσ·OisthetransformationofOunderσ.Throughtheusualtime-orderingprescription, acorrelationfunctionwithatwistfieldinsertionmaybeevaluatedbyapathintegraloverfield configurationswithajumpconditionacrossthecut{(y,τ ):y>x}.Thejumpconditionimposes continuitybetweenanylocalfieldOjustbelowthecut,anditstransformσ·Ojustabovethecut. Sinceσ isasymmetry,theresultonlydependsonthehomotopyclassofthecutonspace–time withpuncturesatthepositionsofotherlocalfields inthecorrelationfunction.A twistfieldis localinthesensethatitcommutesatspace-likedistanceswiththestress-energytensor,as the latterisinvariantunderσ.

Letusextendthisconcepttoactionsofσ onspace–time(externalsymmetries).Specifically, letσ bearotationclockwisebyanangleα >0 withrespecttothepointz=x+iτ.Forinstance, ifO(y,τ )hasspins,anddenotingthepositionbyacomplexcoordinatew=y+iτ,wehave

σ ·O(w)=e−isαO(e−iαw).4 Letusdenote byVα(x,τ )the correspondingconical twistfield

satisfyingtheexchange relations(8).5 Theassociatedjumpconditioninthe path-integral rep-resentationimposescontinuitybetweenfieldsjustbelowthecut{(y,τ ):y>x}andclockwise

α-rotated fieldsjustabove thecut.Intuitively, aclockwiserotationbrings thefields fromjust abovethehalf-linetoarotatedpositioninan“extra”space–timewedgebelowthehalfline,thus addingawedgecenteredat(x,τ )ofangleαandcreatinganegative-curvatureconical singular-ity.SeeFig.1.

SincerotationsformaLiegroup,theyhaveanassociatedNoethercurrentRμ(y).This imme-diatelyleadstotheexponentialrepresentationofVα(x,τ )intermsofthestress-energytensor,as

in(1).Indeed,thestandardcommutationrelationsbetweentherotationNoethercurrentand lo-calfieldsthenguaranteesthatthisexponentialgeneratesthecorrectexchangerelations(8) with

σ the clockwiseα-rotation. Clearly,conical twistfields arenot local,eveninthelargesense ofcommutingwiththestress-tensoratspace-likedistances.However,sinceRμisaconserved current,thefieldVα(x,τ )doesnotdependontheshapeofthecutemanatingfromitsposition,

but,again,onlyonitshomotopyclassonspace–timewithpuncturesatthepositionsofinserted localfields.ThisisthesenseinwhichVα(x,τ )maybeunderstoodasenjoyingacertainlocality

property.Hencewehavemoregenerally

Vα(x, τ )=

eα

dsdyμ(s)ds μνRν(y(s)) (9)

foranycurvesyμ(s)connecting(x,τ )to∞.

Intherestofthissection,wemaketheseideasmorepreciseandstatethemainpropertiesof theresultingfield.

2.1. Rotationcurrentandsingularcurvature

Inthefollowing,itwillbeconvenienttousecomplexcoordinatesz=x+iτ,z¯=x−iτ and thestress-energytensorcomponentsT = −(π/2)Tz¯z¯ andT¯ = −(π/2)TzzwiththeusualCFT

normalization,T (z)T (z)(c/2)(zz)−4,T (¯ z)¯ T (¯ z¯)(c/2)(z¯− ¯z)−4wherecisthecentral

4 Thisoperatorisnotnecessarilyholomorphicbutmaydependalsoonw¯whichtransformsaccordingly. 5 Relation(8) definesafamilyoftwistfields.ThefieldV

αisfurtherdefinedbyimposingappropriateminimality

(8)

chargeof theultravioletCFT.Wewillalso denoteby = −(π/2)Tμμ the“CFT-normalized”

traceofthestress-energytensor.Inparticular,wehave∂T¯ +=0 and∂T¯+ ¯=0. Forsimplicityweconcentrateontheconicaltwistfield:=Vα(0,0)positionedatthe

ori-gin. Notethat inorderforthe expression(1) togeneratethe correctexchangerelations, only thecommutatorsoftherotationcurrent Rμwithotherlocalfieldsarerequired.Therefore,the choiceofthecurrentRμdefiningtheconicalfieldisambiguouswithrespecttoadditionofterms proportionaltotheidentityoperator1.Thisaffectsthenormalizationofthefield.Wepropose

tolifttheambiguitybyadoptingthefollowingrotationcurrent:

iπRz= ¯zT¯−z−1

¯

zG(m|z|)1

−iπRz¯=zT− ¯z−1

zG(m|z|)1 (10)

wheremisamassscaleoftheQFTmodelandG(r)withr:=m|z|isauniversalscalingfunction with

G(0)= c

12. (11)

Attheconformalpoint,wherethereisnomassscale,thefactorG(r)istheconstantc/12 in(10). Exceptforthesingularityattheoriginin(10),givenby(11),thefunctionG(r)/risrequiredto beintegrableontheline.Itsexactformdoesnotaffecttheevaluationofcorrelationfunctions, butmightbeinvolvedintheevaluationofvacuumexpectationvaluesofconicalfieldsinmassive QFT.

AlthoughwewillnotfullyaddresstheproblemoftheexactformofG(r)here,wenevertheless proposethatthefunctionG(r)shouldtaketheform

G(r)= c

12−2r

2g(r)+

2

r

0

drrg(r), g(r)=m−2(x) C,K (12)

wheretheexpectationvalue(x) C,KisevaluatedontheplaneCwithaGaussiancurvatureK

thatissingularatthepositionoftheconicalfield,

K(x)= −2π δ(2)(x). (13)

Thesingularityin(10),withresiduespecifiedby(11),isessentialinordertoguaranteethe correctscaletransformation propertiesofthe conicalfield. Weprovidefullarguments in Ap-pendixA.A furtherjustificationforthissingularity,aswellasforthechoice(12) beyondCFT, isasfollows.Attheinsertionoftheconicalfield,aconicalsingularityemerges.Singularitiesin QFT giverisetoadditionalrenormalizations,andatthe singularpointmicroscopiceffectsare important.Inordertoaccountforthese,astandardregularizationisperformedbymakingahole inspace–timearoundthesingularity(seebelow).The limitisthentakeninwhichtheholeis madeinfinitesimallysmall.Attheboundaryofthehole,thetraceofthestress-energytensor ac-quiresanonzeroexpectationvalueproportionaltothe(negative)linearcurvature.Theboundary integralofthislinearcurvatureis−2π.Inthelimitwheretheholebecomesapoint,thismaybe replaced(inaccordancewiththeGauss–Bonnettheorem)byapunctualsingularGaussian curva-tureK(x)= −2π δ(2)(x).Weaccountforthisbyshiftingthestress-tensortracebyitsexpectation valueonthespaceCwiththesingularcurvatureK,

(9)

Theshifthasadelta-functioncontributionattheorigin,whichisinferredfromthe CFTtrace anomalyformula

(x) C,K CF T

= −cK(x)

24 . (15)

The otherelements of the stress-energytensor, Tand T¯,are shifts of T and T¯ respectively, determinedbytheconservationequations ¯T+Θ=0 andT¯ + ¯Θ=0.Accountingfor the delta-functionsingularityusing∂(¯ 1/z)=∂(1/z)¯ =π δ(2)(x),wethenobtain

T=Tc

12z2f (r)1, T¯ = ¯Tc

12z¯2f (r)1, Θ=+ cm2

12 h(r)1

where(cm2/12)h(r)= −(x) C,K andf (0)=1 (and limr→0h(r)<∞).The conservation

equationsimplythat,awayfromtheorigin,f andhsatisfyr2h(r)=f(r).Therotationcurrent takesthestandardformusingtheseshiftedstress-energytensorcomponents,iπRz= ¯zT¯ −zΘ

and−iπRz¯=zT− ¯zΘ,whichgivestheuniversalscalingfunctionG(r)=(c/12)(f (r)+r2h(r))

inagreementwith(12).

Notethatthe integrationmeasureinvolvedin(9) isdxμμνRν(x)=(dzRz−dz¯Rz¯)/(2i),

whereμνistheanti-symmetricsymbol.InCFT,thisspecializesto

dxμμνRν(x)= −

1 2π

zTdz+ ¯zT¯dz¯− c

12

dz

z +

dz¯

¯

z

1

(CFT). (16)

In the nextsubsection we provide furthercalculations showing that the choice of rotation current(16) is correctinCFT.Away formtheconformal point, theexpression(10) with(12) constitutesaconjecture.

2.2. Theconicalfield

Besidesthechoiceofthecurrent,theright-handsideof(1) requiresaregularization/ renor-malizationprocedure.Thetheorydevelopedin[10] allowsinprincipletoregularizesuch Vira-sorovertexoperatorsbyseparatingtheexponentialintoaproductofexponentialswithpositive andnegativeVirasorogenerators.However,makingthefullconnectionwith[10] isbeyondthe scopeofthispaper,andinsteadweconcentrateonamoredirectrenormalization,ifmoredifficult tocontrol.Weusean“angularrenormalization”procedurebasedonanangle-splitting prescrip-tion.Thistakesinspirationfrom[40,41] whereangularquantizationwasusedinordertostudy

U (1)twistfieldsintheDiractheory.Herenoexplicitquantizationschemeisusedandwe con-centrateoncorrelationfunctions.

Wefirstdefinearegularizedexponentialofalineintegralstartingat0inthecomplexplane. WeregularizetheTaylorexpansionasfollows:(a) a circularholeofradiusε >0 ismadearound theorigin,ontheboundaryofwhichweimposeconformalboundaryconditions,modifyingthe lowerlimit ofthe integral toaposition onthisboundary;(b) powersof theintegral are split intoproductsofintegralsalongraysatdifferentangles.Wethentakethelimitwhereallangles areequaltoeach other.Thatis,anε-regularizedexponentialisdefined,insideanycorrelation functionsonanopensetD {0},as

e

L

0 dxμfμ(x)

ε· · ·

D=

j=0

1

j!{φlimk→0}

j

k=1

Leiφk

εeiφk

dxμfμ(x)· · ·

D\εD

(10)

whereL> εandweusecomplexnumbersinordertorepresentcoordinatesintheintegration limits.Heretheellipsis· · · representpotentialinsertionsoflocalfieldsatfixedpositions.

In ordertodefinetheconical twistfields, we thentakearenormalizedlimit whereε→0 oftheregularizedexponential.Ontheplane,thefieldcorrespondingtotheinsertionofasingle conicalsingularityofexcessangleαattheoriginis:

:=lim ε→0ε

−2α

eα

0 dxμμνRν(x)

ε (18)

whereαisgivenby(2).InCFTthissuffersfrominfrareddivergences.Onemayregulatethese

infrared divergencies byafinite-volume cutoff. Forinstance, onthe disk Dof radius ,we definetheconicalfieldatposition0as

D:=lim ε0ε

−2α

eα

0dxμμνRν(x)

ε. (19)

ThelatterisinfactvalidbothinmassiveQFTandinCFT,andthelimit → ∞canbetakenin massivemodelsandreproduces(18).

RecallthatRμisaconservedNoethercurrentassociatedtotherotationsymmetry.Therefore, theintegralεe eiφiφdxμμνRν(x),insidecorrelationfunctionsontheannulusofinnerradiusεand

outerradius withconformalboundaryconditions,isinvariantunderachangeoftheangleof the path φ,as longas the pathdoes not crossthe positions of otherlocalfields inserted. As a consequence,the limits onthe angles φk in(17),on the right-hand sidesof (18) and (19),

exist:thecorrelationfunctionsareindependentoftheanglesφkiftheyarenearenoughtoeach

other.

Notethat,againusingcurrentconservation,itisnotnecessarytotakepathsthatarestraight rays: for thepurpose of theconical twistfield, the regularizedexponentialcanbe definedby taking,for thekth termof the Taylorexpansion, anycollection ofk non-crossing pathsfrom oneboundary totheotherofthe annulus,andbytaking thelimit,orderbyorder,wherethey accumulatetoasinglerayfromεto .

In AppendixA,weprovide fieldtheoryargumentsfor thefollowingstatements.PointIIis expressedhere,andshowninAppendixA,inthecaseα∈ [0,2π )forsimplicity.

I. Thelimitε→0 in(18) and(19) exitsandisfiniteinsidecorrelationfunctions.

II. Thefield (onthediskortheplane)implementsaconicalsingularityattheoriginofangle

2π+α:it makesacut onL=(0, )andinsertsthereawedge inadisjoint copyof D boundedbythesegmentsL+=(0, )andL=eiα(0, ),byestablishingatLcontinuity frombelowtoL,andfromabovetoL+(take → ∞fortheplane).

III. Thefield (onthediskortheplane)behavesasaspinlessscalingfieldatposition0with

scalingdimension2α givenby(2).

IV. Thefieldisconformallynormalized,thatis

D= −2α (CFT). (20)

NotethatPropertiesIIandIIIimplytheOPEs(4) (and(5)):astwoconicalfieldsapproacheach other,theirassociatedexcessanglesmustaddup,andtheensuingsingularityisdeterminedby thescalingdimensionsofthefieldsinvolved.

Let us be more precise concerning Property II. Recall that we may construct a manifold

Mα, withaconicalsingularityasfollows;forsimplicitywerestrictourattentiontoα(0,π ).

(11)

boundaryofthe disk.Theresultholdsas wellontheplanebytaking → ∞,with( D)→∞

identifiedwiththe plane C.Let D(j ),j =0,1,2 be threecopies of the disk. Considertwo copiesof the diskminussegments,Dˇ(1)= D(1)\ [0, )and Dˇ(2)= D(2)\e[0, ),anda copy of the punctured disk Dˇ(0) = D(0)\ {0}. Forany 0≤a < b≤2π, denotethe subsets

{z∈ ˇD(j ):arg(z)(a,b)}byDˇ(j )(a,b).Themanifoldcanbecoveredbythreepatches:thetwocut disksDˇ(1)andDˇ(2),andawedgeDˇ((0)α,α).Thetransitionfunctionsbetweenthesepatchesare

U(21): ˇD((02),2πα)→ ˇD((10),2πα), U(10): ˇD((1)α,0)→ ˇD((0)α,0), U(02): ˇD((00),α)→ ˇD((2)α,0)

(21)

withU(21)(z)=z,U(10)(z)=zandU(02)(z)=eiαz.ItisclearthatMα, hasexcessangleα

attheorigin:itisamanifoldwithaconical singularityattheorigin. PointIIabove maythen beexpressedasfollows.ConsideraproductoflocalfieldsjOj(xj)fordisjointcoordinates

xj∈ D\ {0}lyinginthediskofradius minustheorigin.Then,

Vα(0)jOj(xj) D

Vα(0) D =

j

Oj(U (xj))

Mα,

(22)

forany Oj(xj),whereU: D\ {0}→Mα, maps D\ [0, )into Dˇ(1) andmaps(0, )into

ˇ

D(0),inbothcasesasU (z)=z.InsertionsoflocalfieldsinotherregionsofM

α, areobtained

bycontinuationinthepositionsxj.

Remark.Whentheangleαisanintegermultipleof2π,itispossibletoconnectconicalfields

withordinarytwistfields,inareplicamodel,associatedwithspecialelementsofthepermutation group.Considerforinstancethetwo-pointfunctionVα(x)Vα(0) forα=2π(n−1)andα=

2π(n−1)withn,n∈N.Considerareplicamodelcomposedofm=n+n−1 copiesofthe originalmodel, andthe twistfieldsT(1···n) andT(n···m) associatedtothepermutation elements

(1· · ·n)and(n· · ·m) that,respectively,cyclicallypermutethecopies1,. . . ,n,andthe copies

n,. . . ,m.ThenVα(x)Vα(0) = T(1···n)(x)T(n···m)(0).Ineffect,thecopynumbernisidentified

withtheoriginalplane,andtheextracopiesbelowandabovenwiththeextraspaceintroducedby theconicalsingularities.Suchconstructionshoweveronlyworkforexcessanglesthatareinteger multiplesof2π,althoughanaturalanalyticcontinuationinnandmofT(1···n)(x)T(n···m)(0) will

givethecorrectcontinuationtoothervaluesofαandα.

3. Formfactorapproachtoconicaltwistfields

InmassiveQFTanalternativewaytodefinetheconicaltwistfieldsistofullycharacterisetheir matrixelements.Wethereforeturntothedescriptionof1+1-dimensionalQFTonMinkowski space–timeintermsofitsHilbertspaceofasymptoticrelativisticparticles.Wewillverifythat (intheUVorshort-distancelimit)thecorrectOPEs(4),andinparticular(5),arerecovered,thus lendingsupporttothefactthatthefieldwhoseformfactorswedescribehereisindeedtheconical twistfieldintroducedabove.

Inthecontextof1+1-dimensionalQFT,formfactorsaredefinedastensorvaluedfunctions representingmatrixelementsofsome(local)operatorO(x)locatedattheoriginx=0 between amulti-particlein-stateandthevacuum:

FO|μ1...μk

(12)

Fig. 2.Apictorialrepresentationoftheconicaltwistfieldk-particleformfactor.Theredhorizontallinerepresentsthe branchcutinducedbytheconicalsingularity.

Here|θ1,. . . ,θk inμ1,...,μkrepresentthephysical“in”asymptoticstatesofmassiveQFTand0|is

thevacuumstate.Multi-particlestatescarryindicesμi,whicharequantumnumbers

character-izingthevariousparticlespecies,anddependontherealparametersθi,whicharetheassociated

rapidities.Therapiditiescharacterizetheenergyandmomentaofparticlesin1+1 dimensions throughthewell-knownrelations=coshθ and=sinhθ,where isthemass

of particle μ. The form factorsare defined for all rapiditiesby analytically continuing from someorderingoftherapidities;afixedorderingprovidesacompletebasisofstates,forinstance

θ1> θ2>· · ·> θk isthestandardchoicetodescribein-states.

In1+1-dimensionalintegrableQFTthereisawell-knownapproachknownastheformfactor programmewhichprovidesasystematicmeansto(apriori)computeallmatrixelements(23) for anylocalfieldO [4,7].The “standard”formfactorprogrammegenerallyrelies onlocalityof operators. Nonetheless, we willnow see that we canalso developsuch aprogrammefor the conicaltwistfieldsbyslightlyalteringandadaptingtheformfactoraxiomsfoundin[4,7].

Letusdenoteby

FVα|μ1...μk

k 1, . . . , θk):= 0|Vα(0)|θ1, . . . , θk inμ1,...,μk (24)

the formfactorsof theconical twistfieldwithexcessangle α.Wemayrepresentthese func-tionspictorially asshowninFig.2.Becauseof relativisticinvarianceandspinlessness ofthe conicaltwistfields,theseformfactorsmustonlydependontherapiditydifferences;inthe two-particlecase,theythenbecomefunctionsofonlyonevariable,θ=θ1−θ2andsowewillwrite FVα|μ1μ2

2 (θ )forthetwo-particleformfactor.

TheformfactorprogrammeisaRiemann–Hilbertproblemfortheformfactors(2),thatisaset ofconsistencyequationswhichestablishtheirmonodromypropertiesandsingularitystructure. Itwasshownin[15] thatthestandardformfactorequations[4,7] canbemodifiedtoencompass (local)branchpointtwistfieldsdefinedonreplicatheories.Notethattheformfactorequations derived in[15] are infact very similartoequations foundpreviouslyin[42],althoughinthe latteradifferentmotivation(i.e. describingtheUnruheffect)wastaken,withentirelydifferent interpretationofthesolutions.

(13)
[image:13.485.157.313.69.139.2] [image:13.485.156.317.180.239.2]

Fig. 3. A pictorial representation of Watson’s equation (25).

Fig. 4. A pictorial representation of Watson’s equation (26).

Fig. 5. A pictorial representation of the kinematic residue equation (27).

Fig. 6. A pictorial representation of the kinematic residue equation (28).

3.1. Theconicalfieldformfactorequations

Itisintuitivelynottoohardtoseehowtheequationsfrombranchpointtwistfieldsmaybe adaptedtothenon-localconicaltwistfielddefinedearlier.Letthetwo-particlescatteringmatrix betweenparticlesμ12be1μ2(θ )(weassumeforsimplicitythatthereisnobackscattering)

andletμ¯representtheanti-particleofμ.Weproposethefollowingconicaltwistfieldformfactor equationsandrepresentthempictoriallyinFigs.3, 4, 5and 6:

FVα|...μiμi+1...

k (. . . , θi, θi+1, . . .)=Sμiμi+1(θi i+1)F

|...μi+1μi...

k (. . . , θi+1, θi, . . .), (25)

FVα|μ1μ2...μk

[image:13.485.163.307.279.349.2] [image:13.485.164.309.388.474.2]
(14)

Res

¯

θ0=θ0

FVα| ¯μμμ1...μk

k+2 ¯0+iπ, θ0, θ1. . . , θk)=iFV

α|μ1...μk

k 1, . . . , θk), (27)

Res

¯

θ0=θ0

FVα| ¯μμμ1...μk

k+2 ¯0+iπ, θ0−iα, θ1. . . , θk)

= −i

k

i=1

Sμμi(θ0i−iα)F

|μ1...μk

k 1, . . . , θk). (28)

Itisworthpointingoutthatequation(28) isactuallynotindependentfrom(27) (thisisalso trueforthetwokinematicresidueequationsforthebranchpointtwistfieldgivenin[15]).Itis easytoshowthat(28) becomes(27) afterrepeateduseof(25),(26) andcertainbasicproperties ofthescatteringmatrixsuchasunitarity1μ2(θ )Sμ2μ1(θ )=1 andcrossing1μ2+iπ )= 2μ¯1(θ ).However, bothequations (28) and(27) are physicallyimportant sincetheyimply

thepresenceoftwo(ratherthanone)kinematicpoles,andthishasabearingindeterminingthe analyticstructureoftheformfactors.Furtheruseof(25),(26),(27) and(28) doesnotgenerate morekinematicpoles.Asusual,therewillanadditionalresidueequationinthecasewhenbound state polesare present.Thiswill be identicalto thebranchpoint twistfieldbound state pole equationthatcanbefoundin[15] (equation (6.8))whenrestrictedtoparticlesonthesamecopy. LetusnowconsiderWatson’sequations(25)–(26) forthetwo-particleformfactors.Asnoted earlier,thesearefunctionsoftherapiditydifferencesonlysowecanwrite

FVα|μ1μ2

2 12)=1μ212)FV α|μ2μ1

2 (θ12) (29)

withθ12:=θ1−θ2and

FVα|μ1μ2

2 12+2πi)=FV

α|μ2μ1

2 (θ12+iα), (30)

or,combiningbothequations:

FVα|μ1μ2

2 12)=1μ212)FV α|μ2μ1

2 (θ12)=FV

α|μ2μ1

2 (θ12+i(2π+α)). (31)

Thekinematicresidueequationsontheotherhandtellusthat

Res

¯

θ0=θ0 FVα| ¯μμ

2 ¯0−θ0+iπ )=iFV

α

0 , (32)

and

Res

¯

θ0=θ0 FVα| ¯μμ

2 ¯0−θ0+i+π ))= −iFV

α

0 , (33)

whereFVα

0 = isthevacuumexpectationvalueoftheconicaltwistfield.Itturnsoutthat,

undertheidentification(6),theseareexactlythesameequationsassatisfiedbythetwo-particle formfactorofabranchpointtwistfieldonann-copyreplicamodel,iftheparticlesμ12,μ,μ¯

areallsettolieinthesamecopyofthereplicamodel.Thismeansthatthesamegeneralsolution foundin[15] willalsosolvetheequationsabovegiving:

FVα|μ1μ2

2 (θ )=

sinπn

2nsinh

iπθ

2n

sinh

iπ+θ

2n

FV

α|μ1μ2

min (θ )

FVα|μ1μ2

min (iπ )

, (34)

whereαisrelatedtonasper(6),andwhereFVα|μ1μ2

min (θ )isaminimalformfactor,thatis,a

(15)

Herewehaveexpressed(34) intermsofthevariablenasformulaearesimpler.Wemaynow testthenewformfactorequationsandtheirsolutionsbyinvestigatingthe(massive)correlators ofthefieldswhoseconformalOPEsweregivenin(4)–(5).Hereforsimplicityandinorderto illustratetheconceptsintheclearestfashionpossible,wewilldothisforfreetheories,forwhich alsohigherparticleformfactorscanbeobtained.WewillshowthattheCFTscalingbehaviour isexactlyrecoveredatshort-distancesfromaformfactorexpansion.

3.2. Freetheories

Thesimplestmodelstoconsiderareofcoursefreetheories,thatisthefreeMajoranaFermion andfree Klein–Gordon Boson theories withrelativisticscattering matrix S(θ )= ∓1, respec-tively. Inthiscase thereisonlyone particletype(so we maydrop theparticle indices μi in

theformfactors).BoththesetheorieshaveaninternalZ2symmetrieswhichimpliesonly even-particleformfactorsarenon-vanishing.Thetwo-particleformfactorisgivenby(34) with

FVα

min(θ )=

isinh2θn for the free Fermion

1 for the free Boson. (35)

Clearly,wehave

FVα

2 (θ )=

FVα

2 (θ ) for the free Fermion FVα

2 (θ ) for the free Boson.

(36)

Duetothefreenatureofthesetheories,andinparticularthefactthattheconicaltwistfieldisan exponentialofquadraticexpressionsinfreefields,the2k-particleformfactorsadmitremarkably simpleexpressions.Theycanbeexpressedas

FVα

2k 1, . . . , θ2k)=

Pf(K) for the free Fermion

Hf(K) for the free Boson, (37)

wherePf isthePfaffianandHf istheHaffnianofthematrixKdefinedas6

Kij=

FVα

2 (θiθj)

. (38)

RecallthatthePfaffianofanantisymmetricmatrixKisgivenby

Pf(K)=det(K) (39)

whereastheHaffnianisgivenby

Hf(K)= 1 k!2k

σS2k

k

i=1

Kσ (2i−1) σ (2i), (40)

whereS2kisthesetofallpermutationsofZ2k= {1,2,. . . ,2k}.Thusthetwo-particleformfactor

(38) isthebuildingblockofallhigherparticleformfactorsoftheconicaltwistfield.Since

6 Notethatthesameobjectwas(mistakenly)namedthePermanentin[51] eventhoughthesamedefinition(40) was

(16)

wewillbeusingtheexpression(38) repeatedlyinthefollowingcomputations,wewillfromnow onusetheshorternotation:

Kij:=f (θij;α), (41)

withαgivenin(6) andθij=θjθj.

4. Cumulantexpansion

In1+1-dimensionalQFTwehavethatthe(normalized)logarithmofthetwo-pointfunction oflocalfieldsO1,O2admitsanexpansionoftheform[35,49,50]

log

O1(0)O2( )

O1 O2

=∞

j=1

cj12( ), (42)

with

c12j ( )= 1 j!(2π )j

N

μ1,...,μj=1

−∞ 1· · ·

−∞ dθj h

12|μ1...μj

j 1,· · ·, θj)e

m ji=1coshθi,

(43)

wherethe functionsh12j |μ1...μj(θ1,· · ·,θj)aregivenintermsof theformfactorsof thefields

involved,N isthenumberofparticlesinthespectrumandμi representtheparticle’squantum

numbers.Forexample:

h121|μ(θ )= FO1|μ

1 (θ )

FO

† 2|μ

1 (θ )

O1 O2

h12|μ1μ2

2 1, θ2)=

FO1|μ1μ2

2 1, θ2)

FO

† 2|μ1μ2

2 1, θ2)

O1 O2 − h12|μ1

1 1)h

12|μ2

1 2), (44)

andsoon.Herewehaveusedthegenericproperty:

μj···μ1θj. . . θ1|O2(0)|0 = 0|O

2(0)|θ1. . . θjμ1···μj=:F

O† 2|μ1...μj

j 1, . . . , θj). (45)

The expansion (43) with(44) isusually referredtoas thecumulantexpansion of the two-pointfunction(seee.g. [35,49,50])anditisparticularlywellsuitedfor extractingthe leading log behaviourofthetwo-pointfunctionsform 1 (wheremisamassscale)providedthat thecumulantsh12j |μ1...μj(θ1,· · ·,θj)satisfycertainasymptoticpropertiesintherapiditiessothat

theintegrals(43) arefinite.Forsimplicityletusconsidertemporarilythecaseofasingleparticle specie,andoperatorsO1,O2thatarespinless.Ifallformfactorsareknown,onemayextractthe

leadingUVbehaviourbyemployingthefactthatrelativisticinvarianceimpliesthatallform fac-torsdependonlyonrapiditydifferences.Asaconsequence,oneoftherapiditiesintheintegrals (43) maybeintegratedover,leadingto

c12j ( )= 2 j!(2π )j

−∞ 2· · ·

−∞

(17)

whereK0(x)isaBesselfunctionand

dj2= ⎛ ⎝j

p=2

coshθp+1

⎞ ⎠

2

j

p=2

sinhθp

⎞ ⎠

2

. (47)

Providedthefunctionsh12j (02,· · ·,θj)vanishforlargeθks,wemay,form 1,expandthe

BesselfunctionasK0(m dj)= −log −γ +log 2−log(mdj)+ · · · whereγ=0.5772157...

istheEuler–Mascheroniconstant.Form 1 weexpectthebehaviour

log

O1(0)O2( )

O1 O2

m 1

= −x12log −K12+ · · · (48)

wherex12isaconstantthatcapturestheshort-distancepowerlawofthecorrelator(describedby

CFT)andK12 isaconstantgenerallyrelatedtotheexpectationvaluesandconformalstructure

constantsofO1andO2.

Comingback tothe generalcasewithpotentially manyparticlespecies, usingthe leading termintheBesselfunctionexpansionintheseries(42) oneobtains

x12= ∞

j=1

2

j!(2π )j N

μ1,...,μj=1

−∞ 2· · ·

−∞ dθjh

12|μ1...μj

j (0, θ2,· · ·, θj). (49)

AsimilarexpressioncanbefoundfortheconstantK12asshownin [50].

Wenotethatthecumulantexpansionmethodwasappliedinthecontextofgluonscattering amplitudes/WL in[32,33].In this contextthe O(6) NLSMis considered,and yields double-logarithmicterms(log log)in(48).Similardouble-logarithmtermsarealsofoundinthe branch-pointtwistfieldtwo-pointfunctionof thefreebosonmodel[51,53].Nevertheless,theleading logarithmisstillpresent,andtheconstantx12isstillrelatedtotheshort-distancedominantpower

law.

4.1. Cumulantexpansionforconicaltwistfieldsinfreetheories

Weusethecumulantexpansionabove,andobtain

log

Vα(0)Vα( )

=∞

j=1

cαα2j( ) (50)

with

c2ααj( )= 1 (2j )!(2π )2j

−∞ 1· · ·

−∞

2j hαα

2j 1,· · ·, θ2j)e

m

2j

i=1

coshθi

. (51)

Comparedto(46) wehavedroppedtheμ1,. . . ,μj super-indicesinhj asfromnowonwewill

workonly withone particletype. Wealso sum over evenparticle numbersonly, as for free theoriesallothertwistfieldformfactorsarezero.

(18)

ustowritesimplecloseformulaeforthecumulantexpansion(51).Inordertobetterunderstand thisstructureletusconsideraparticular example,namelythefour-particlecontributiontothe expansion(51).Weneedtocompute

h4αα(θ1,· · ·, θ4)=F4Vα(θ1, θ2, θ3, θ4)F4Vα(θ1, θ2, θ3, θ4)∗−F2Vα(θ12) 2

FVα

2 34) 2

FVα

2 13)

2FVα

2 24)

2−FVα

2 14)

2FVα

2 23)

2. (52)

Astandardpropertyoffreetheoriesisthatwhenthefour-particlecontributionaboveiswritten intermsoftwo-particleformfactors(using(37))thethreetwo-particlecontributionsaboveare identicallycancelledandonlysixtermsremainthatcanbewrittenas

hαα4 1, θ2, θ3, θ4)int=6f (θ12;α)f (θ23;α)f (θ34;α)f (θ14;α), (53)

wherethe superscript“int”means equality underintegrationinallrapidities(inotherwords, thesixtermsareallequalunderrelabellingoftherapidities).Thispropertyholdsbothforfree FermionsandfreeBosonsandgeneralisestoallfunctionshαα(θ1,· · ·2j)withtheprefactor6

abovegeneralisingto(2j−1)!sothatwemaywrite

hαα2j1,· · ·, θ2j)

int

=(2j−1)!f (θ12;α)f (θ1 2j;α)j−1

k=1

f (θ2k+1 2k+2;α)f (θ2k2k+1;α)

int

=(2j−1)!f (θ12;α)f (θ2j1;α)

j−1

k=1

f (θ2k+1 2k+2;α)f (θ2k+1 2k;α),

(54)

up tothe identificationθ2j+1≡θ1. Inthe secondline we haveused thefact that f (θ;α)∗=

f (θ;α)=f (θ;α)forfreeFermionsandf (θ;α)∗=f (θ;α)=f (θ;α)forfreeBosons. Wecanthereforewrite

cαα2j( )= 1 (2j )(2π )2j

−∞ 1· · ·

−∞

2jem

2j

i=1coshθif (θ

12;α)f (θ2j1;α)

×

j−1

k=1

f (θ2k+1 2k+2;α)f (θ2k+1 2k;α), (55)

whichisvalidbothforfreeFermionsandBosons.

4.2. Exactshort-distanceasymptoticsofcorrelationfunctions

Asshownbyequation(49) andbycomparingtotheshort-distanceCFTpredictions(4)–(5) wemayextracttheshortdistanceasymptotics

log

Vα(0)Vα( )

m 1

= −xααlog +log

+α +α

αα

. (56)

Comparingto(4)–(5) weexpectthat

(19)

Ontheotherhand,combiningtheformfactorexpansions(55) withthegeneralresults(46) and (49) weobtain

xαα=

j=1

1

j (2π )2j

−∞ dx2· · ·

−∞

dx2jf (

2j

k=2

xk;α)f (x2j;α)

×

j−1

k=1

f (x2k+1;α)f (x2k;α) (58)

wherewechangedvariablesto

xk=θk,k+1 for k=2, . . . ,2j−1, (59)

andx2j=θ2j wehave,inparticularthat

θ2= 2j

k=2

xk. (60)

Theexpressionsabovecanbesimplifiedfurtherbyfactoringintegralsdependingonodd-labelled andeven-labelledvariablesafterintroducinganewvariabley=jk=1x2k sothat

xαα=

j=1

1

j (2π )2j

∞ −∞ dy ∞ −∞ dx2· · ·

−∞

dx2j−1f (y

j−1

k=1

x2k+1;α)f (y

j−1

k=1 x2k;α)

×

j

k=2

f (x2k1;α)f (x2k;α)= ±

j=1

1

j (2π )2j

−∞

dy Gj(y;α)Gj(y;α), (61)

wheretheplussignisforthefreeBoson,theminussigncorrespondstothefreeFermion.Here

Gj(y;α)=

−∞

ds1. . . dsj−1f (y+

j−1

k=1 sk;α)

j−1

k=1

f (sk;α)

=

−∞

dx Gj−1(y+x;α)f (x;α) (62)

for j >1 andG1(y;α)=f (y;α). Theintroduction of the functionsGj(y;α) togetherwith

therecursiverelationaboveprovidesapowerfulnumericalrecipefortheevaluationofthesum (58).Indeedasimilarrecursivestructurewasexploitedin[54,51] inordertofindanevenmore efficientwaytoevaluatetheintegrals(61).Thisisbasedonusingtherelation

−∞

dy Gj(y;α)eiys= ˆf (s;α)j, (63)

wheref (sˆ ;α)istheFourier-transformedtwo-particleformfactor

ˆ

f (s;α)= ∞

−∞

(20)

Thisinturnmeansthatwecanwrite

Gj(y;α)=

1 2π

−∞

dsf (sˆ ;α)je−isy, (65)

sothattheevaluationofeveryfunctionGj(y;α)isreducedtothecomputationofasingle

inte-gral.Furthermore,oncewehavewrittenGj(y;α)intheform(65) theinfinitesum(61) canbe

computedexactlyto:

xαα= ∓

1

(2π )2 ∞ −∞ dy ∞ −∞ ds1 ∞ −∞ ds2log

1−f (sˆ 1;α)f (sˆ 2;α

)

(2π )2

e−iy(s1+s2)

= ∓ 1

2π ∞ ∞ dslog

1−f (sˆ ;α)f (ˆ−s;α

)

(2π )2

, (66)

whereweusedthedefinition δ(xa)=21π−∞dye−iy(xa) oftheDiracdeltafunction.The minussigncorrespondstothefreeBosontheoryandtheplussigntothefreeFermiontheory.All thatisleftnowistocomputethefunctionf (sˆ ;α).Thisisfeasibleforfreetheories.Thefunction isnotparticularlysimplebutitisveryeasytoevaluatenumericallyinthecontextoftheintegral above.Wehave

ˆ

f (s;α)= 1 ns+i

e−iπn 2F1(1,1ins,2ins;e−i)ei 2F1(1,1ins,2isn;eiπn)

− 1

ns−i

e−iπn 2F1(1,1+ins,2+ins;e− iπ

n)e iπ

n 2F1(1,1+ins,2+ins;e iπ

n)

,

(67)

forthefreeBosonand

ˆ

f (s;α)= csc

π

2n

2ins−3

e−iπn 2F1(1,3

2−ins, 5

2−ins;e

−iπ n)

eiπn 2F1(1,3

2−ins, 5

2−isn;e

iπ n)

− csc

π

2n

1+2nis

e−i 2F1(1,1

2+ins, 3

2+ins;e

−iπ n)

eiπn 2F1(1,1

2+ins, 3

2+isn;e

iπ n)

+ csc

π

2n

1−2nis

e−i 2F1(1,1

2−ins, 3

2−ins;e

−iπ n)

eiπn 2F1(1,1

2−ins, 3

2−isn;e

iπ n)

+ csc

π

2n

2ins+3

e−iπn 2F1(1,3

2+ins, 5

2+ins;e

−iπ n)

eiπn 2F1(1,3

2+ins, 5

2+isn;e

iπ

n) , (68)

(21)

Althoughtheformulaearemoreinvolved[50,51] itisalsopossibletowritedownaformfactor expansionoftheconstantterm ontherighthandsideof(56).Thiswouldprovideinformation aboutparticularratiosof expectationvaluesandstructureconstants.Wewillnotconsiderthis quantityherebutitwillbeinterestingtostudyitinthefutureandtounderstanditssignificance withintheapplicationofconicalfieldstothecomputationofscatteringamplitudesofgluonsin planarN =4 SYMtheory.

5. Numericalresults

Inthissection we presentacomparisonbetweenthe numericalevaluationof theformulae givenintheprevioussectionandtheanalyticalformulaepredictedfromCFT.

5.1. Thecaseα,α≥0

Wemaynowstudythesum(58) inmoredetailforfreeFermionsandBosonsandfor partic-ularchoicesofαandα.Wewillfocusfirstonthecaseα,α≥0 whichcorrespondstotaking

n, n≥1. Thecaseα=α isofparticularinterestasthiswasthecaseconsideredin[31]. Al-thoughthe fullre-summation (66) canbe done infree models,it is instructive,from amore generalperspective,towritexαα=

j=1x

(j )

αα andconsiderthefirst fewcontributionstoxαα

accordingto(61).Forj=1 wehave

xαα(1)= 1 (2π )2

−∞

dx f (x;α)f (x;α)= ⎧ ⎨ ⎩

1 2π n

n−1

nsinπ n

1

π

for the free Fermion

1 2π n

n−1

ntanπn + 1

π

for the free Boson.

(69)

Forj=2

xαα(2)= ± 1

2(2π )4 ∞

−∞

dy G2(y;α)2 where

G2(y;α)= ∞

−∞

dx f (y+x;α)f (x;α), (70)

whereagaintheplussigncorrespondstothefreeBosonandtheminussigncorrespondstothe freeFermion.ItispossibletocomputethefunctionG2(y;α)exactly:

G2(y;α)=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

2"4π(n−1)tan"2πn#cosh"2yn#−ycsch"2yn#"cosh"yn#−2 cos"πn#+1##

n2sec2"π 2n # cos 2π n

−cosh"yn# for the free Fermion

4π (1−n)cot"πn#−2ycoth"2yn#

n2csc2"π n

#

cos2nπ−cosh"yn# for the free Boson.

(71)

Theseanalyticalexpressionscanthebeusedtoevaluatetheintegralforxαα(2)numerically.

(22)
[image:22.485.70.394.67.179.2]

Fig. 7.Thesolidcurvesrepresentthefunctionxαα=4α−22αforthefreeBosonandfreeFermion,respectively.

Theyareevaluatedexactlyfromtheformula(2) fordifferentvaluesofn=2απ+1.Thedashedcurvesrepresentdifferent approximationskmax

k=1x

(k)

αα ofthesevaluesthroughtheformfactorexpansion(61).Thereddashedcurvecorresponds

tokmax=1,thegreendashedcurveisthevaluekmax=2,thecyandashedcurveisthevaluekmax=3 andthedashed bluecurveisthevaluekmax=4.InthefreeBosoncaseweobserveveryclearconvergencetothepredictedvalue.In thefreeFermionconvergenceisevenbetter,buttheserieskmax

k=1x

(k)

αα isalternatingsothataddingtermstotheseries

[image:22.485.71.397.272.385.2]

alternativelyovershootsandundershootstheexactvalue.

Fig. 8.Thesolidcurvesrepresentthefunctionxαα=2α+2α−2α+αforα=2π(n−1)andα=2π(2n−1)for

thefreeBosonandfreeFermion,respectively.Theyareevaluatedexactlyfromtheformula(2) fordifferentvaluesofn. Thedashedcurvesrepresentdifferentapproximationskmax

k=1x

(k)

αα ofthesevaluesthroughtheformfactorexpansion

(61).Thereddashedcurvecorrespondstokmax=1,thegreendashedcurveisthevaluekmax=2,thebluedashedcurve isthevaluekmax=3.TheconvergencepatternissimilartothatinFig.7.

Fig. 9.Thesolidcurvesrepresentthefunctionxαα=2α+2α−2α+αforα=2π(n−1)andα=2π(5n−1)for

[image:22.485.71.395.457.568.2]
(23)
[image:23.485.78.401.66.180.2]

Fig. 10.Thesolidcurvesrepresentthefunctionxαα=2α+2α−2α+αfordifferentvaluesofαandαforthe

freeBosonandfreeFermion,respectively.Thesolidcirclesarethenumericaloutputsfromintegrating(66) forthefree Bosonandthesolidtrianglesarethenumericalvaluesof(66) forthefreeFermion.AgreementwiththeCFTprediction isperfect.

Astrongertestcanbecarriedoutbyemployingdirectlythere-summedexpression(66).In thiscase,theagreementisperfectoverthewholerangeofvaluesofn≥1.Someexamplesare givenbelow,seeFig.10.

5.2. Thecaseα,α<0

Intheexamplesabovewe havealwaysconsideredpositiveexcessangles.Howeverwecan alsoconsidersituationswheretheexcessanglesarenegative.Negativeexcessanglescorrespond tovaluesofn<1 andthisgivesrisestosomedifficultieswhentryingtoevaluatetheformfactor expansion(61).Wecaneasilyappreciatethisifwetrytoevaluatethefirstcontributiontoxα,α.

In thiscase,if α=2π(n−1)withn≥1 thenα=2π(1−n)<0. Letus computejustthe leadingcontributiontoxα,α,givenby

xα,(1)α= 1 (2π )2

−∞

dx f (x;α)f (x; −α). (72)

ThisfunctioncanbeevaluatednumericallyandtheresultcanbecomparedtotheCFTprediction

xα,(1)α =2α+2α= c(n−1)

2

6(n−2)n. Note that for n=1 we have α=0 sothere is no conical

singularityandtheconicaltwistfieldsarejusttheidentity(sothepowerlawisexactly0).For

n=2 ontheotherhand−α= −2π whichmakesnogeometricsense,hencethesingularityin thescalingdimensions.Letusjustconsidervalues1≤n<2.TheresultsareshowninFig.11. TheoscillationsobservedinFig.11revealsomethingabout thestructure ofthe integral(72). The picksoccur for n=2−21m with m=1,2,· · · Theseare the values of n for whichthe functionf (x;−α)hasapoleatx=0.Asweknow,thefunctionsf (x;α)haveakinematic polestructurewithpolesontheextendedphysicalsheetatx=iπandx=iπ(2n−1)=i+α)

and,moregenerallyatallpointsoftheform

xk=iπ(2nk±1) for k=0,±1, . . . (73)

Forn>1 noneofthepolesabovecrossestherealline:xk=0 forn= ±21k whichisalwaysless

than1.However,thesituationisdifferentforthefunctionf (x;−α).Inthiscasethepolesare

Figure

Fig. 1. A pictorial representation of the conical twist field Vα(x, τ). The red horizontal line represents the branch cutinduced by the conical singularity, and the arrows represent the continuous path a local field takes when continued aroundthe position (x
Fig. 3. A pictorial representation of Watson’s equation (25).
Fig. 7. The solid curves represent the function xαα = 4�α − 2�2α for the free Boson and free Fermion, respectively.They are evaluated exactly from the formula (2) for different values of n = 2απ +1
Fig. 10. The solid curves represent the function xαα′ = 2�α + 2�α′ − 2�α+α′ for different values of α and α′ for thefree Boson and free Fermion, respectively
+2

References

Related documents

Conclusion: Cancer stem cell-like cells possess mesenchymal characteristics and EMT ability, and cyclin D1 involves in EMT mechanism, suggesting that EMT of cancer stem

  Al   Wright,    Cal   State   University   Northridge.. This document may not

We found that combination therapy inhibits IDO and GCN2 in all three cell types, but it reduces mTOR pathway activation only in MDSCs and LLCs (Figure 5A and

determined by hip flexion demands and that psoas activity is not consistent with either lumbar sagittal moment or spine compression demands – we question the often cited notion

— When you upgrade from Release 1.0 to Release 6.0, you must program the features listed in Table 7, then the features listed in Table 8, then the features listed in Table 9,

Based on re-keying techniques by Abdalla, Bellare, and Borst [1, 2], we consider two black-box secure block cipher based symmetric encryption schemes, which we prove secure in

Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Stone

For Communication purpose [13] used a new technology called as “The open-service gateway initiative” (OSGi). The most sticking feature of OSGi is operational