• No results found

The splashing morphology of liquid-liquid impacts

N/A
N/A
Protected

Academic year: 2019

Share "The splashing morphology of liquid-liquid impacts"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)JAMES COOK UNIVERSITY. SCHOOL OF ENGINEERING. The Splashing Morphology of Liquid-Liquid Impacts. Thesis submitted by David Cole BE (Hons) JCU In July 2007. Thesis submitted to the School Of Engineering (Mechanical) in partial fulfilment of the requirements for the degree of. Doctor of Philosophy.

(2) STATEMENT OF ACCESS. I, the undersigned author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;. I do not wish to place any further restriction on access to this work. _____________________________________ Signature. ______________ Date.

(3) STATEMENT ON SOURCES. Declaration. I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.. …………………………………………….. (Signature). ……………………… (Date).

(4) ELECTRONIC COPY. I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.. _______________________________ Signature. _______________ Date.

(5) ACKNOWLEDGEMENTS This project could have never been completed without the assistance of many people. The first group of people I would like to thank are the technical staff. Dave Kauppila and Kurt Arrowsmith in the mechanical workshop for their prompt service whenever I needed something to be made. Warren O’Donnell for letting me steal literally hundreds of litres of his fine steam distilled water. The lads in the electrical workshop John Renehan, John Becker and Llyod Barker for sorting out all my electronic/electrical problems and keeping me generally entertained over the proceeding three years. John Ellis for dealing with all my purchasing requests. Jihong Li for putting up with all my tedious computing requests and dealing with them for me in such a timely manner. Almost all technical advice for this project has come from my primary supervisor Dr. Jong-leng Liow. There is no question in the world I would not be at this point if it were not for the guidance and support of Dr. Liow. I would also like to thank Dr. JL Liow for giving me the opportunity to work towards my PhD and giving me the privilege of working with such advanced experimental equipment. I would also like to thank the soon to be Dr. Paul Dylejko for putting up with some of my bitching and ranting and giving my some stimulating engineering discussion over the past few years. Finally a big shoutout to all my friends and family who have put up with me over the past three years. However, the biggest shoutout must be reserved for all the guys and gals in Clan Ethereal who have without question have kept me sane during my PhD.. - iv -.

(6) ABSTRACT In this thesis, a systematic experimental study of the flow behaviour resulting from liquid-liquid impacts has been conducted. Numerous new flow behaviours have been identified including microbubble formation from floating drops, pre-entrapment jetting, multiple primary bubble entrapment, downward jets penetrating the entrapped bubble, the break-up of the downward jets to leave drops entrapped inside the entrapped bubble and small vortex ring formation in the early stages of the post-entrapment jetting regime. These new flow phenomena have been combined with existing flow behaviour to produce the most comprehensive maps (both quantitative and qualitative) describing the splashing morphology of liquid-liquid impacts to date. It was found that six different flow regimes were required to adequately categorise all the flow behaviour. The physics of the cavity formation and collapse were investigated with high speed video and high framing rate particle image velocimetry. The formation and collapse of the cavity can be described as a six stage process. Initially, the cavity expands due to the inertia of the impact and the majority of the displaced fluid is driven into the wave swell. After the energy of the impact has been dissipated, the side walls of the cavity stagnate and the growth of the wave swell also stagnates. This causes the fluid contained in the wall swell to begin flowing downward under the influence of gravity. As the fluid flows down, the base of the cavity stops growing and begins to retract. These actions give rise to a vortex mid way down the cavity and acts to collapse the cavity. The fluid driven by the vortex then converges at the base of the cavity along the axis of symmetry. The formation of the vortex was shown to be centred around a stationary line that forms on the cavities interface. Several interesting properties of this stationary line were discovered. The depth at which the stationary line forms is almost constant for the same drop size and is independent of impact velocity. The dimensionless width of the cavity, Dw' was shown to scale to Fr 1 3 . The formation of the stationary line was also shown to influence how the flow converges at the base. The wider the cavity grows, the greater the rotation the fluid undergoes before converging along the axis of symmetry. Thus, for small width cavities the flow tends to converge while the fluid is being directed. -v-.

(7) downward. While for larger width cavities, the flow tends to converge with a strong upward component. This has lead to the formulation of three different flow convergence criteria: downward convergence, parallel convergence and upward convergence. All jetting modes or lack of jetting can be described using one of the three convergence criteria. For cavities that are small and thus have a downward flow convergence condition, no jetting occurs. This type of flow convergence occurs in the primary vortex ring regime and may assist in the development of strong coherent vortex rings. A parallel flow convergence condition is responsible for forming high-speed jets in both the preentrapment jetting and primary bubble entrapment regimes. Here, the flow is similar to two parallel jets impinging on each other. This action forms a stagnation point and a significant rise in the local pressure around this zone follows. This leads to a strong inertial force that drives a small jet of fluid back up into the cavity. Cavity retraction acceleration was measured as high as 90 000g during this time. The maximum exit velocity of the secondary drops formed from the break up of the thin high-speed jets was measured to be in excess of 30 m/s. In the primary bubble entrapment regime it was postulated that multiple stagnation points would form and interact with each other to produce variable jet velocities across the regime. The retraction velocity of the cavity was also shown to have a direct correlation with the exit velocity of the first drop. An upward flow convergence condition was found to be responsible for the thick slow moving jets observed in the post-entrapment jetting regime. All modes of bubble entrapment were investigated and the quantity of air each mode can entrap has been estimated. It was found that the most efficient method to produce microbubbles was by forming jets in the post-entrapment jetting regime that pinch off secondary drops with Weber numbers ranging from 6 to 20. This produces drops that fall into the primary microbubble entrapment regime to produce thin films that rupture into thousands of microbubbles. Methods for determining the volume of entrapped air from the break up based on the rupture velocity of the film are presented. The entrapped air in the bulk fluid is equivalent on average to 0.3% of the original drop volume.. - vi -.

(8) TABLE OF CONTENTSSTATEMENT OF ACCESS................................................ i STATEMENT OF ORIGINALITY ..............................................................................ii ELECTRONIC COPY DECLARATION ...................................................................iii ACKNOWLEDGEMENTS .......................................................................................... iv ABSTRACT..................................................................................................................... v LIST OF SYMBOLS ...................................................................................................xiii LIST OF FIGURES ..................................................................................................... xvi LIST OF TABLES ..................................................................................................... xxvi. CHAPTER 1 - LITERATURE REVIEW .................................................................... 1 1.1. Introduction................................................................................................... 1. 1.2. Thesis Focus ................................................................................................. 1. 1.3. Background................................................................................................... 2. 1.4. Theoretical Preliminaries .............................................................................. 6. 1.5. 1.4.1. Theoretical Flow Description......................................................... 6. 1.4.2. Scaling Analysis.............................................................................. 7. 1.4.3. Dimensionless Groups, Length Scales and Time Scales ................ 9. Liquid-liquid Impact on a Deep Pool ......................................................... 11 1.5.1. Total coalescence ......................................................................... 11. 1.5.2. Coalescence Cascade ................................................................... 12. 1.5.3. Air film formation and rupture ..................................................... 15. 1.5.4. Thoroddsen bubbles...................................................................... 17. 1.5.5. Oguz-Prosperetti bubble rings ..................................................... 18. 1.5.6. Cratering dynamics ...................................................................... 19. 1.5.7. Vortex Rings ................................................................................. 20. 1.5.8. Jets without bubbles...................................................................... 23. 1.5.9. Primary bubble entrapment and thin jets ..................................... 24. 1.5.10. Downward Jets ............................................................................. 26. 1.5.11. Crown formation........................................................................... 27. 1.5.12. Thick Jets ...................................................................................... 30. - vii -.

(9) 1.6. 1.5.13. Secondary bubble entrapment ...................................................... 32. 1.5.14. Surface bubbles............................................................................. 33. Allied Splash Phenomena and Parameters.................................................. 35 1.6.1. Influence of impact angle ............................................................. 35. 1.6.2. Influence of pool depth ................................................................. 37. 1.6.3. Influence of temperature............................................................... 38. 1.6.4. Influence of drop size.................................................................... 38. 1.6.5. Surface Tension and Viscous Effects ............................................ 39. 1.6.6. Apex drop...................................................................................... 41. 1.6.7. Bubble acoustics ........................................................................... 42. 1.6.8. Entrapped Bubbles Bursting at the Free Surface ......................... 44. 1.7. Particle Image Velocimetry (PIV) .............................................................. 45. 1.8. Summary ..................................................................................................... 46. CHAPTER 2 - EXPERIMENTATION ...................................................................... 49 2.1. Introduction................................................................................................. 49. 2.2. Experimental Apparatus ............................................................................. 49. 2.3. 2.4. 2.5. 2.2.1. Drop generation and height control............................................. 49. 2.2.2. Impact Pool................................................................................... 50. 2.2.3. Liquids .......................................................................................... 51. 2.2.4. Digital Cameras ........................................................................... 52. 2.2.5. PIV Laser...................................................................................... 53. High-Speed Video Configuration ............................................................... 56 2.3.1. Backlighting.................................................................................. 56. 2.3.2. Photography down the cavity ....................................................... 58. 2.3.3. Alignment and Calibration ........................................................... 60. 2.3.4. Determination of imaging parameters ......................................... 60. PIV .............................................................................................................. 62 2.4.1. PIV configuration ......................................................................... 62. 2.4.2. PIV Seeding .................................................................................. 65. 2.4.3. PIV implementation ...................................................................... 68. Experiment Lists ......................................................................................... 70 2.5.1. 2.6. Repeatability................................................................................. 72. Analysis Techniques and Errors ................................................................. 72 - viii -.

(10) 2.7. 2.6.1. High speed video .......................................................................... 72. 2.6.2. PIV analysis techniques................................................................ 75. 2.6.3. PIV errors ..................................................................................... 80. Summary ..................................................................................................... 80. CHAPTER 3 - SPLASHING MORPHOLOGY MAP .............................................. 81 3.1. Introduction................................................................................................. 81. 3.2. Image Sequence Details.............................................................................. 81. 3.3. Qualitative Splash Map............................................................................... 83 3.3.1. 3.4. 3.5. Primary vortex ring regime......................................................................... 85 3.4.1. Impact I (Fr = 41, We = 36, Re = 2341, tc = 2.54)...................... 86. 3.4.2. Impact II (Fr = 53, We = 48, Re = 2692, tc = 2.24) .................... 88. 3.4.3. Vortex ring development............................................................... 91. 3.4.4. Bubble formation .......................................................................... 93. Primary vortex ring/Pre-entrapment jetting transition................................ 94 3.5.1. 3.6. 3.7. 3.8. Impact III (Fr = 67, We = 62, Re = 3082, tc = 1.99) ................... 95. Pre-entrapment jetting regime .................................................................... 97 3.6.1. Small vortex rings......................................................................... 98. 3.6.2. Impact IV (Fr = 76, We = 67, Re = 3178, tc = 1.85)................... 99. 3.6.3. Impact V (Fr = 83, We = 77, Re = 3425, tc = 1.80)................... 101. 3.6.4. Impact VI (Fr = 97, We = 90, Re = 3697, tc = 1.66) ................. 103. 3.6.5. Jetting ......................................................................................... 107. Primary bubble entrapment regime........................................................... 108 3.7.1. Bubble entrapment...................................................................... 108. 3.7.2. Jetting ......................................................................................... 108. 3.7.3. Impact VII (Fr = 111, We = 102, Re = 3928, tc = 1.55)............ 110. 3.7.4. Impact VIII (Fr = 125, We = 116, Re = 4199, tc = 1.47)........... 112. 3.7.5. Impact IX (Fr = 138, We = 127, Re = 4380, tc = 1.39) ............. 114. 3.7.6. Impact X (Fr = 170, We = 151, Re = 4751, tc = 1.24)............... 116. Primary bubble entrapment/Post-entrapment jetting transition ................ 120 3.8.1. 3.9. Flow regimes ................................................................................ 84. Impact XI (Fr = 174, We = 158, Re = 4891, tc = 1.23) ............. 121. Post-entrapment jetting regime ................................................................. 123 3.9.1. Impact XII (Fr = 182, We = 161, Re = 4899, tc = 1.20)............ 124 - ix -.

(11) 3.9.2. Impact XIII (Fr = 211, We = 187, Re = 5279, tc = 1.11)........... 126. 3.9.3. Impact XIV (Fr = 235, We = 207, Re = 5797, tc = 1.06)........... 128. 3.9.4. Impact XV (Fr = 275, We = 258, Re = 6294, tc = 0.99) ............ 130. 3.9.5. Impact XVI (Fr = 454, We = 403, Re = 7768, tc = 0.76)........... 132. 3.9.6. Jetting ......................................................................................... 134. 3.10 Total coalescence regime.......................................................................... 137 3.11 Primary microbubble formation regime.................................................... 137 3.11.1. Film draining (Slow) .................................................................. 138. 3.11.2. Impact XVII (Fr = 2, We = 2, Re = 576, tc = 11.62 ms) ............ 139. 3.11.3. Film draining (Fast) ................................................................... 141. 3.11.4. Impact XIX (Fr = 5.5, We = 7, Re = 1042, tc = 7.45 ms) .......... 142. 3.11.5. Impact XX (Fr = 9, We = 11, Re = 1300, tc = 5.64 ms)............. 144. 3.12 Quantitative Drop Splash Map ................................................................. 146 3.13 Summary and Conclusion ......................................................................... 148 CHAPTER 4 - PIV STUDY OF CAVITY FORMATION AND COLLAPSE ..... 149 4.1. Introduction............................................................................................... 149. 4.2. PIV of Cavity Formation and Collapse..................................................... 149 4.2.1. PIV Impact I (Fr = 56, We = 33, Re = 2010, tc = 1.96) ............ 150. 4.2.2. PIV Impact II (Fr = 129, We = 78, Re = 3089, tc = 1.30) ......... 156. 4.2.3. PIV Impact III (Fr = 297, We = 170, Re = 4509, tc = 0.84)...... 162. 4.2.4. PIV Impact IV (Fr = 452, We = 249, Re = 5421, tc = 0.67) ...... 169. 4.3. Cavity Outlines ......................................................................................... 176. 4.4. Stationary Line.......................................................................................... 181. 4.5. Cavity Formation and Collapse Flow Model............................................ 185. 4.6. 4.5.1. Expansion and wave swell growth.............................................. 185. 4.5.2. Peak wave swell height............................................................... 189. 4.5.3. Wave swell drainage................................................................... 191. 4.5.4. Cavity base stagnation................................................................ 194. 4.5.5. Vortex formation......................................................................... 196. 4.5.6. Flow convergence along centreline............................................ 197. Summary ................................................................................................... 200. CHAPTER 5 - JETTING ........................................................................................... 201. -x-.

(12) 5.1. Introduction............................................................................................... 201. 5.2. Pre-Entrapment Jetting ............................................................................. 201. 5.3. 5.4. 5.5. 5.6. 5.2.1. Jet Drop Characteristics ............................................................ 205. 5.2.2. Mechanisms of jet formation ...................................................... 209. Primary Bubble Entrapment Jetting.......................................................... 214 5.3.1. Drop Characteristics .................................................................. 221. 5.3.2. Mechanisms of jet formation ...................................................... 224. Downward Jets During Primary Bubble Entrapment ............................... 229 5.4.1. Downward jet break-up .............................................................. 233. 5.4.2. Entrapped drop behaviour.......................................................... 234. Post-Entrapment Jetting ............................................................................ 237 5.5.1. Jet and secondary drop characteristics...................................... 239. 5.5.2. Mechanism of jet formation........................................................ 241. Summary ................................................................................................... 242. CHAPTER 6 - BUBBLE ENTRAPMENT............................................................... 243 6.1. Introduction............................................................................................... 243. 6.2. Bubbles from Initial Impact ...................................................................... 244 6.2.1. 6.3. 6.4. 6.5. 6.6. Thoroddsen bubbles.................................................................... 244. Bubbles Formed During Cavity Collapse ................................................. 246 6.3.1. Primary bubble entrapment........................................................ 246. 6.3.2. Multiple bubble primary bubble entrapment.............................. 249. 6.3.3. Secondary Bubble Entrapment ................................................... 256. Microbubbles from thin film thinning ...................................................... 260 6.4.1. Microbubbles from rapid film thinning (Mesler type)................ 260. 6.4.2. Microbubbles from slow film drainage ...................................... 264. Air Film Formation and Rupture .............................................................. 267 6.5.1. Mechanism of formation............................................................. 267. 6.5.2. Limits on microbubble formation ............................................... 268. 6.5.3. Estimating quantity of air entrapped.......................................... 269. Summary ................................................................................................... 271. CHAPTER 7 - SUMMARY AND CONCLUSION ................................................. 273 7.1. Splashing Morphology.............................................................................. 273. - xi -.

(13) 7.2. Cavity Behaviour ...................................................................................... 274. 7.3. Jetting........................................................................................................ 275. 7.4. Bubble Entrapment ................................................................................... 275. 7.5. Conclusion ................................................................................................ 275. 7.6. Future Work.............................................................................................. 276. REFERENCES............................................................................................................ 278 APPENDIX A – MATLAB CODE............................................................................ 287. - xii -.

(14) LIST OF SYMBOLS Symbol. Definition. Units. A. Wave amplitude. m. A. Surface area. m2. AR. Aspect ratio. -. Bo. Bond number ( Bo = ρgL2 σ ). -. C. Constant. -. Ca. Capillary number ( Ca = μU σ ). -. c. Wave speed. D. Drop diameter. m. d. Drop diameter. m. dd. Diameter of the impacting drop. m. dp. Actual particle size. m. d p ,a. Airy disk particle diameter. m. d p ,e. Effective particle size. m. d p ,o. Optimal particle diameter. M. Ek. Kinetic energy. J. Ep. Potential energy. J. Es. Surface energy. J. Fr. Froude number ( Fr = U 2 gL ). -. f#. Lens f-number. -. g. Gravitational constant. H. Pool height. m. H. Pool depth. m. H. Cylinder height, Cone Height. m. Depth of impact pool. m. k. Wave number. -. L. Characteristic length scale. m. lc. Capillary length scale. m. M. Magnification factor. -. h pool. m/s. m/s2. - xiii -.

(15) m. Mass. kg. mp. Total mass of particles required. kg. n p , pool. Number of particles required to see the entire pool. -. n p ,i. Number of particles required per interrogation area. -. Oh. Ohnesorge number ( Oh = μ. -. P. Pressure. Pa. Pi. Internal drop pressure. Pa. P0. Ambient pressure. Pa. p. Pressure. Pa. pd. Dynamic pressure. Pa. rs. Air sheet radius. m. R. Radius. m. Rm. Maximum cavity radius. m. Re. Reynolds number ( Re = ρLU μ ). -. r. Radius. m. ri. Ratio of drop radii. -. r1. First radius of curvature. m. r2. Second radius of curvature. m. Vi. Volume of a PIV interrogation area. m3. U. Characteristic velocity scale. m/s. Ud. Velocity of the impacting drop. m/s. U p ,s. Particle settling velocity. m/s. u. Velocity. m/s. Vb. Drop return bounce velocity. m/s. Vi. Drop impact velocity. m/s. Volume of the pool. m3. Vs. Volume of the air sheet. m3. T. Wave period. 1/s. t. Time. V pool. ρLσ ). s. - xiv -.

(16) tc. Capillary driven time scale. s. tg. Gravity driven time scale. s. t sheet. Thickness of the laser light sheet. μm. We. Weber number ( We = ρLU 2 σ ). -. wi. Width of PIV interrogation area. Pixel. Width of a pixel on the imaging plane. μm. ws. Edge width of one element on the image sensor. μm. ε. Drop eccentricity. -. η. Wave height. m. θ. Impact angle. º. λ. Wavelength. m. λl. Wave length of laser. m. Minimum gravity-capillary wavelength. m. w pixel. λmin. Fluid viscosity. Ns/m2. Viscosity of pool fluid. Ns/m2. ρ. Fluid density. kg/m3. ρd. Density of the drop fluid. kg/m3. ρp. Bulk density of particles. kg/m3. ρ pool. Density of the pool fluid. kg/m3. μ μ pool. σ. Surface tension. τ. Time. s. τp. Particle response time. s. ω. Wave frequency. N/m. rad/s. - xv -.

(17) LIST OF FIGURES Figure 1.1. Map of phenomena associated with liquid-liquid impact (Cole 2007)........ 4. Figure 1.2. Diagram of the forces acting on an interface. Carats signify properties of the lower fluid.......................................................................................... 6. Figure 1.3. The coalescence cascade (Liow 2001)....................................................... 12. Figure 1.4. Trajectory trace of drops in the coalescence cascade (Honey and Kavehpour 2006) ....................................................................................... 14. Figure 1.5. Comparison between analytical model and experimental results for the coalescence cascade hmax* being the maximum height obtained during each stage (normalised by capillary length) and R1* the drop radius (normalised by capillary length). Minimum jump height is achieved at approximately R1* = 0.4 (Honey and Kavehpour 2006) ............................ 15. Figure 1.6. Rupturing of the air film between (Sigler and Mesler 1990)..................... 16. Figure 1.7. Thin film rupture at different stages of cavity development for three different impacts (Thoroddsen et al. 2003)................................................ 17. Figure 1.8. Formation of Thoroddsen Bubbles via air sheet contraction (Thoroddsen et al. 2003)............................................................................ 18. Figure 1.9. Vortex ring formed by a 2.8mm drop falling 38.4 mm (Peck and Sigurdson 1994) ......................................................................................... 21. Figure 1.10 Relationship between drop eccentricity and vortex ring penetration depth (Chapman and Critchlow 1967)....................................................... 22 Figure 1.11 Vortex ring diameter (D) as a function of penetration depth (L) (Durst 1996) .......................................................................................................... 22 Figure 1.12 Thin high-speed jet with no bubble entrapment (Liow 2001) ................... 24 Figure 1.13 Pixel outline of cavity with solution to Crapper wave (Liow 2001).......... 25 Figure 1.14 The downward jet associated with bubble entrapment (Elmore et al. 2001). Arrow indicates the “downwards” direction of the jet ................... 26 Figure 1.15 Relationship. between. upward. and. downward. jet. velocity. (Fedorchenko and Wang 2004).................................................................. 27 Figure 1.16 Crown formation due in milk (Edgerton and Killian 1979) ...................... 28 Figure 1.17 Numerical simulations showing the formation of a high speed jet or ejecta sheet at the drop-pool interface during initial impact (Weiss and Yarin 1999) ................................................................................................ 29. - xvi -.

(18) Figure 1.18 Ejecta sheet from impact (Thoroddsen 2002)............................................ 29 Figure 1.19 Development of crown formation: (A) No crown formation (B) Partial crown formation (C) Fully developed crown formation (Liow 2001)....... 30 Figure 1.20 Variation of jet height with Froude number (Fedorchenko and Wang 2004) .......................................................................................................... 31 Figure 1.21 Time sequence of thick jet formation (Rein 1996) .................................... 32 Figure 1.22 Secondary bubble entrapment (Liow 2001)............................................... 33 Figure 1.23 Surface bubble on surface due to high velocity impact (Franz 1959) ....... 34 Figure 1.24 Various spreading morphologies for oblique impacts (Leneweit et al. 2005) .......................................................................................................... 36 Figure 1.25 Crown formation in thin liquid film (Rioboo et al. 2003) ......................... 37 Figure 1.26 Three forms of possible impact.................................................................. 38 Figure 1.27 Bubble entrapment for varying viscosity fluids (Prosperetti and Oguz 1993) .......................................................................................................... 40 Figure 1.28 A 2.7 mm drop impacting at 2.17 m/s on a thin film (Vander-Wal et al. 2006) .......................................................................................................... 41 Figure 1.29 Apex drop formation from a secondary drop Fr = 9.5, We = 6.9 (Liow 2001) .......................................................................................................... 42 Figure 1.30 Video and acoustic traces of the primary bubble entrapment process (Pumphrey and Crum 1989)....................................................................... 43 Figure 1.31 Drop size and velocity distribution from bursting bubbles (Spiel 1995)... 44 Figure 2.1. Liquid dropping arm .................................................................................. 50. Figure 2.2 Sketch of impact tank and overflow tank...................................................... 51 Figure 2.3. PIV laser on mount with light arm............................................................. 55. Figure 2.4. Output power of the Nd:YAG laser for various pulse delays at different supply amperages ........................................................................ 55. Figure 2.5. Schematic drawing of experimental apparatus .......................................... 56. Figure 2.6. Experimental setup for high speed video................................................... 57. Figure 2.7. Schematic of down cavity lighting configuration...................................... 59. Figure 2.8. Experimental setup of the camera in the down cavity configuration......... 59. Figure 2.9. An example of a calibration shot. (Left) Camera below surface (Right) Camera above surface ................................................................................ 60. Figure 2.10 Timing diagram for HFR-PIV system ....................................................... 62 Figure 2.11 Schematic of the apparatus for 2D-PIV ..................................................... 64 - xvii -.

(19) Figure 2.12 Experimental setup for 2D PIV.................................................................. 65 Figure 2.13 Screenshot of the drop size and velocity calculator................................... 73 Figure 2.14 Raw PIV image of a cavity collapsing....................................................... 75 Figure 2.15 Mask used to exclude the free surface and cavity from correlation .......... 76 Figure 2.16 Masked raw image ..................................................................................... 76 Figure 2.17 Raw cross-correlation image...................................................................... 77 Figure 2.18 Vector map after moving-average has been applied.................................. 78 Figure 2.19 Final post-processed velocity field ............................................................ 78 Figure 2.20 Scalar velocity map.................................................................................... 79 Figure 2.21 Vorticity map ............................................................................................. 79 Figure 3.1. Information contained in each image......................................................... 82. Figure 3.2. Drop plash map showing all of the flow features and regimes found in liquid-liquid impacts .................................................................................. 83. Figure 3.3. Below surface images for 26G-01-20mm (4000 FPS) .............................. 86. Figure 3.4. Larger view of the bubble formed below the cavity (A1-C1) ................... 86. Figure 3.5. Above surface images for 26G-01-20mm (5000 FPS) .............................. 87. Figure 3.6. Below surface images for 26g-04-40mm (3000 FPS) ............................... 88. Figure 3.7. Above surface images for 26g-04-40mm (5000 FPS) ............................... 89. Figure 3.8. Down cavity image sequence for a drop falling in the primary vortex ring regime at 8000 FPS (Estimated parameters We = 60, Fr = 106, Re = 2684, tc = 1.41) ....................................................................................... 90. Figure 3.9. Image sequence of the initial vortex ring development (Frames 255261) ............................................................................................................ 92. Figure 3.10 Below surface images for 26g-04-60mm (3000 FPS) ............................... 95 Figure 3.11 Above surface images for 26g-04-60mm (5000 FPS) ............................... 96 Figure 3.12 Below surface images for 26g-04-70mm (3000 FPS) ............................... 99 Figure 3.13 Above surface images for 26g-04-70mm (5000 FPS) ............................. 100 Figure 3.14 Below surface images for 26G-01-80mm (4000 FPS) ............................ 101 Figure 3.15 Above surface images for 26G-01-80mm (5000 FPS) ............................ 102 Figure 3.16 Below surface images for 26G-01-100mm (4000 FPS) .......................... 103 Figure 3.17 Above surface images for 26G-01-100mm (5000 FPS) .......................... 104 Figure 3.18 Enlarged images from Impact IV .............................................................. 105. - xviii -.

(20) Figure 3.19 Down cavity images for a drop falling in the pre-entrapment jetting regime at 8000 FPS (Estimated parameters We = 83, Fr = 149, Re = 3144, tc = 1.18)......................................................................................... 106 Figure 3.20 Below surface images for 26G-01-120mm (4000 FPS) .......................... 110 Figure 3.21 Above surface images for 26G-01-120mm (5000 FPS) .......................... 111 Figure 3.22 Below surface images for 26G-01-140mm (4000 FPS) .......................... 112 Figure 3.23 Above surface images for 26G-01-140mm (5000 FPS) .......................... 113 Figure 3.24 Below surface images for 26g-04-160mm (3000 FPS) ........................... 114 Figure 3.25 Above surface images for 26g-04-160mm (5000 FPS) ........................... 115 Figure 3.26 Below surface images for 26g-01-200mm (4000 FPS) ........................... 116 Figure 3.27 Above surface images for 26g-01-200 (5000 FPS) ................................. 117 Figure 3.28 Down cavity images of a drop impact in the primary bubble entrapment regime (8 000 FPS) (Estimated parameters We = 110, Fr = 201, Re = 3596, tc = 1.01) ........................................................................ 119 Figure 3.29 Below surface images for 26g-04-210mm (3000 FPS) ........................... 121 Figure 3.30 Above surface images for 26g-04-210mm (5000 FPS) ........................... 122 Figure 3.31 Below surface images for 26g-04-220mm (3000 FPS) ........................... 124 Figure 3.32 Above surface images for 26g-04-220mm (5000 FPS) ........................... 125 Figure 3.33 Below surface images for 26G-01-260mm (4000 FPS) .......................... 126 Figure 3.34 Above surface images for 26G-01-260mm (5000 FPS) .......................... 127 Figure 3.35 Below surface images for 26g-04-300mm (3000 FPS) ........................... 128 Figure 3.36 Above surface images for 26g-04-300mm (5000 FPS) ........................... 129 Figure 3.37 Below surface images for 26G-01-360mm (4000 FPS) .......................... 130 Figure 3.38 Above surface images for 26g-01-360mm (5000 FPS) ........................... 131 Figure 3.39 Below surface images for 26g-04-640mm (3000 FPS) ........................... 132 Figure 3.40 Above surface images for 26g-04-640mm (5000 FPS) ........................... 133 Figure 3.41 Down cavity images of a drop impact in the post-entrapment jetting entrapment regime (8 000 FPS) (Estimated parameters We = 372, Fr = 654, Re = 6669, tc = 0.57) ........................................................................ 136 Figure 3.42 Enlarged view of Figure 3.43 (B5)............................................................ 138 Figure 3.43 Below surface images showing rupture of thin film supporting a floating drop (3000 FPS) ......................................................................... 139 Figure 3.44 Above surface images showing rupture of thin film supporting a floating drop (5000 FPS) ......................................................................... 140 - xix -.

(21) Figure 3.45 Below surface images showing the film thinning due to a rapid expansion (3000 FPS) .............................................................................. 142 Figure 3.46 Above surface images showing the film thinning due to a rapid expansion (5000 FPS) .............................................................................. 143 Figure 3.47 Below surface image sequence film rupture and vortex ring development (2 500 FPS)......................................................................... 144 Figure 3.48 Above surface image sequence film rupture and vortex ring development (3 000 FPS)......................................................................... 145 Figure 3.49 Quantitative drop splash map................................................................... 146 Figure 4.1. Image sequence of impact PIV-I showing velocity vectors (Reference vector 0.25 m/s) ....................................................................................... 154. Figure 4.2. Vorticity development 24 ms after initial impact (sec-1) ......................... 155. Figure 4.3. Velocity magnitude 24 ms after initial impact (m/s) ............................... 155. Figure 4.4. Image sequence of impact PIV-II showing velocity vectors (Reference vector 0.5 m/s) ......................................................................................... 161. Figure 4.5. Comparison between the PIV results and dyed drop images................... 161. Figure 4.6. Image sequence of impact PIV-III showing velocity vectors (Reference vector 0.5 m/s)....................................................................... 167. Figure 4.7. Vortex formation mid way down the cavity ............................................ 168. Figure 4.8. Image sequence of impact PIV-IV showing velocity vectors (Reference vector 0.5 m/s)....................................................................... 175. Figure 4.9. Cavity outlines for CO-I (Fr = 111, We = 66, Re = 2849, tc = 1.40)....... 176. Figure 4.10 Cavity outlines for CO-II (Fr = 174, We = 100, Re = 3463, tc = 1.10) ... 177 Figure 4.11 Cavity outlines for CO-III (Fr = 219, We = 121, Re = 3778, tc = 0.97) .. 177 Figure 4.12 Cavity outlines for CO-IV (Fr = 325, We = 180, Re = 4600, tc = 0.80).. 178 Figure 4.13 Cavity outlines for CO-V (Fr = 423, We = 242, Re = 5386, tc = 0.71) ... 178 Figure 4.14 Cavity outlines for (Fr = 654, We = 372, Re = 6669, tc = 0.57) .............. 179 Figure 4.15 Variation of dimensionless width of stationary line versus impact Froude number ......................................................................................... 181 Figure 4.16 Variation of dimensionless maximum cavity depth versus impact Fr number ..................................................................................................... 182 Figure 4.17 Variation of stationary line depth with impact velocity. Solid lines are the mean distances ................................................................................... 184 Figure 4.18 Flow field during cavity expansion.......................................................... 186 - xx -.

(22) Figure 4.19 Vorticity map during cavity expansion (sec-1)......................................... 186 Figure 4.20 Velocity magnitude during cavity expansion (m/s) (298) ....................... 186 Figure 4.21 Flow regions during cavity expansion ..................................................... 188 Figure 4.22 Flow field during wave swell stagnation ................................................. 190 Figure 4.23 Vorticity map during wave swell stagnation (sec-1) ................................ 190 Figure 4.24 Velocity magnitude during wave swell stagnation (m/s) (301) ............... 190 Figure 4.25 Flow regions at peak wave swell height .................................................. 191 Figure 4.26 Flow field during wave swell drainage.................................................... 192 Figure 4.27 Vorticity map during wave swell drainage (sec-1) ................................... 192 Figure 4.28 Velocity magnitude during wave swell drainage (m/s) (302)................ 192 Figure 4.29 Direction of the flow draining from the wave swell ................................ 193 Figure 4.30 Flow field during cavity base stagnation and collapse initiation............. 194 Figure 4.31 Vorticity map during cavity base stagnation and collapse start (sec-1).... 195 Figure 4.32 Velocity magnitude during base stagnation and collapse initiation (m/s) (304) .............................................................................................. 195 Figure 4.33 Flow direction around cavity as the base of the cavity stagnates ............ 195 Figure 4.34 Flow field during flow reversal and collapse........................................... 196 Figure 4.35 Vorticity map during flow reversal and collapse (sec-1).......................... 196 Figure 4.36 Contours of velocity magnitude during flow reversal and collapse (m/s) 08)................................................................................................... 197 Figure 4.37 Vortex formation around the collapsing cavity ....................................... 197 Figure 4.38 Flow field during downward convergence .............................................. 198 Figure 4.39 Flow field during parallel flow convergence ........................................... 198 Figure 4.40 Flow field during upward convergence ................................................... 198 Figure 4.41 Flow convergence conditions .................................................................. 198 Figure 5.1. Below surface images from the pre-entrapment jetting regime (6 000 FPS & 33g Needles)................................................................................. 202. Figure 5.2. Above surface images for jets formed in pre-entrapment jetting regime (5 000 FPS) .............................................................................................. 204. Figure 5.3. Diameter of the first drop exiting the cavity for different impact Froude numbers ....................................................................................... 206. Figure 5.4. Velocity of the first drop exiting the cavity for different impact Froude numbers.................................................................................................... 207. Figure 5.5. Number of drops produced from each pre-entrapment jetting event....... 207 - xxi -.

(23) Figure 5.6. Drop velocity versus diameter of the first drops that exit the cavity ....... 208. Figure 5.7. Retraction of the cavity base for pre-entrapment jetting (Fr = 154, We = 91, Re = 3338, tc = 1.18) (40 000 FPS) ................................................ 209. Figure 5.8. Cavity tip displacement over time ........................................................... 210. Figure 5.9. Graph of cavity tip velocity versus time .................................................. 210. Figure 5.10 Process of cavity retraction leading to jetting in the pre-entrapment jetting regime. (a) Cavity driven inward by the inertia of the flow around cavity while the downward displacement of the cavity balances the upward surface tension force. (b) Cavity stops growing downward allowing surface tension to pull the cavity upward which in turn allows the flow to converge along the centreline. (c) Parallel flow converging forms a stagnation point that it turn forms a high pressure point that drives a high-speed jet upward. ............................................................... 212 Figure 5.11 Contours of velocity magnitude as the flow converges along the centreline (m/s) (a) PIV Impact II (Umax = 1.08 m/s) (b) PIV Impact III (Umax = 1.69 m/s) (c) PIV Impact IV (Umax = 1.93 m/s) .......................... 213 Figure 5.12 Above surface images for PBE-I (Fr = 149, We = 83, Re = 3144, tc = 1.18) (10 000 FPS).................................................................................. 215 Figure 5.13 Above surface images for PBE-II (Fr = 168, We = 92, Re = 3291, tc = 1.11) (10 000 FPS).................................................................................. 216 Figure 5.14 Above surface images for PBE-III (Fr = 219, We = 123, Re = 3823, tc = 0.96) (10 000 FPS)................................................................................ 217 Figure 5.15 Above surface images PBE-IV (Fr = 270, We = 150, Re = 4223, tc = 0.88) (10 000 FPS)................................................................................... 217 Figure 5.16 Above surface images for PBE-V (Fr = 318, We = 180, Re = 4580, tc = 0.81) (10 000 FPS)................................................................................... 218 Figure 5.17 Above surface images for PBE-VI (Fr = 342, We = 192, Re = 4781, tc = 0.78) (10 000 FPS)................................................................................ 219 Figure 5.18 Above surface images for PBE-VI (Fr = 360, We = 202, Re = 4907, tc = 0.76) (10 000 FPS)................................................................................ 219 Figure 5.19 Drop diameter vs impact Froude number for first drops exiting the cavity in the primary bubble entrapment regime ..................................... 222 Figure 5.20 Drop velocity vs impact Froude number for first drops exiting the cavity in the primary bubble entrapment regime ..................................... 222 - xxii -.

(24) Figure 5.21 No. of drops formed for selected impact in Prim. Bubble Entrapment ... 223 Figure 5.22 Velocity/size characteristics for all the drops formed in primary bubble entrapment regime ................................................................................... 223 Figure 5.23 Neck rupture for 33g-08-220mm (Fr = 225, We = 128, Re = 3917, tc = 0.97) (81595 FPS).................................................................................... 224 Figure 5.24 Velocity time graph for the retracting cavity during primary bubble entrapment................................................................................................ 224 Figure 5.25 Stem break leaving multiple small bubbles entrapped (Fr = 71, We = 97, Re = 4222 ,tc = 2.13) (3000 FPS)....................................................... 226 Figure 5.26 Image sequence two jets forming (Fr = 279, We = 171, Re = 4599, tc = 0.88) (30 000 FPS)................................................................................... 226 Figure 5.27 Mechanism of primary bubble entrapment jetting (a) Downward component of the flow pushes the base of the stem downward while the converging flow pushes the walls of the cavity inward (b) Converging flow forces the cavity walls to become a thin unstable cylinder that break-ups (c) Break up of the cavity’s stem allows the converging flow to meet which forms one or more stagnation point giving rise to jets in orthogonal directions............................................... 227 Figure 5.28 Upward jet when multiple bubbles form during stem break up (Fr = 71, We = 97, Re = 4222,tc = 2.13) (5000 FPS)........................................ 227 Figure 5.29 Image sequence for the formation of a downward jet (Fr = 203, We = 125, Re = 3938,tc = 1.04) (30 000 FPS)................................................... 231 Figure 5.30 Example of the downward jet penetrating a small distance into the bubble (Fr = 236, We = 147, Re = 4284,tc = 0.96) (30 000 FPS)............ 233 Figure 5.31 Image sequence showing the movement of the entrapped drop (Fr = 228, We = 140, Re = 4156, tc = 0.98) (30000 FPS)................................. 235 Figure 5.32 Dyed drop image sequence of drop in bubble coalescence (Fr = 138, We = 127, Re = 4380, tc = 1.39) (3 000 FPS).......................................... 236 Figure 5.33 Thick jet shape moments before secondary drop detachment ................. 239 Figure 5.34 Secondary drop size variation versus impact Froude number for the 26g-04 data set ......................................................................................... 240 Figure 5.35 Maximum jet height in the post-entrapment jetting regime versus impact Froude number ............................................................................. 240. - xxiii -.

(25) Figure 5.36 Mechanism of post-entrapment jetting (a) Converging flow at the base of cavity drives the cavity walls upward and inward (b) Flow begins to converge with a strong upward component (c) The converging flow meets and drives the base of the cavity upward to form thick slow moving jets............................................................................................... 241 Figure 6.1. Thoroddsen bubble sizes from the impacts from 3.2 mm drops (20g needles) .................................................................................................... 244. Figure 6.2. Total volume of the Thoroddsen bubbles formed from 3.2 mm drops (20g needles)............................................................................................ 245. Figure 6.3. A series of impacts showing the shape of the bubble formed from primary bubble entrapment ...................................................................... 247. Figure 6.4. Plot of entrapped bubble size versus Froude number .............................. 248. Figure 6.5. Below surface images for MBE-I (Fr = 332, We = 194, Re = 4824, tc = 0.8) 250. Figure 6.6. Below surface images for MBE-II (Fr = 332, We = 194, Re = 4824, tc = 0.8) (40000 FPS).................................................................................. 251. Figure 6.7. Below surface images for MBE-III (Fr = 343, We = 195, Re = 4826, tc = 0.78) (40000 FPS)............................................................................... 252. Figure 6.8. Below surface images for MBE-IV (Fr = 345, We = 196, Re = 4841, tc = 0.78) (40000 FPS)............................................................................... 253. Figure 6.9. Below surface images for MBE-V (Fr = 356, We = 202, Re = 4904, tc = 0.77) (40000 FPS)................................................................................ 254. Figure 6.10 Secondary bubble size versus impact Froude number............................. 256 Figure 6.11 An example of secondary bubble entrapment in the post-entrapment regime (Fr = 721, We = 410, Re = 7003, tc = 0.54) (2000 FPS).............. 257 Figure 6.12 Cavity outlines from the image sequence shown above .......................... 257 Figure 6.13 Down cavity image sequence for 33g-09-660mm (8000 FPS) showing capillary wave convergence (Estimated impact conditions Fr = 560, We = 318, Re = 6169, tc = 0.61) .............................................................. 259 Figure 6.14 Air film rupture due to a rapid thinning of the film (Impact conditions of drop not captured) (27175 FPS) .......................................................... 261 Figure 6.15 An example of the thin film not rupturing during initial impact (Fr = 37, We = 18) (3000 FPS) ......................................................................... 262. - xxiv -.

(26) Figure 6.16 Air film rupture due to a rapid thinning of the film (Impact conditions of drop not captured) (27175 FPS) .......................................................... 263 Figure 6.17 Air film rupture due to less rapid thinning of the film (Impact conditions of drop not captured) (27175 FPS)........................................ 263 Figure 6.18 Rupture of the air film supporting a floating drop (3000 FPS) ................. 265 Figure 6.19 Second stage in coalescence cascade (3000 FPS).................................... 266 Figure 6.20 Dimensionless parameters of secondary drops as they impact the liquid surface ...................................................................................................... 268. - xxv -.

(27) LIST OF TABLES Table 1.1. Classification of pool depth ......................................................................... 3. Table 2.1 Viscosity and surface tension for different recorded temperatures (Munson et al. 1998).................................................................................. 51 Table 2.2. Technical specifications of the Redlake HG-100K cameras ..................... 52. Table 2.3. Maximum resolution possible for a given FPS rate................................... 53. Table 2.4. Technical specifications of the PIV laser................................................... 54. Table 2.5. Expected ranges for various parameters .................................................... 61. Table 2.6. Available particles with their corresponding properties ............................ 67. Table 2.7. Experiments conducted with 33G needles................................................. 70. Table 2.8. Experiments conducted with 26g needles.................................................. 71. Table 2.9. Experiments conducted with 20g needles.................................................. 71. Table 2.10 Repeatability of drops................................................................................... 72 Table 3.1. Impact numbers and corresponding dimensionless numbers..................... 82. Table 3.2. Impact conditions for the drops that fall into the primary microbubble formation regime...................................................................................... 137. Table 4.1. Impact conditions for PIV results ............................................................ 149. Table 4.2. Impact details of the image sequences used for the cavity outlines ........ 176. Table 4.3. Depth of free surface influence................................................................ 188. Table 4.4. Comparison between experimental cavity collapse times and predicted values ....................................................................................................... 193. Table 5.1. Impact conditions for images in Figure 5.1 and Figure 5.2 ..................... 201. Table 5.2. Velocity and diameters of drops exiting the cavity ................................. 205. Table 5.3. Impact conditions for the images sequences from the primary bubble entrapment regime ................................................................................... 214. Table 5.4. Drop characteristics of the drops from the Primary Bubble Entrapment Regime ..................................................................................................... 220. Table 5.5. Impact conditions for drops falling in the post-entrapment jetting regime ...................................................................................................... 237. Table 6.1. Impact conditions for the image sequences shown in Figure 6.3 ............ 246. Table 6.2. Impact conditions for multiple bubble entrapment.................................. 249. Table 6.3. Microbubble size and quantity distribution for the 20g-03 data set ........ 264. - xxvi -.

(28) Table 6.4. Estimated and measured values of air volume entrapment due to thin film rupture during expansion.................................................................. 270. Table 6.5. Estimated entrapped air volumes for floating drops ................................ 270. Table 6.6. Entrapped air volume as a percentage of original drop volume for all bubble entrapment mechanisms............................................................... 271. - xxvii -.

(29)

References

Related documents

Using text mining of first-opinion electronic medical records from seven veterinary practices around the UK, Kaplan-Meier and Cox proportional hazard modelling, we were able to

National Conference on Technical Vocational Education, Training and Skills Development: A Roadmap for Empowerment (Dec. 2008): Ministry of Human Resource Development, Department

The objective of this study was to evaluate the feasibility and acceptability of decision coaching guided by the Ottawa Family Decision Guide with children and parents

This unique quality of HRV/HRC analyses has led to interest in its application in pre-hospital triage and emergency clinical decision making; interest which has been bol- stered by

Our study successfully implemented a referral program for maternal contraceptive services within pediatric care by having pediatric residents assess postpartum women ’ s needs

It was decided that with the presence of such significant red flag signs that she should undergo advanced imaging, in this case an MRI, that revealed an underlying malignancy, which

Мөн БЗДүүргийн нохойн уушгины жижиг гуурсанцрын хучуур эсийн болон гөлгөр булчингийн ширхгийн гиперплази (4-р зураг), Чингэлтэй дүүргийн нохойн уушгинд том

19% serve a county. Fourteen per cent of the centers provide service for adjoining states in addition to the states in which they are located; usually these adjoining states have