• No results found

Excimer laser microlithography at 193 NM

N/A
N/A
Protected

Academic year: 2019

Share "Excimer laser microlithography at 193 NM"

Copied!
203
0
0

Loading.... (view fulltext now)

Full text

(1)

Theses

Thesis/Dissertation Collections

12-1-1994

Excimer laser microlithography at 193 NM

Bruce W. Smith

Follow this and additional works at:

http://scholarworks.rit.edu/theses

This Dissertation is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contactritscholarworks@rit.edu.

Recommended Citation

(2)

by Bruce W. Smith

A thesis submittedin partial fulfillment of the requirements for the degree of Ph.D.

inthe Center for Imaging Science at the Rochester Institute of Technology

December 1994

Signature of Author _

Accepted by __M,-,,-=a:.:...:rk..:...=D-=--"-'--F.=a"-'-ir=ch:..:.;ic:.::1d=---- _

(3)

Certificate of Approval

Ph.D. Degree Thesis

The Ph.D. Degree Thesis of Bruce W. Smith has been examined and approved by the

thesis committee as satisfactory for the thesis requirement for the Ph.D. degree in Imaging Science

Dr. Dana Marsh, Thesis Advisor

Dr. Jonathan Arney

Dr. Pantazis Mouroulis

(4)

Thesis release pennission

Title of Thesis: EXCIMER LASER MICROLITHOGRAPHY AT 193 NM

Pennission to reproduce this thesis in whole or in part can be obtained by contacting the author, Bruce W. Smith at the following address:

Rochester Institute of Technology Microelectronic Engineering Dept. 82 Lomb Memorial Drive

Rochester, N.Y. 14623-5604

Signature:

Date:

(5)

by Bruce W. Smith

Submittedto the

CenterforImaging Science

inpartialfulfillmentoftherequirements forthePh.D. Degree

attheRochester Institute ofTechnology

ABSTRACT

As integratedcircuitdevicesare pushedtowardhigherspeeds, higherpackingdensities,

andlowerpowerconsumption, therequirements ofhighresolution opticallithography

increase. Researchinto lithographyatthe 193 nm wavelength of anArF excimerlaser

has been conducted. Usingavariablenumerical aperture refractiveimaging system and a

spectrallynarrowed excimerlaser, lithographicresolutionto 0.25 p.mhas been obtained in

anew 193 nm resist materialbasedon a copolymerization ofa silylated methacrylatewith

(6)

Chapter 1. Introductionandsummary 1

Chapter 2. Background

-Optical microlithography 4

2.1 Excimerlasers 6

2.2 Deep-UVlithographywith excimerlasers 8

2.3 ArF excimer laserlithography 9

2.4 Photosensitiveresist materialsfor 193 nm 11

Chapter 3. ArFexcimerlaser for193 nmlithography 16

3.1 UVlasersystems 16

3.1.1 Excimerlasersystems 19

3.1.2 Raregashalogen excimers 22

3.1.3. Excitationschemes 25

3.1.4 Excimerlasersfor IClithography 27

3.2 Spectral narrowingofArFexcimerlaser 3 1

3.3 Lasercharacteristics 35

Chapter 4. Opticsfor 193 nmlithography 46

4.1 Opticalmaterialsfor 193 nm 46

4.1.1 UVproperties offused silica 48

4. 1.2 UVinduced damageto fused silica 50

4. 1.3 Damagetestingoffusedsilicawith 193 nm radiation 53

4.2 193 nm refractive optics 58

4.2.1 Lens requirements anddesign 60

4.2.2 Illumination systemfor 193 nm 61

4.2.3 Refractiveobjectivelens for 193 nm 65

4.2.4 Scalardiffractionmodeling 74

4.2.4. 1 Scalarand vectordiffractionmodels 74 4.2.4.2 Verificationof scalardiffractionmodels 76

4.2.5 Simulated 193 nmlensperformance 77

4.2.6 193 nmimagingperformance 84

Chapter 5. Phase-shiftmasksfor 193 nm projectionlithography 91

5.1 193 nm resistsfor maskevaluation 98

5.2 Subtractivephase-shift maskprocess 99

5.3 Phase errorsat 193 nm 100

5.4 Alternating 193 nm phase-shift mask 102

5.5 Attenuated 193 nmphase-shift mask 105

Chapter 6. Optimization, synthesis, and characterization ofP(SI-CMS) 109

as acrosslinkingnegativeresistfor 193 nmlithography

6. 1 Trimethylsilylmethylmethacrylateandpoly(trimethylsilylmethyl 110

methacrylate as 193 nm materials

(7)

P(SI-CMS)

6.6.2 Gel pointand physical propertiesofP(SI-CMS) 134

formulations

6.7 LithographiccharacterizationofP(SI-CMS) materials 138 6.7.1 Evaluationof2000Ato 5000A P(SI-CMS) 143

films

6.7.2 P(SI-CMS)imagingat 193 nm 144

6.8 OxygenplasmaRTEbehaviorofP(SI-CMS) 148

6.9 P(SI-CMS) summary 152

Chapter 7. Conclusionsand recommendations 154

Appendix! Comparisonof scalar and vectordiffractionmodelling 157

fordeep-UV lithography

ALL Scalarsimulations 158

A 1.2. Vectorsimulations 161

Experimentalrun data forscalar simulations 162

Experimenatlrun dataforvector simulations 174

AppendixII. Simulationcodefor 193 nmlensperformance 178

References 186

(8)

Figure2. 1. Energylevel diagram fora rare gashalogenexcimerlaser. 7

Figure2.2. Absorptionspectraof atypicalDiazonapthoquinone sensitizer 12

andNovolacresinfor 300nmto450 nmexposure,togetherwith

principle emissionlines of aHgarclamp.

Figure 2.3. UV absorbancespectrum of poly(vinyl phenol). 12

Figure 2.4. UVabsorbancespectrum of poly(methylmethacrylate) and 13

severalmethacrylate co-polymers.

Figure 3.1. Comparisonofaverage output powers availablefromvarious 1 7

primary andsecondary UV laser sources.

Figure 3.2. Potential energycurvesforelectronic states ofHe2. 20

Figure 3.3. Energyflow diagramfor electronicallyexcited excimerrare 22

gas dimers.

Figure 3.4. Typical potentialenergycurvefor rare-gashalideexcimerlasers. 24

Figure 3.5. Gain spectrum of a rare gashalogenlasingmedium, alongwith 28

spectral profiles of afree runningand aspectrallynarrowed excimer

laser.

Figure 3.6. Excimerspectralnarrowingtechniques: a) Littrowgratingwith 30 beamexpander, b)grazingincidencegrating, c)intracavityprisms,

d) intracavityetalons.

Figure 3.7. Transmission characteristics ofcoarseandfine etalons, together 35

with excimerlasergainbandwidth.

Figure 3.8. Vaporpressure curves forexcimerlasergases andtypical 37

impuritybyproducts.

(9)

intracavity

Figure3.11. MaximumtiltangleforetalonFSRvaluesof1 to 150cm"1, 4 1

?i=193nm,L/W=150.

Figure 3.12. Output spectrumfromArFexcimerlaser: a)unnarrowed 43

broadbandoutput,b) narrowed to32pm with coarseetalon, and

c) narrowedto 3 pmwithfineetalon.

Figure 3.13. Outputintensityfrom ArF excimerlaser: a)unnarrowed 45 broadbandoutput,b) narrowed to32pm with coarseetalon, and

c) narrowedto 3 pm withfineetalon.

Figure 4. 1. Transmittanceof CaF2, BaF2, andMgF2 . 47

Figure 4.2. StructuralformofSi(0,/2)4. 49

Figure 4.3. BondingenergyforSi02. 49

Figure 4.4. ProductionofE'centerthrough creation of an oxygenvacancy 5 1 betweenadjacent silica.

Figure 4.5. ProductionofE'centerthrough hydrogen Si-Sicombination 52

inwet silica.

Figure 4.6. Productionmodefor peroxyradical via reaction withE' center. 53

Figure 4.7. Inducedabsorption at 193 nm and210-220 nmfrom5

mj/cm2

55

ArF excimerlaserradiation, 150Hz.

Figure 4.8. Inducedabsorptionat 193 nm and210-220 nmfrom 30

mj/cm2

55

ArF excimerlaserradiation, 150 Hz.

Figure 4.10. Kohlerilluminationfor lithographicsystem. 6 1

Figure 4. 1 la. Illumination uniformityfromcondenserlens systemat 0.60 NA. 64

(10)

Figure 4.13a,b, c. Wavefront aberration plots at0.70fieldfordefocus 69

of -0.3, 0.0, and+0.3 microns.

Figure4.13d, e, f. Wavefrontaberration plotsatfull field for defocus 70

of-0.3, 0.0, and+0.3 microns.

Figure4. 14. 193 nm projection system configuration. 71

Figure 4. 15a. Two-dimensionalaerial imageintensitydistributions for 79

0.25 micronfeatures; 0.60NA, o=0.50, 0.70field.

Figure 4. 15b. Two-dimensional aerialimage intensitydistributionsfor 79

0.25 micronfeatures; 0.60NA o=0.50,full field.

Figure 4.15c. Two-dimensionalaerial imageintensitydistributionsfor 80

0.20micronfeatures; 0.60NA a=0.50, 0.70field.

Figure 4.15d. Two-dimensionalaerial imageintensitydistributions for 80

0.20micron features;0.60NA c=0.50,full field.

Figure 4. 16a. One-dimensional aerialimageintensityplotfor 0.25 micron 81

features; 0.60NA, o=

0.50, full field position, 0.0, 0.15, 0.3, and

0.45 microndefocus. Imagemodulationis 95%, 94%, 89%, and

59%for0, 0.15, 0.30, and0.45 micron defocus.

Figure 4. 16b. One-dimensionalaerial imageintensityplotfor0.20micron 81

features; 0.60NA a=

0.50, full fieldposition, 0.0, 0.15, 0.3, and 0.45microndefocus. Imagemodulationis91%, 89%, 73%, and

40% for0.0, 0.15, 0.30, and 0.45 microndefocus.

Figure 4. 17. Simulated aerialimagelogslope for193 nmlens operating0.30, 83

0.45, and0.60NAas afunctionoflaserbandwidth, FWHM. k,=0.5

correspondingto0.332 urn, 0.214 urn, and0.161 urnfor0.30, 0.45, and 0.60NA.

(11)

Line/spacepairs rangefrom2.0to 0.2microns at IX.

Figure4.20. MTF forimagingsystem, 0.30 NAa=

0.70. 88

Figure4.21. Effects offlareon 0.25 urn aerialimages for 193 nm, cr=0.5, 90

0.60 NA.

Figure 5.1. Resolutioncondition forcoherentillumination. 91

Figure 5.2. Resolutioncondition for incoherent illumination. 92

Figure 5.3. Schematicof an alternatingphase-shift mask. 93

Figure 5.4a. Imagelog-slopevs. partial coherenceforbinarymask, 0.2 u.m 96

denselines, 193 nm, 0.45 NA.

Figure 5.4b. Imagelog-slopevs. partial coherenceforalternatingphase-shift 96

mask, 0.2 u.mdenselines, 193 nm, 0.45 NA.

Figure 5.5a. Image log-slopevs. partial coherenceforbinarymask, 0.2 97

urnisolatedlines, 193 nm, 0.45NA

Figure 5.5b. Imagelog-slopevs. partial coherencefor 6%attenuated 97

phase-shiftmask, 0.2urnisolatedlines, 193 nm, 0.45NA.

Figure 5.6a. AFMmeasurement offused silica,RTE CHF3etched 2000 A. 101

Figure 5.6b. AFMmeasurement offusedsilica, RIECHF3etched 2000A, 101

10: HF smoothed 100 A.

Figure 5.6c. AFMmeasurementoffused silica,no etch. 101

Figure 5.7. Imagelog-slopevs. defocus foralternatingphase-shift mask, 102

0.2 urndenselines, 193 ran, 0.45NA, o=0.3, with5,10, and20

phase-shifterrors.

Figure 5.8. 0.24 u.mdenselines imagedwithalternating phase-shift mask. 104

(12)

lines, nm, 0.45NA o=0.7.

Figure 5.10. 0.30 \xmdense lines imagedwith6%attenuatedphase-shift 107 mask.

Figure 5.11. SEMof0.30microndense lines imagedwith6% attenuating 108

phase-shift mask.

Figure6. 1 Schematicrepresentation of poly(trimethylysilylmethyl 1 1 1

methacrylate).

Figure 6.2. Absorption spectraoftrimethylsilylmethyl methacrylate. 113

Figure 6.3 Schematicrepresentation ofP(SI-CMS). 116

Figure 6.4. Spinspeedcurvefor 90: 10P(SI-CMS), 14wt./vol. % in EEP. 122

Figure 6.5. Absorbancespectrafor90:10P(SI-CMS). 123

Figure 6.6. Gel curvefor90:10P(SI-CMS)at40KMW. 125

Figure 6.7. Gel curvefor 90: 10P(SI-CMS) at 160Kand 120KMW. 126

Figure6.8. GeneralizedFloryfunction forpolymerswith alognormal 129

distributionof molecular weightfor bvaluesfrom0to 2.2.

Figure 6.9. Weightfractionof gel vs. E/Egfor90: 10 SI:CMS. 130

Figure 6.10. ExposurevaluesforP(SI-CMS) predictedfromFloryfunction 13 1

for 50% filmretention.

Figure 6.11. AbsorptionspectraforP(SI-CMS)formulations. 134

Figure6.12. Resistthicknessvs. spin speedfor95:5 and 98:2formulations. 135

Figure 6.13. Gel curvesfor95:5 and98:2P(SI-CMS) formulations. 136

Figure 6.14. Weightfractionof gelvs. E/Egfor95:5 and 98:2 SLCMS. 137

(13)

showingswelling P(SI-CMS)

development.

Figure6. 17a. SEMresultsoflithographicexposureof90: 10material. 144

Figure 6. 17b. SEMresultsoflithographicexposure of90:10material. 144

Figure 6. 18a. SEMresults oflithographicexposure of95:5 material. 145

Figure 6.18b. SEMresults oflithographicexposureof95:5 material. 145

Figure 6. 19a. SEMresults oflithographicexposureof98:2material. 146

Figure 6. 19b. SEMresultsoflithographicexposureof98:2material. 146

Figure 6.20. SEMof0.25 printedfeatures in 4000A98:2P(SI-CMS). 148

Figure 6.21. SEMofbilayerresults. 0.35 mmfeaturesin 2000 A98:2 152

P(SI-CMS), 02RIEtransferredinto 6000 AShipley812 resist.

(14)

Table 3.1. Operationalparameters ofrare gashalogen lasers. 27

Table4. 1. Experimentallydeterminedbandgaps andUVcut-off wavelengths 47

forselected materials.

Table4.3. Condenser lens design forKohlerilluminationin 193 nm system. 62

Table 4.4. Condensersystem illuminationuniformity at0.60NAand0.24NA. 65

Table 4.5 Desired performance criteriafor 193 nmobjectivelens. 65

Table 4.6. Zernike Polynomialtermsforaxis, 0.70zone, and edgefield 68

positions at 193.300 and 193.302 nm, inwavelengths

Table4.7. Transmissionvalues for illuminationsystematvariousNAcsettings. 73

Table 6. 1 Requiredresistabsorbancefro optimalresponse. 120

Table 6.2. PropertiesofP(SI-CMS) formulations. 132

Table 6.3. AbsorbanceandoptimumthicknessvaluesforP(SI-CMS) 133

formulations.

Table 6.4. Exposureresponse properties ofP(SI-CMS)formulations. 136

Table 6.5. Predictedcontrast (g)andCMTFvaluesforP(SI-CMS)materials 141

atvariousfilmthicknesses.

Table 6.6. Summaryof required doseto sizevaluesforP(SI-CMS) formulations. 147

(15)

Asintegratedcircuit featuresizes continueto shrink, shorter wavelength

projectionlithographytechniquesrequiredevelopment. Lithographyutilizingthe 193 nm

wavelength of anArgon Fluorideexcimerlaserhasbeeninvestigatedinthisstudy.

Requirementsintroduced atthisshort wavelength prohibituse of conventional optical

materials, lensdesigns, andresistmaterialscurrentlyusedforlonger UVwavelengths ofa

mercuryarclamp. Additionally, spectralrequirementsofa refractiveprojection system

foruse at 193 nmpreventuse of a"free-running",unnarrowedArF excimerlaser

producing a spectralbandwidthontheorder of0. 1 nm. Thisresearchhas leadtothe

developmentofasmallfield experimental 193 nm projectionlithographysystem, basedon

arefractivefused silica objective and anArF excimerlaser spectrallynarrowedwithdual

Fabry-Perotetalons. Thisworkhasalsoledto thedevelopmentof anew, negative-acting

193 nmresist material suitableforapplicationinsingle-layerandbi-layerprocesses.

Fewoptical materials aresuitableforusebelow 200nm. Materialsinclude fused

silicaand variousfluoridecrystals. Fused silicawas chosenasthe solematerialforusein

this work, duetoits superiorenvironmental, thermal, and mechanicalstability. Radiation

damageto fused silicaisaconcernatsuchshortwavelengths, as absorptioncenters and

optical compaction canbe induced withlongtermradiation. Investigations have shown

(16)

The 193 nmprojection system utilizesKohlerillumination, with control over

partial coherencethroughincorporationof avariableapertureat afirstelement difiuser

source. Theprojectionlens isa 1 mmfield, sixelementallfused silica20: 1 objective, with

variable numericalaperturefrom0.30to0.60 NA. Spectralrequirements ofthe excimer

source aredictatedbythefused silicaobjective, and depend onthenumerical aperture

settingofthe lens. At0.30NA aspectralbandwidthof26 pm(FWHM) isrequired from

the source while at0.60 NAabandwidthof7pmisneeded. Requirementsaremetby

spectrallynarrowinganArFexcimer with a singleFabryPerotetalonfor lensoperation at

0.30to 0.38 NAandtwoetalonsfor lensoperationto 0.60 NA.

Phase shift masktechniqueshavebeeninvestigated forresolution downto 0.24

u.matfocal depthsgreaterthan 1.5 um. Alternatingphase shiftmaskshave been

fabricatedusing Reactive Ion Etched(RE)fused silica. An attenuatingphase shiftmask

approachhasbeen developed for 193 nmusing 6% transmittingchrome and reactive ion

etchedfused silica. Thisapproachhas beenshownto beaintroduce little additionalmask

designand process complexity.

ResistsusedforlongerwavelengthUVlithographyaregenerallynot suitablefor

193 nmuse, duetoasubstantial absorption increaseof resinmaterialsbelow200nm. A

(17)

methacrylate andthechloromethylstyrene, materialshave been developedwhich are

suitableforuseatthicknessesfrom2400Ato 5500 A. Oxygen RTEtransferof resist

imagestoanunderlyingnovolaclayerviathesiliconcontentofthe copolymer allowsthis

materialtobeusedin bi-layeraswellas singlelayermodes. Lithographicimagingofthis

resist of0.25 u.mlineand space pairshasbeen achieved, usingthe 193 nm projection

(18)

Asintegratedcircuit devicesare pushedtowardhigherspeeds, higher packing

densities, andlowerpower consumption,therequirementsofhigh resolutionlithography

increase. Theadvancementofthe64M 256M and 1G DRAMispushingcircuitfeature

resolutiontoward andbelow0.25p.m. Conventional opticallithographictechniques,

utilizingultravioletlines ofthemercuryarclamp (downtothe365 nmi-line)have been

pushedto deliver0.5 u.mresolution, butresolutionbelowthisisconstrained byoptical

capabilities and illuminationwavelength. Rayleigh'scriteria [1] relatestheresolutionlimit

of a projectionimagingsystemto exposingwavelength(X), lensnumericalaperture (NA),

and aprocess coherencefactor (&7):

R_kiX

R~NA

Asseenfromthis relationship, decreasingexposingwavelengthandincreasinglens

numerical aperture willincreaseresolution attainableinagivensystem. Theadverse

effects ofincreasinglens numericalaperture canbeseen whenconsideringloss ofdepthof

focus (DOF):

k{k DOF=

(19)

integratedcircuitlithography. Toachieve0.25 pmresolutionwith365 nmmercuryarc

i-linelithography (usingarealisticprocesskfactorof0.6forawellcontrolled

developmentprocess)requiresalensNAof0.88. Thispresentsan impractical situation

from alens designand manufacture standpoint as well as a process standpoint. Depthof

focus of suchasystemis+/-0.24 pm.

To achieveilluminationwavelengthsbelowthoseproduced bythedominant lines

oftheHgarclamp, alternative sourceshave beenpursued. Lasers producingradiation in

thedeep-UVregion(150-300nm)with sufficiently highpowerare ofinterest. Theuse of

excimerlasers forIClithographyhas beenproposedforseveral years andhas been

demonstrated inavarietyofexposure systemssince 1982 [2-15]. Featureresolutionto

0.35 pm has beenachieved withKrF 248nm excimerlasersources andresolution of0.25

pm has beeninvestigated for developmentapplications. Resolutionbelow0.25 pmis

difficultusing 248 nm radiation andconventional imagingtechniqueswith singlelayer

resist materials. For 0.25 pm resolutionusing aKrFexcimerlaser (248 nm), alensNAof

0.60isrequired, resultinginadepthoffocusof +/-0.35 pm. Thesenarrow focal depths

put stringent requirements onfocusingsystems, photoresistmaterials, andprocessing.

Theuse of shorterwavelengthsources, such as afifth-harmonicNd:YAGlaser of213 nm

(20)

increased, utilizingwavelengthsasshort as 193 nmpresentseverincreasingproblems with

opticalmaterials, photosensitiveresists, and masks.

2.1 Excimer Lasers

Theexcimerlaserrepresents a unique classofhighpower, spatiallyincoherent

lasers capableofoperating atwavelengthswellintotheUV. Powerlevelsand efficiencies

produced fromexcimerlaserswell surpassthose ofanyotherUVlaserorlaser-like

source. Thereareseveralclasses ofexcimerlasers, onlyone of which operatesusinga

trueexcimergas asalasing species. Thetermexcimerisa contraction ofthewords

excitedanddimer; diatomicmolecules suchasF2fallunderthis classification. Thegeneral

classification of excimerlaser, though, includes excited complexesotherthan dimersandis

characterizedbyaboundor metastableexcited state and avery weaklybound ground

state.

Excimer lasersystems exhibit alargenumberof electronic statesand energy flow

pathwaysthat provideforpopulationofthemetastableexcited state(Figure2.1).

Reactionsinan excimer mediumallowforhigh efficiencythroughchanneling ofenergy

alongkineticpathways [18]. Atthelowestenergy state,or groundstate,theredoesnot

(21)

stablethan theground state. Relaxationoccursthrougha series ofenergypathwaysinan

ordered energyflow. Thedirecttransitiontotheground stateisonlypossibleinthis

orderedflowthrough emission ofradiation, withnopossibilityfor lossesfromthermal

crossings.

12

10.

e.

>

6-U u v c 4.

0-ArF

LASER TRANSITION

193nm

Ion Channel

X State

-i 1 1 I 1

T-0 0.2 0.4 0.6 0.8 1.0

InternuclearSeparationnm

Ar+F

1.2

(22)

Inthesesystems, excited rare gashalidemoleculesareformedbythe strongmutual

coulombic attraction ofpositivelycharged rare gasions (suchasHe, Ne, Ar, Kr, andXe)

andnegativelychargedhalogens(suchasF,Cl,Br,orI). Whenthemolecule iscreated,

anenergyminimum exists. Emission of aUVphoton within 10sseconds,though, lowers

themoleculeto theunstableground statewhichcauses separationwithin 10"12seconds.

Populationinversion canbeeasilyachievedthrough electricdischarge, electronbeam, or

optical methods.

2.2 Deep-UV

Lithography

WithExcimer Lasers

Therare gashalideexcimersofmostinterest for deep-UVlithographyarethose

whichproduceradiation ofsufficientlylowerwavelengththanpossiblewith aHggas

dischargelamp [20]. Although XeClproduces radiation of308 ran, it doesnot offer much

improvement inresolution overthe365 nmi-lineof aHglamp. The KrF excimer,

operating at248 nm, has been investigatedby several workersforlithographicuse. The

highefficiencyoftheexcimerlaserallows operationup to severalhundredwatts.

Additionally,the poor spatialcoherent propertiesoftheexcimerlaserproduce minimal

(23)

Thetemporal coherent properties areofmore concernforlithographyusing an

excimerlaser. In manyapplicationsoflithography,the temporalnatureofan excimer

laseris satisfactory. Theseapplications mayinclude: (a) contact andproximityprinting,

(b) projectionsystemsutilizingachromatic reductionlenses designedwith several optical

materialtypes, or(c)imagingsystemsusingreflective components only. In UV

applicationsinvolvingreductionprojectionprinting, though, a narrowbandwidthof near

0.003 nmmayberequired duetothelimitednumber of materialsavailableforuseas

stableoptical components. Thisrequirementmaybe2 orders of magnitude smallerthan

thatproducedbya"free-running" excimerlaser. Becauseofthis, means of spectral

line-narrowingmustbe incorporatedintothelaser. Theseapproachesinclude (a)a

diffractiongratingwithabeamexpander, (b)agratingatgrazingincidence, (c)prisms, (d)

etalon, and(e) injectionlocking [21]. Thegoal oflinenarrowing isnotonlyto achieve

proper spectralbandwidth, butalso toretain power. After narrowingto achievethe

required2 ordersofmagnitude,a75%lossof powermay beexpected.

2.3 ArF Excimer Laser

Lithography

Excimerlaserprojection lithographyusingthe248 nm, KrF excimerlaser has been

(24)

resolutionwith opticaltools, shorterexposure wavelengths such asthe 193 nm

wavelengthof anArF excimerlaserneedtobeutilized. Imaging at wavelengthsbelow

200nmpresentsmanyproblems, with

increasingly

fewermaterialstransparent toexposing

radiation. Thelackofsuitableopticalmaterialsforcesspectral constraints upon thelaser

source, requiringoperation at or near2pmforreduction ofchromaticaberration in large

field lenses. Consequently, most effortshave been directedtoward partialor complete

reflection systems, eliminatingthedifficulties involvedwiththelinenarrowing of anArF

excimerlaserand placinglittle demandonthespectralbandwidthofthe source [22-24].

Withtwo-mirror or catadioptric systems(suchastheSchwarzchildorCassegrain

arrangement), central obscurationmaybeundesirablefromafrequencyfiltering

standpoint. Scanningsystems arecurrentlybeingpursued, requiringcomplex mechanical

scanningtechniques to image large fields. Forreductionprinting,mask and substrate

scanningmustbeperformed at different rates, creatingchallengesfor imageregistration

(whichmustbeheldontheorderof0.05 pm)

Inadditionto the challengesbrought aboutbyoptical materialtransmission

properties, spectralline-narrowingforArFexcimerlasers becomesmorechallengingthan

for KrF. Thereduced gainforoperation withArFcombineswiththelosses dueto lower

transmissionsoflaseroptics, decreasingnarrowingefficiencies. Pulsedurationsof10-20

nsecresultin laseremissionfromveryfewroundtriplaserpasses. Additional energyloss

(25)

purification. Expected efficienciesforahighly-narrowedArFlaserare, therefore, lower

than thoseforhigheroperatingwavelength rare gashalogens, rangingfrom 25%efficient

to near 15%.

2.4 Photosensitive Resist Materials for 1 93 nm

Singlelayerphotosensitiveresist technologyismatureforwavelengths downto

365 nm(Hgi-line),based onDiazonapthoquinone/Novalac

chemistry (Figure2)[25].

Theseresistsystems aregenerallynotsuitableforshorter wavelengthsbecause oftheir

lack oftransparencybelow300nm. Lithographyat248 nmhaspushedtechnologyinto

acid-catalyzed resist chemistryanda class oichemicallyamplified resistsbasedon

poly(vinylphenol)has been developedto deliverbothpositive-toneand negative-tone

capabilities[26-28]. Althoughthese aromaticpolymersprovide suitabletransparencyfor

wavelengthsnear248 run, theirhighabsorptionat 193 nmconfines exposureto thetop

0.1 pm ofa 1 pmfilmcoating(Figure2.3). Poly(methyl methacrylate)(PMMA) ishighly

transparentatthiswavelength andhasbeenutilizedfor 193 nmapplications, but itspoor

sensitivityrequiresexposuresof severalJoules/cm2, muchhigherthanthe sensitivitieson

theorder of several

mj/cm2

requiredforsuitable performance (Figure2.4) [29].

Asalternativesto singlelayerresistexposure, siliconcontainingresistsin bi-layer

schemesand surfaceimagingtechniquesweredeveloped for longerwavelength

(26)

s2o^cH

Ntjvolac

/ 1

\ \

3i: J

"^i

365 45 437 Hglines

1

\ \

\ i

i i

^

PAC

*

i \

V

1

V... -.

......\

250 300 350 400 450nm

Figure 2.2. Absorptionspectraof a typicalDiazonapthoquinonesensitizerandNovalacresinfor300nmto

450nmexposure,togetherwith principle emissionlinesofaHgarclamp, (fromA.Reiser,Photoreactive

Polymers,WileyInterscience, 1989,p. 188.

tit! I I s

(27)

08

07L III

; !' 1 ! i i ii

i i ii

i I

i " II I i I I i i

i > i

- ;

(o)

8700* PMtU

6I0OA PIMMA-CO-IN) 6000APIMMi-CO-OBM) <O00lP(MM-CO-0eM-CO-MAN)

248imi

'. I ' 1 i l

' \ \ \

\ i Wi

01 I ,_ -> -i

250 J00

wavelength (nmi

Figure4. UVabsorbancespectrum ofpoly(methylmethacrylate)andseveralmethacrylate co-polymers.

(fromT.M.Wolfetal,J.VacSci. Tech.B(5),396(1987)).

resists suitablefordeepUVexposure includepolysilynes, linearpolysilanes suchaspoly

phenylmethylsilane, and plasma-deposited polymersfromtetramethylsilane [31-32].

Irradiationofthesematerialsformsalatent imagethat containsincreased amountsof

oxygen. PatterningcanbeachievedusinganHBrplasmaor atoluenewet development.

Whencoated ona suitablythickresin suchas novalacorpolyimide, oxygenetchresistance

ismaintainedinundevelopedareas and patterndelineationcanbeachieved.

Surfaceimagingtechnologiesprimarilythroughsilylationhave beendevelopedfor

(28)

materialistransferredintothebulkofthefilmthrougha plasma etch process [33].

Throughthe exposuredependentincorporationofsiliconintoa resistsurface, negative

imaginghasbeen demonstrated[34]. Anegativetoneimagearisesfrompreferential

incorporationofsilicon(inanorganosilanevapor orliquidenvironment) into exposed

areas ofthe resist surface. An02 reactiveionenhanced (RE)plasma etch willconvert

siliconinto silicondioxide,preventingetch erosion ofbulkresistbeneaththe silylated

surface. Unexposed areasoftheresist surfaceremain unprotectedbythis Si02layerand

will etch anisotropically inthe02 environment. Positive-tone silylationhas been

achievedbyachemical or radiation crosslinkingmechanism, promotedby an

acid-catalyzed melamine reaction[35]. Crosslinked surfaceareas prevent silicon

incorporationduringsilylation and allowforresistremoval duringan02 RIE.

Although severalbilayerand surfaceimaging schemeshave beenintroduced,

singlelayerresists aredesirable fromaprocessing standpoint. Theplasma etch and image

transferrequirementsofthemultilayer schemesmaymakethemimpracticalina

manufacturing environment. Asfeaturesizesdecrease, so doerrorbudgetsand small

variationsinprocessingmaycauselargeresponsesifprocesslatitude is poor. Aclassof

chemicallyamplifiedresistsbasedon methacrylateterpolymershas recently been reported,

whichbehave inapositivemodeuponexposure and subsequentprocessing[36]. These

acrylateterpolymers consistofmethylmethacrylate(MMA), t-butylmethacrylate

(29)

highresolutionpotential, and environmentalstability. Theirapplicationtointegrated

circuitprocessingiscurrentlylimited, dueto theirpoorresistanceto plasmaetching. A

classofsinglelayernegative resistsfor 193 nmlithographyisbeingintroducedwiththe

(30)

Chapter 3

ArF Excimer Laser for 193 nm

Lithography

Excimerlasersare a class ofhighpower, efficient,pulsed lasersradiatinginthe

short visible andUVregions. Thepossibility of abound-freeexcimer system wasfirst

investigatedintheearly 1960sand commercialsystemsbecameavailableinthelate

1970's. Thehigh pulsedpowerand shortwavelengthgenerationoftheselasers has

allowed applicationinsuchareasasphotochemistry, diagnosticsofhighdensityplasmas,

biochemical research, thefabrication ofmicroelectroniccomponents, ablation ofpolymeric

materials, andthegeneration ofsoftx-raysfor x-rayholography and ultralargescale

microcircuitfabrication.

3.1 UV Laser Systems

Awidevarietyoflasers andlaser-likesources are capable ofgeneratingultraviolet

photons. Primarylaser sources produce UVradiationbyafundamentaltransitionina

lasingspecies(betweenelectronic, vibrational, or rotationallevels). Secondarysources

produceUVphotons byshiftingthewavelengthoftheprimarylasersourceusingvarious

frequencyconversionmethods such asfrequencymixing, Raman shifting, orharmonic

generation. Figure 3.1 comparestheaverage output powers availablefromvariousUV

(31)

200 240 280

A(nm)

320 360

(32)

PrimaryUVlasersourcesinclude multiplyionized rare gaslasers,

singlyionized

metal vaporsources, and nitrogenlasers. Multiplyionizedraregaslasers, such as Ar(III)

orKr(IV)utilizeamultiplyionized stateofa noble gas asalasingmedium [38]. These

species exhibitlowergainthanbetterknow singlyionized rare gaslasers forthe visible/TR,

and requirehigh pumpingthreshold currentdensities. Outputpowers mayrangebetween

1 mWto 1Wand efficiencies arebelow 0.01%. Singlyionizedstatesof certain metals

such as copper, gold, silver, and cadmium, alsohavetransitionsintheUVthatcanbe

madeto laseunder properconditions [39]. Theselasersrunincw mode and canbemade

very compact,buttheirefficiencies areverylow. Nitrogenlasers produceUVradiation

usingmolecular nitrogen astheirlasingspecies. Theselasertypesuse excitation schemes

similarto excimerlasers,but have low averagepower and poor efficiencies. Typical pulse

energiesareinthefewmilhjoules range.

Secondarylaser-like sourcesutilizetechniques suchasharmonicgeneration,

frequencymixing, and stimulatedRaman shifting [40]. RadiationintheUVisproduced

fromthese sourcesbyprimarywavelength shiftingthroughfrequencyconversion and

non-linearinteractioninan optical medium. Most ofthese sourcetypes requireverylarge

pumppowers andhavepoorefficiencies,makingthemunsuitableformanyapplications.

Powerlevelsand efficiencies producedfromexcimerlaserswell surpassthoseof

anyotherUVlaser. Properlydesignedexcimerlasers canhaveextremelyhigh

(33)

150nm. It is forthesereasonsthatexcimerlasers have developed rapidlysincetheir

introduction.

3.1.1 Excimer Laser Systems

Excimersystems areverycomplexinnature, dueto thelargenumber ofelectronic

statesevenforthemostelementarysystems [41]. Figure 3.2 showsthepotential energy

curvesforthesimplest excimer system, He2. There existsfamilies ofcloselynested curves

forthe excitedstates as well aslevel crossingslinking specificlevels. Thesecrossings

providekineticpathways forthepopulation oftheexcimer states. Variousforms of

excimerspecies arepossible,and allhaveincommonthecharacteristic of such energy

flowpathways. Theexcimermediaessentiallyacts as anenergyfunnel, efficiently

channeling energy asexcited productsdevelop spontaneously alongthereaction path.

Examinationofararegas dimersystem(suchasKr2, Xe2, and Ar^ shows how such

reactions createhighefficiencies. Figure 3.3 showstheenergyflowpatternforthe

formationofelectronicallyexcitedraregasdimers. The lowest energy state availableisat

thebottomofthe diagram, correspondingtoground state atoms. Fordimers, anenergy

minimumdoesnot occur at an equilibrium separationfor groundstates, but forexcited

states only. Itfollowsthat atequilibriumthereareveryfewdimermoleculespresentin

theunstableground state,butthroughexcitation several possibilities exist. Following

(34)

40.000

35.000

30.000

2S.O00

..tf'//

//tf

-vXtf/

//

if

*

tf

9B"-1!8oJI. 7p

3iJSHi 's

2p'P-li3'S

Jp-'Cli'

'S

'X.'

^^ 2'3i"<

ESTIMATEDERROR

<003eV

<010IV

-^

Speculation

-1.0

>

o E

-20 2

-3.0

R (Al

Figure 3.2. PotentialenergycurvesforelectronicstatesofHe2. Observedvibrationallevelsare

(35)

pathways seeninFigure 3.2 forHe2. Thenature ofthepathwayissuchthat direct

transition to thebottomground stateisonlypossibleinanorderlyflow, allowingforno

thermallyaccessible crossings. Thekineticsofthesystembasedonthis ordered energy

flowonlyallow emission of radiationforrelaxationtoground state. Stimulated emission

canbe created whenthis systemis combinedwith populationinversion, whichis easily

achievedbecause ofthelowpopulation oftheground state. Thepopulation oftheground

statewill remainlow, asmoleculesintheground state moverapidlyapart and dissociate.

Excimerlasersgenerally fallinto threecategories: raregas, rare gas halogen,and

metal vaporexcimers[42]. Therearethreesub-classificationsof rare gas excimers;the

pure noblegas excimers, therare gasoxides, andthediatomichalogens. Thesesystems

exhibitadominantchannelforpopulatingtheupperlevelsvia neutral energytransferfrom

excited rare gas atomsanddimers. Theraregas donors (bothatomsand dimers)maybe

producedbyan electron beamdischarge. MetalvaporexcimersuseaGroup I, II, orIII

metal atom astheradiative speciesinadiatomicmolecule. Inplace ofthenoble gas asthe

otheratom ofthe diatomicmolecule canbetakenby GroupIImetal atoms, sincethey

(36)

INTERNUCLEAR SEPARATIONR "COLD"

ATOMS

Figure 3.3. Energyflow diagram for electronicallyexcitedexcimer raregasdimers. FromCh. K.

Rhodes,ExcimerLasers,(Wiley, 1984).

3.1.2 Rare Gas Halogen Excimers

Althoughboththepure rare gas andmetal vaporexcimershavebeenutilized as

laser systems, most commercial attentionhas beengiventotherare gashalogenexcimers,

introducedin 1975 [43]. Thegeneral structureofthepotential energycurvesforrare gas

halidesis showninFigure 3.4. Thesetypesoflasersoperatewithtransitionsinmolecules

(37)

boundand correlatestotheground state 'S oftherare gas and 2P ofthehalogenatoms at

infinite internuclearseparation. Thistwo-stateground stateisweaklybound, and

population inversionisreadilyachievedbecausethelower level dissociationtime(~10~12

seconds) ismuchlessthan theupperlevelradiativelifetime(10'9to 10"6 seconds).

Population oftheupper stateRXcanbeachievedbyrecombination oftherare gasions

andthe negativehalogenions, sincetheexcited stateisthesameastheionpairR+X". The

positive rare gas andnegativehalogen ions areproducedbycollisionsbetweenhigh

energy electroncollisions.

Severalrare gas monohalide excimershave beenobservedto emitradiation, six of

which exhibit stimulatedemission. Themost efficient oftheseexcimerspecies andtheir

wavelengths of emission are: ArFat 193nm, KrFat248 nm, XeCl at308 nm, andXeF at

351 nm. Theemission spectrum of raregashalides consistsof severalbands. The

strongestbandwhichgivesrisetothelasertransitionsisassignedto theB(2T)-X(iI.)

transition. At highpressures, thisemissionbandisstructured dominates, with weaker

broad bands dueto a

^n.-2!!)

transition. At lowpressures, thesepeaksbecome spreadout,

and thebandofpeakenergyshifts upward ashighvibrationalenergylevelsarerelaxed to

lowerlevels.

Aparameter ofimportance foralaseristhestimulated emission crosssection, or

thecross section-lifetime product. Thisproduct canbeestimatedbyassumingtheband

(38)

e LU

Molecularion

(RX)+

Otherexcited states

R +X

ound excited state

R +X

Pumping

Weakly boundground state

Internuclear Distance

Figure 3.4. Typicalpotentialenergycurveforrare-gashalideexcimerlasers.

CTv r=(l/4n)(ln

2/n^(X4/cAX),

where cr,isthestimulatedemission crosssection(in dimension ofarea)and r,isthe

photonlifetime. ForArF,theeffectivebandwidth(FWHM)is about 3 nm[44], yieldinga

cross section-lifetime product ofapproximately 57 A2ns. Usinga measuredlifetimeof

10nsyields astimulated emissioncross sectionofapproximately 6x

10"16

cm2. The

processof stimulated emission canbecharacterizedby:

W =

(39)

where W2I isthe stimulated emissionprobabilityandFisthephotonflux oftheincident

wave. Corresponding cross sections ofother rare gashalogenexcimers areexpectedto be

similar.

3.1.3 Excitation Schemes

Several approachestopumping excimerlasersexist, includingdirectelectronbeam

excitation, e-beam controlled electric discharge, opticalpumping excitation, anddirect

highvoltage electricdischargeexcitation. Vigorouspumpingisneededtoinitiate

reactions,whichinvariablyleadsto pulsed operation. Most currently producedexcimer

lasersutilize adirect highvoltage schemebecauseofcompactness and ease ofoperation.

Atypicalexcitationprocess canbe demonstratedfor ArFasfollows:

1. Electronattachmenttakesplace:

e"

+F2->F+F.

2. Thenegativeions formedcombine with positiveionstogiveanexcited molecule:

Ar+

+F->(ArF)*.

In spite oftheinvolved path, reactions suchasthese canbeveryefficientinproducing

exciteddimermolecules.

Efficientexcitation requires aspatiallyuniform, highvoltage(20 - 30

kV)

discharge ingaspressures of several atmospheres. Energyistransferredformamain

storage capacitortoelectrodestypically50to 100cmlong,with agap of afew

(40)

highpressurepulsedlasers, and differsgreatly fromthelongitudinalexcitationfor low

pressure continuous wavelasers such as aHeNe laser. Thebeam dimensionsof an

excimerlaseraredeterminedchieflybytheelectrode geometry. Mostexcimerlasershave

nearlyrectangularbeamswith largecross sections,typically2cm(long) by 1 cm(wide).

Beamdivergence istypically7mrad inthelongdimensionand2 mradinthe short

dimension. These beam characteristics are achievabledueto the extremely highgain

obtained inthe lasermedium. Thekeyoperational parameters oftypical excimerlasers

are showninTable 3.1. Excimerlasers generally operatewithoutcontinuousgas

replenishment, but insteadarefilledwith anappropriategas mixture andreplenished when

operationalperformance necessitates.

Comparedto conventional laserssuch asHeNeorAr-ionlasers which utilize

optical resonanceto achieveradiation, excimerscan producehighenergieswithout

resonance. Excimer lasers,therefore, exhibit poor spatial coherence and do not produce

speckle, whichmakethem especiallywellsuitedforlithographicapplications. Speckleis

therandominterference pattern producedbyillumination fromaspatiallycoherent

wavefront. Specklecontrast canbecalculatedfromtherelationshipN"I/2, whereNisthe

numberofindependent, spatially coherentmodesusedtoilluminatethe object. The

number ofmodesforan excimerlasermaybeseveralthousands, leadingto verylow

(41)

F2(157nm) ArF(193 nm) KrF (248 nm) XeCl (308 nm)

Averagepower(watts) 0.05 40 100 75

Pulse energy(mj) 6 175 300 200

Repetitionrate(Hz) 10 400 500 500

Pulsewidth(ns) 20 15 25 20

Table 3.1. Operationalparametersofrare gashalogen lasers.

Thespectralbandwidthoftheradiation emittedbyalaser determines itstemporal

coherence,whichmay beexpressedbycoherencelength, lc, where :

lc

=c/Af= X2/AX

Foran excimerlaser,thelasingbandwidthistypically~3 ran,whichcorrespondsto a

coherencelengthof- 10-20

pm. An Argon Ion laserhasa spectralbandwidthlessthan

0.0001 ran, and acoherence length> 1 m. Forcomparison, aHg-Xegas dischargelamp

has a coherencelengthofapproximately 10 pm.

3.1.4 Excimer Lasers for IC

Lithography

In manyapplications oflithography,thetemporalnature of an excimerlaseris

satisfactory. Theseapplicationsmayinclude: (a) contactandproximityprinting,(b)

(42)

materialtypes, or (c) imaging systemsusingreflective components only. Inapplications

involvingreduction projectionprinting, though, anarrowbandwidth of near0.003 nmmay

berequired dueto thelimited number ofmaterials availableforuseas stableoptical

components. Thisrequirement maybe2 orders ofmagnitudesmallerthanwhata

"free-running"

excimerlaserproduces(seeFigure 3.5). Several methodshave been

utilizedto effectivelyline-narrowthe output ofan excimerlaser.

Amethod commonlyusedto narrowthespectral widthoflasers thatnormallyemit

inawidebandwidth is injectionlocking [45]. Atwo-stageprocess isused, wherethefirst

stage consistsof alowpower excimer oscillatorinwhichtheopticalcavityincludesa

stable resonator as well a certainintracavity frequencytuningelements(prisms, gratings,

Spectrally Narrowed

Laser

A A^0.003 nm

%

% %

KrF Qain Spectrum

^\~0.9 nm

* Free-running Laser

*s AA.~0.3 nm

247.5 248.0 248.5 249.0

WAVELENGTH (nm)

~1~

249.5

(43)

oretalons). Inthesecond stage, theoutput oftheoscillatorisusedto initiatethe

stimulated emissionof radiationinanexcimerlaseramplifierinwhichtheoptical cavity

consists ofanunstable resonator. Thesecond stage providespower amplificationforthe

inputbeam, whilekeepingthenarrow spectrum ofthelatterunchanged. Thissystemis

quitelargeand addssubstantiallytothesystem expense. Severalothertechniqueshave

been employedtominimize space and capital requirements and are showninFigure 3.6.

Theseapproachesinclude(a) adiffractiongratingwithabeam expander, (b) agratingat

grazingincidence, (c)prisms, and(d)etalons [46]. Thegoal oflinenarrowingis not only

to achieveproper spectralbandwidth, but alsoto retain power. After narrowingthe

required2 ordersofmagnitude, upto 90%offree-runningpowermaybesacrificed.

Excimerlasers have limitstotheir outputstabilityand spatialuniformity, along

with spectralbandwidth and spatial coherence. Therearebothshort and longterm

considerationsregardingtheoutput stabilityof an excimer. Inthepresenceofminute

impurities intheexcimersupplygases, heterogeneous reactionscause steadydeterioration

ofthegasmixture. Shorttermfluctuationsoflaseroutputrelateto pulse-to-pulse

variationsin output energy. Thesearecausedbythestatistical nature ofreactions, power

supplyregulation, and gasflow fluctuations. Improvementsinlaser designhaveallowed

(44)

&

I

4^

^

I

S

II

T

I

fcM

rH

Figure 3.6. Excimerspectralnarrowingtechniques: a)Littrow gratingwithbeamexpander,b) grazing incidencegrating, c)intracavityprisms,d) intracavityetalons. Opticcomponents are: 1)

(45)

3.2 Spectral narrowing of anArF laser system

Toachievetherequired spectralbandwidth and power outputfroman ArF

excimerlaser, anefficient method oflinenarrowingwas desired. Usinghigh-gradefused

silica, multipleprismtechniquesmaybeutilized, butexhibitvery low dispersionefficiency.

Utilizingtheprismdispersion equation [47]:

dQ _

2l(dn)

dv a

W

'

where Ohtotal angulardeviationofthebeam, tispathlengthofthebeam ineachprism,

ais beam size, vislaserfrequency, anddn/dv isthedispersion oftheprismmaterial,

expected minimumlinewidth canbecalculated as:

Av =

l.lltf^]

,

ifdiffractionlimited beam divergenceis assumed. Furthermore, aninstability factor,D,

canbedeterminedastheratio offrequencyfluctuationsto expected linewidth:

For t= 1

cmforeach oftwo prisms, a= 1

cm,dn/dv=(dn/dX)xA2 =6.3 x 10"*

cm"', an expected minimumlinewidthforadualprism approachtolinenarrowing is3.77

cm"1

or0.014nm. Thepredictedinstabilityfactoris2 x 103|d9|. Theperformance ofthis

(46)

bandwidthontheorderof afewpicometers. Anyfluctuation intherearreflecting mirror

willcontribute significantlyto instability,throughinfluenceofd6.

Gratingtechniquesmaybeemployed, eitheratgrazingincidenceor with abeam

expander,tonarrowbeyondwhat canbeachievedwithprisms. To evaluatethe

performanceof such atechnique, thegratingequationisconsidered[48]:

^

= d(sinli

sin/2) ,

whered isthe gratingpitch,I1istheincidentangle, andI2istherefracted angle. Through

differentiation, holding I1 constant,laserlinewidth canbedetermined:

Av =

^p

cos/2A/2.

Ifadiffractionlimited beam isassumed and agrating beamexpansionofl/coslj isused,

thisequationbecomes:

Av =

2.44^

cos/i cos/2

Foran angle ofincidenceof89, a2400 cy/mmgrating, and a 1 cmbeamdiameter, an

estimatedlinewidthof0.08

cm"1

or0.0003 nmispossible. Although agratingapproach

features ahighdamagethreshold,theloss inpowerduetoonlymoderate efficiencylimits

narrowbandwidthperformance.

Spectral narrowingthroughtheuseofFabry-Perot etalonsallows forselective

(47)

fixedseparation and highlyreflective multilayer surfaces. Transmittedintensitycanbe

estimatedby:

(l+R2-2Rcos(?) '

whereR isthereflection coefficientofthecoatings, J isthetransmissioncoefficient, <p=

(47i/X}idcos 6, 6 istheangleofincidence,nis refractiveindex, anddisthesurface

separation. Thefreespectral range(FSR) measuresthedifference inwavelengths

correspondingto successivepeaksintransmittedenergy:

FSR

ii

and finesse(F)is defined astheratio oftheseparationof adjacentfringesto theirFWHM,

givenby:

TijR F =

1-R

To spectrallynarrowanArFexcimerlasertotheorder of afewpicometers,

surface separationsare chosentogiveFSRvalues whichwill,whendividedbythefinesse,

produceFWHMbandwidthscorrespondingto:

AX(FWHM) = jp .

Thisefficiencyoftheetalonmethod, alongwiththeversatilityofadaptingofelementsinto

(48)

gap etalons were chosento minimizedamageandthermaldriftwhichcould resultathigh

laserpowerlevels. Thefree-runningbandwidthof anArF excimerlaserisnear300pm.

Adesired bandwidthontheorder of3-7pm was requiredfor highNAimagingwitha

refractive optical system. Inordertoachievethis, atwoetalon approach wastaken,

where aninitial coarseetalon would narrowtheoutputto -30pm and asecond fineetalon

would narrowto~3 pm. To accomplishthis, etalon parameters weredeterminedand a set

ofetalonswasfabricatedthroughExitechLimited, Oxford UK. Asshownin Figure3.7,

thewavelength separationbetweentransmissionpeaks(FSR)ofthecoarse etalon was

chosentomatchtheFWHMbandwidth ofthebroadunnarrowedlaseroutput. This

enabled onlyonetransmissionpeak oftheetalonto exist, and allowsfortuningby

changingtheangle ofincidence. The FSRofthefineetalon was chosento matchthe

FWHMofthebandwidth producedbythecoarseetalon,where narrowingcanbe

optimizedthroughtuning onitstilt angle.

Fused silica airgapetalons with reflection coefficients ofthemultilayerdielectric

coatings of86% allowedfor finessevalues of20. The lackofnon-absorbing dielectric

materials withdifferentindicesof refraction at 193 nm makes multilayercoatingsdifficult

tofabricate. To achieve reflection coefficients above90% (and finessevaluesabove30)

upto 50layersmayberequired, whichwouldleadtohigh internal absorption. FSRfor

thecoarse etalon was specifiedtobe 143

cm"1

or0.532 ran,which correspondsto aAX

(FWHM) of27pm. FSRforthefineetalon was specifiedto be8

cm"1

(49)

which allowsfurther narrowingto aAX(FWHM)of2 pm. Estimated intensity

transmittedforthecoarse etalon is near50%of unnarrowed energy. Estimated intensity

transmittedforthe twoetalon systemisnear 10%.

ETALON

TRANSMISSION

EXCIMER GAIN TRANSITIONBAND

CoarseEtalon ^^"^*s^ Free Spectral Range (FSR)

FSR

n Fine

ft

Etalon

WAVELENGTH

Figure 3.7. Transmissioncharacteristicsofcoarse andfineetalons,togetherwithexcimerlasergain

bandwidth.

3.3 Laser Characteristics

ALumonicsEX-700excimerlaser operatingat80watts maximum powerwith

KrFgas mixturewas retrofittedforoperationwithArFgas at 193 nm. Thepulse

(50)

dimensionsareapproximately 10x27 mm(as definedbyelectrodeseparation), and

divergence is 1 x3 mrad.

Operationat 193 nm withArFintroducesmorechallenges overKrFoperation, as

transmissionlossesand gas contamination reducesmaximum power and lasergaslifetime.

Theloss oflaserefficiency overtimefromgaseousreactions canbeattributedto:

1. Lossofthehalogen donorfrom side reactions.

2. Gaseousimpurities formedbysidereactions ofthehalogenwiththe

walls ofthelaservesseland withtraceimpurities initiallypresentinthegas

mix,whichcancauselossesthroughphotoabsorption, kineticlosses, and

opticaldegradation.

3. Particulateimpuritiesformedbysputteringandfinedust particles

accumulate on optical surfaces.

Separation ofimpuritiesthrough cryogenic condensation andfineparticlefiltrationcan

reducelosses duringArF laseroperation.

To effectivelyremove contaminantsformedduringlaseroperationwithout

condensing primarycarriergases, relative vapor pressuredataofthegases needto be

considered. Maximum efficiencyisachievedbycoolingthegasmixture toatemperature

justabovethatwhich would condenselasergases. Inorderto optimizethis,vapor

pressure curves suchasthoseshown inFigure 3.8were utilized. Usinggasmixtures

(51)

100,

Vapor

Pressure

(TORR)

0.1

(

-MO -300 -iao -130 -ao -40

Temperature (C)

J i L

40

Figure 3.8. Vaporpressure curvesforexcimerlasergasesandtypicalimpuritybyproducts.

was utilizedfor 193 nm operation. This correspondedto 0. 16% of5%F2(> 98.0%) in

Ne(>99.995%), 3.45%Ar(>99.998%), andbalanceNe(>99.995%). Argonpartial

pressurewiththismixtureis 105Torr, andfluorinepartialpressureis5 Torr. Atthese

pressures, neitherArorF2willcondenseattemperaturesofliquidnitrogen(-196C),

whereastypical contaminant will. Cryogenic purificationis, therefore, simplifiedforArF

operation, since operationcloseto liquidnitrogentemperatureisefficient and no

temperaturecontrolisrequired aswouldbe forKrandXeoperation. A continuously

(52)

frontand rear ofthelasercavity. Thesetup isshownin Figure 3.9, where adiaphragm

circulatingpumppassesthegasmixturefromthelaserthroughafineparticlefilterto

removecontaminants, throughaheatexchangerto partiallycoolthemixture, througha

liquidnitrogencoldtrap, andbacktothelaser. Gaslifetimesmeasuredusing a newgas

fill (measured asthe number of100Hzpulsesbefore energylossto 50%)were28.8

million, or 8hours ofunnarrowed operation.

Coarseandfineetalons placedwithinthecavitywereinserted betweenthe

lasercavity andtherear mirrorbyremovingtherear mirror and replacingitwith aMgF2

uncoatedblankplate. Amirrorand etalonholding assemblywasfabricatedtoallowthe

rear mirrorto beplaced at adistance ofapproximately 28cmfromtherear ofthelaser

cavity. Thecoarseetalon was mounted at 15 cmfromthecavityandthefine etalon was

mounted at22cm. Allthreeelementsareheldwiththeabilityto tilt: therear mirrorhas

horizontal andverticaltiltcontrol while each etalonhas verticaltilt controlfortuning. A

schematic ofthesystemisshownin Figure 3.10.

Alignmentwas accomplishedusingaHe-Nelaser, directed downthemiddleofthe

bore ofthe excimerlaser fromtheoutputend. Therearmirror was aligned sothat the

reflectedspotsfrom its surfacestraveledback downtheboreoftheHeNelaser. Withthe

fineetalon raisedout oftheopticalpath, thecoarse etalon was aligned sothat italso

(53)

Fineparticle

filter

VI

-B-V2

e-Lumonics EX700

X

Rear

Mirror ArFlaser cavity

Front

Mirror

J Circulating \

~\ pump

J

Heatexchanger

Valveto

externalpump X

Liquid

Nitrogen

coldtrap

Figure3.9. Schematicof cryogenicgaspurificationfor ArFoperation of excimerlaser.

Rear

mirror

Removable

shutter

Fineetalon

FSR=8cm-l

Coarseetalon

FSR=143cm-l

MgF2

window

Dischargechamber

Gainmedium

-<

Window

(frontmirror)

(54)

Upon achievingthecoarse etalon"normal" position, itwastilted tothe

approximate position of optimum selectivetransmissionasdetermined by:

e,=

j(91+^)

,

where0, istheminimumtiltangleoftheetalonto preventreflectionthroughthegain

medium. Maximumtransmissionoccurswhen:

mX = 2ndcosQ

,

and 0; isthedetermined as:

0 - W

9l ~

T

'

withWbeingthe laseraperture dimensionandLbeingthelaser cavitylength. The

minimumtiltangle forthelaseris approximately 0.4, usingaLAV of150. Figure3.11

showsthe maximumtilt angleforFSRvaluesfrom 1 to 150 cm"1

at 193 nmusingaLAV

ratioof150. Maximumangleforthecoarseetalon(143 cm"1) is2. 14 and maximum

angleforthefineetalon (8 cm"1)is 0.54.

Inordertoadjustthetilt angleofthecoarse etalontodeliveroptimumnarrowing,

ahighresolution spectrometer was setuptomonitorinrealtimethelaser linewidth. The

spectrometerconsists ofavariable aperture slit assembly, aseriesoffourplanemirrorsto

foldthebeam, aconcave collection mirror situatedtoplacetheslit atits focal lengthof1

(55)

max62j

Figure 3.11. MaximumtiltangleforetalonFSRvalues of1to150 cm"1, X=193 nm, L/W-150.

diffract light efficientlyatrelativelyhighorders. The beam illuminatesthegratingatan

angle ofincidence suchthat thedispersed light isdirected back alongthedirectionof

incidentlight. Light dispersedbythegratingisreflected onto alinear array detector

locatedintheimageplane oftheslitobject. Imagecapture allowscharacterization ofthe

excimerbeam. Thespectrometerwastunedforoperationat 193 nmthrough

adjustment

ofthegratingangle ofincidence. Usingafusedsilica90mil plate as abeam splitterto

attenuatetheexcimerbeam, output spectra was monitored andcoarse etalontilt angle was

(56)

fromthebroadbandArFexcimerisnear300pm. Absorption features inthe spectrumare

dueto absorptionbandsofthe4-0 Schumann-Rungesystemforoxygen, whichare

centered at 193.1, 193.3, and 193.5 nm. AnestimatedAXof21pmFWHMforthe 143

cm"1

FSRcoarse etalon comparesto the32pmmeasured fromFigure 3. 12b. Output

poweroftheArF laser dropped from-10watts unnarrowedat 100Hz (100 mj/pulse)to

~2wattsat 100 Hz(20 mj/pulse), or an 80%loss comparedto anestimated 50% loss.

Alignmentofthefineetalon wasfirst achievedusingtheHeNelaser, andthrough

spectrometermonitoringto achievefinetuning. Figure 3. 12c showsthe spectrum

achievedwithboth etalonsinplace. Abandwidthof3 pmFWHMwasachieved,

comparedwiththeestimated2 pmFWHM. Apowerlossof95%resultedfrom insertion

ofbothetalonsintothelasercavity, resultingin5mj/pulseat 100Hz. Although lessthan

the estimated90% loss,thispowerlevel isadequate forexposure of a resistrequiring

<100 mj/cm2

inareductionimaging system withlow losses.

Theupper limitonthebackground broadbandwidth amplified spontaneous

emission(ASE)present inthenarrowedoutput canbe determinedby blockingtherear

mirror withthe etalonsinplace. TheASE, althoughpresent, isnot at alevel high enough

tobedetectedbythespectrometer oraUV energymeter. Theactual broad bandwidth

contributionduring operationis lessthan thisamountdetected, since gain saturation

(57)

8 5 E a f. % S

pixel number ( 0 82pm/pixe] )

ArF Excimerwith 1 Etalon

110

--1(0

--140

--i so

--_ 100

---* ID

--60

--40

--2 0

--0

^Jj-.iylllllll llftiUMtlJrf^rr\lrtMtMitrrl\'lMlMMh 'ifAVfrjitMrMtofMitJltM,IMj.iUmtfrilJJuMWMti

pixel number ( 0 82pm/pixel )

ArF Excimer 2 Etalons

300

--2 50

--2 00

--| 1 50

-100

-50

--0 -t

r*^.^tnZir-Sb9

pixel number ( 0 82pm/pixe1)

Figure3.12. Outputspectrumfrom ArFexcimerlaser: a)unnarrowedbroadbandoutput,b)narrowed

(58)

Figure 3.13 showstheoutput profilesfortheArFlaseroperatingunnarrowed

(Figure 3.13a), withthecoarse etalon(Figure3.13b), andwithboththecoarse andfine

etalons (Figure 3.13c). Energylevelscorrespondto 100mj/pulse, 20mj/pulse, and5

mj/pulse, respectively. Beamuniformity is degradedupon spectralnarrowing, requiring

attentionduring designoftheilluminationopticsfortheimaging system.

Themethod ofspectrally narrowinganArF excimerlaserthrough use ofdual

Fabry-Perotetalons hassuccessfullyproducedlaseroutput with abandwidth downto3

pmFWHM. Throughuseof cryogenic gaspurification, outputinthismode isstableupto

1 hourat 100 Hzbefore gasdepletion. OperationoftheArFlaserwith a single etalon, at

abandwidthof32 pm, isstableforseveralhoursat 100 Hz,which increasestheversatility

ofthelaserwhen optical requirements allow(suchaswithlowobjectivelensnumerical

(59)

Broadbandoutput

100mj/pulse

Coarseetalonoutput

20mj/pulse

Dualetalon output

5mj/pulse

Figure 3.13. Outputintensityfrom ArFexcimerlaser: a)unnarrowedbroadbandoutput,b)narrowed

(60)

Chapter

4

Optics for 193 nm

Lithography

Opticallithographybelow300nmismade difficult becauseoftheincrease in

absorptioninoptical materials. Fewtransparentmaterials existbelow200 nm, limiting

designandfabricationflexibilityin opticalsystems. Refractive projection systems are

possibleatthese shortwavelengths,butrequire considerationofissuesconcerning

aberration effects andradiationdamage.

4.1 Optical Materials for 193 nm

Theopticalcharacteristics ofglassesintheUVareimportant whenconsidering

photolithographic systemscontainingrefractive elements. Aswavelengthsbelow250nm

areutilized, issuesof radiationdamageand changesinglass molecularstructurebecome

additional concerns. Refraction ininsulatorsis limitedbyinterband absorption atthe

materialsbandgapenergy,Eg. For 193 nmradiation, photon energyofE-6.4 eVlimits

optical materialstothosewithrelativelylargebandgaps. Halide crystals, includingCaF2,

LiF, BaF2, MgF2, andNaF, andamorphous Si02(or fusedsilica) arethefewmaterialsthat

possess largeenoughbandgaps andhave suitabletransmissionbelow200 nm. Table4. 1

showsexperimentallydetermined bandgapsandUVcut-off wavelengths of several halide

(61)

Material r (eV) X=hc/Eg(nm)

BaF2 CaF2 MgF2 LiF

NaF

SiO,

8.6

9.9

12.2

12.2

11.9 9.6

144 126 102 102 104 130

Table 4.1. Experimentallydetermined bandgapsandUVcut-off wavelengthsforselected materials

(from GanFuxi, OpticalandSpectroscopicProperties of

References

Related documents

A sensitivity analysis model may help to improve insight into the impact of consumer forces on food waste at retail level and a regression analysis may assist in validating a

The literature review in chapter 2 describes the literature related to the history of student affairs and its leadership, leadership perspectives and leadership styles, Kouzes

• As can be seen in figure 2.5, total GB rolling stock costs (including capex, opex and financing) have been estimated by Atkins in their work for the Rail Value for Money team

When the purchase cost of pigs is excluded, labour costs accounted for the highest share (30%) of costs, followed by services (29%) and energy costs (21%). For this reason, the

Through the inte- gration of application, operating system and architecture level features, our proposed HIDS demonstrates a significant im- provement of the detection rate in terms

3.3.4 Course load adjustments to balance “half-course” credits, as for graduate teaching, shall either be banked until a full credit is earned or may be paid out as an overload

treatment option that is specified in five domains: (D1) decisional incapacity in the baseline condition, as determined by the impact on the patient’s func- tional status; (D2)

Our testing and debugging architecture implements the backtrace primitive to complement the single-step and breakpoint primitives by allowing human troubleshooters to track the set