ALD of Tin Monosulfide, SnS
The Harvard community has made this
article openly available.
Please share
how
this access benefits you. Your story matters
Citation
Sinsermsuksakul, Prasert, Adam S. Hock, Roy G. Gordon. 2011. ALD
of Tin Monosulfide, SnS. Proceedings of the AVS 58th Itnernational
Symposium and Exhibition, October 30 - November 4, 2011,
Nashville, TN: 1-18.
Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33950783
We prese presented about 100 stoichiom orthorhom under cer diffraction loosely pa semicond films also for solar c spectrum sufficient absorber
ent a new proc d at the confe
0 to 250 oC. N
etric to within mbic structure rtain condition n. The morpho
acked plates, ucting with lig show strong cells with max
and over 104
to absorb mo material in th
equiax
PrasertSinse
Ha
*Em
cess for ALD rence. The pr No impurities w
n the measurin e normally fou ns a minor am ology of the fi
depending o ghtly p-type d photoconduc ximum efficien
4
cm-1 in the n
ost of the sola in-film solar c
xed columnar 1.E+00 1.E+02 1.E+04 1.E+06 ( cm 1) ermsuksakul, rvardUnivers mail:Gordon
of tin(II) sulfid rocess operat were detected ng accuracy o nd in the bulk mount of a cub lms varies fro n the substra
oping (1015 to
ctivity. Their o ncy. The optic near infrared). ar spectrum. T
cells made of
grains
0 2 4 6
1.00 1.25 1.50
Absorption c
AdamS.Hock
sity,Cambrid
@chemistry.h
de, SnS, from tes at low sub d in the depos of RBS, abou k material (as bic phase is a om dense equ te and growth
o 1016 holes c
optical band g cal absorption . Thus a very These propert earth-abunda
0 1.75 2.00 2.2
hv (eV) coefficient for 3
kandRoyG.
ge,MAUSA
harvard.edu
m H2S and a n
bstrate tempe sited materia
t + 1%. The p s in the minera also detected
uiaxed column h conditions. T
cm-3 and hole
gap is about 1 n is very stron small thickne ties make SnS ant and non-t
p
25 2.50 2.75 3.
film thicknesse
----110nm
----230nm ----380nm
Gordon*
novel tin sourc eratures, in th
l by XPS or R phase corresp al Herzenberg by X-ray and nar polycrysta The SnS film mobility > 6 c
.3 eV, which
ng (over 105c
ess, less than S a good can oxic materials
platelets
00
es
ce that will be e range from RBS. The films
ponds to the gite) , althoug
electron alline films to
s are
cm2 V-1 s-1). T
is nearly opti
cm-1 in the vis
n 0.5 micron, i ndidate for the
ALD
of
T
in
Monosulfide
SnS
ALD
of
Ti
n
Monosulfide
,
SnS
Prasert Sinsermsuksakul,
Adam S. Hock and Roy G. Gordon
Harvard University
Cambridge
MA
USA
Cambridge
,
MA
USA
Outline
Thin-film solar
cells
the need for solar
p
ower
p
earth-abundant, non-toxic absorber: SnS
ALD
process
for
SnS
ALD
process
for
SnS
new tin precursor
growth per cycle
SnS
film properties
com
p
osition
p
structure
optical properties
electrical
properties
Harvard University
electrical
Global
Energy Use by Humans
Human energy use is currently ~ 14 terawatts (14 x 10
12
watts)
Sour
ce:
Inter
national
Ener
gy
Agenc
y
(I
EA)
Harvard University
Current energy supply is unsustainable-environmentally
, economically & socially
Source:
International
Energy
Agency
(IEA)
Solar
Radiation on Earth
Solar power is by far our most available energy source.
a
verage
solar
radiation
at
Earth
’ss
u
rf
a
c
e
~02k
W
/m
2
a
verage
solar
radiation
at
Earth
s
surface
~
0
.2
kW/m
2
The Earth’
s land area
receives
(1
10
14
2
)
(02k
W
/
2
)3
1
0
4
TW
(1
.5x
10
14
m
2
) x
(0
.2
kW/
m
2
) ~
3
x
10
4
TW
15%
ffi
i
t
l
d
l
0
3%
15%
e
ffi
c
ien
t so
lar mo
d
u
les on
0
.3%
of the Earth’
s total land area => 14 TW
Flat-Panel Photovoltaic Modules
Absorber
Material
Commercial
P
V
Efficienc
y
Advantages
Limitations
y
cry
stalline Si
15-20%
high efficiency
high manufacturing
cost
amorphous
silicon
a
-Si
53
-63
%
low
cost
flexible
substrates
slow
deposition
low
efficiency
amorphous
silicon
,
a
-Si
5
.3
-6
.3%
low
cost
,
flexible
substrates
slow
deposition
,
low
efficiency
copper indium
gallium
diselenid
e
(CIGS)
8.1-1
1.0%
low cost,
moderate
efficiency
rare elements
(Ga, In)
cadmium telluride,
CdT
e
10.4%
low cost,
moderate
efficiency
toxic Cd,
rare
element
T
e
Dy
e-sensitized cells
-potential
for lowest
cost
long term
instability
Harvard University
CdT
e
PV modules
(First Solar
Inc.)
CIGS PV
module
(Global Solar
Inc.)
c-Si PV
module
(SunPower
Inc.)
a-Si PV
module
(Uni-Solar Inc.)
SnS: Alternate Absorber Layer in Solar PV
Cf
Basic
C
riteria
for the
Absorber
Material.
¾
Suitable bandgap
( Eg ~ 1.0-1.5
eV)
¾
High
quantum
yield
for
the
excited
carriers
¾
High
quantum
yield
for
the
excited
carriers
¾
Long diffusion
length /
low
combination velocity
Æ
PV
efficiency
Æ
PV
efficiency
¾
High optical absorption
coefficient (10
4
-1
0
5
cm
-1
)
Æ
small mass
of
material re
q
uired
q
¾
Constituent
elements are non-toxic
and
abundant
Æ
non-hazardous,
scalable, low cost
PV
SnS
has these properties
T
in(II) Amidinate
as ALD
Precursor
N
i
Pr
N
i
Pr
Sn
N
N
i
Pr
i
Pr
bis(
N,N’-diisopropylacetamidinato)tin(II)
Sn-N bonds => reactive
to
H
2
S
Chelate
structure
=>
thermal
stability
Chelate
structure
=>
thermal
stability
Hydrocarbon ligands
=>
volatility
Harvard University
6
R
X
UF
H
WH
P
S
H
UD
WX
UH
R
&
ALD Process for SnS
6
X
E
VW
UD
WH
WH
P
S
H
UD
WX
UH
R
&
6
R
X
UF
H
W
H
P
S
H
UD
WX
UH
R
&
6
X
E
VW
UD
WH
W
H
P
S
H
UD
WX
UH
R
&
*
UR
Z
WK
S
H
U
F\
FO
H
Q
P
1
R
LQ
G
X
FW
LR
Q
S
H
UL
R
G
6.00E+17 7.00E+17ty
Sn
areal density vs
# of cycles
3.00E+17 4.00E+17 5.00E+17
real densi
oms/cm
2
)
2.00E+17 1.00E+17 0.00E+00Temperature Dependence of
Growth
2
50E+16
3.00E+16
Sn
Areal Density vs. Substrate T
1.50E+16
2.00E+16
2
.50E+16
oms/cm
2
)
1.00E+16(ato
5.00E+15Sn
0.00E+00100
150
200
250
300
Substrate temperature (
o
C)
Harvard University
SnS
Composition
5
X
WK
H
UI
R
UG
%
D
FN
VF
D
WW
H
UL
Q
J
6
S
H
FW
UR
VF
R
S
\
5
%
6
70
1.
2
1.4
1.
6
1.
8
En
er
g
y
(M
eV
)
50
60
Yield
SnS
20
30
40
No
rmalized
Y
SnS
1+
0.01
80
0
90
0
100
0
110
0
120
0
130
0
140
0
C
h
l
0
10
S
Cl
Sn
C
h
anne
l
SEM of SnS
Films Deposited at 120
o
C
200 cycles
1000 cycles
3000 cycles
5000 cycles
5000 c
y
cles
Harvard University
y
Distorted NaCl
Structure of SnS
Films
TEM
(+electron dif
fraction
)
literature
XRD
TEM
Miller
id
i
()
literature
XRD
TEM
in
di
ces
d
SnS(Å)
d
XR D(Å)
d
TEM(Å)
hkl
22.01
4.035
4.001
3.87
11
0
26.01
3.423
3.404
3.33
120
27
47
3
244
3
243
021
27
.47
3
.244
3
.243
021
30.47
2.931
2.919
101
31.53
2.835
2.823
2.84
111
2.597
-2.53
121
39.05
2.305
2.302
2.29
131
44.73
2.024
2.021
2.02
141
45.49
1.9921
1.999
002
51.31
1.7791
-1.78
151
53.15
1.7219
1.722
122
56
67
1
6228
1
626
16
2
042
X-Ray Dif
fraction
(XRD)
56
.67
1
.6228
1
.626
1
.62
042
Orthorhombic Structure: a b
SnS
has Very Strong Optical Absorption
1.E+05 1.E+06
(cm
1)
(1)
80
nm
films of various
thicknesses
D
> 10
4
cm
-1
for > 1.4 eV
1E
0
1
1.E+02
1.E+03
1.E+04
coef.
ption
(1)
80
nm
(2) 150
nm
(3) 210
nm
(4)
380
nm
(1)
(2)
(3)
(4)
D
> 10
5
cm
-1
for > 2.0 eV
1.E+00 1 .E + 01 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00