• No results found

Lagrangian and Hamiltonian structures in an integrable hierarchy and space-time duality

N/A
N/A
Protected

Academic year: 2019

Share "Lagrangian and Hamiltonian structures in an integrable hierarchy and space-time duality"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

City, University of London Institutional Repository

Citation

:

Avan, J., Caudrelier, V., Doikou, A. & Kundu, A. (2016). Lagrangian and

Hamiltonian structures in an integrable hierarchy and space-time duality. Nuclear Physics B,

902, pp. 415-439. doi: 10.1016/j.nuclphysb.2015.11.024

This is the published version of the paper.

This version of the publication may differ from the final published

version.

Permanent repository link: http://openaccess.city.ac.uk/12638/

Link to published version

:

http://dx.doi.org/10.1016/j.nuclphysb.2015.11.024

Copyright and reuse:

City Research Online aims to make research

outputs of City, University of London available to a wider audience.

Copyright and Moral Rights remain with the author(s) and/or copyright

holders. URLs from City Research Online may be freely distributed and

linked to.

(2)

ScienceDirect

Nuclear Physics B 902 (2016) 415–439

www.elsevier.com/locate/nuclphysb

Lagrangian

and

Hamiltonian

structures

in

an

integrable

hierarchy

and

space–time

duality

Jean Avan

a

,

Vincent Caudrelier

b,

,

Anastasia Doikou

c

,

Anjan Kundu

d aLaboratoiredePhysiqueThéoriqueetModélisation(CNRSUMR8089),UniversitédeCergy-Pontoise,

F-95302 Cergy-Pontoise,France

bDepartmentofMathematics,CityUniversityLondon,NorthamptonSquare,EC1V0HBLondon,UnitedKingdom cDepartmentofMathematics,Heriot-WattUniversity,EH144AS,Edinburgh,UnitedKingdom

dSahaInstituteofNuclearPhysics,TheoryDivision,Kolkata,India

Received 9October2015;receivedinrevisedform 23November2015;accepted 25November2015 Availableonline 27November2015

HubertSaleur

Abstract

Wedefineandillustratethenovelnotionofdualintegrablehierarchies,ontheexampleofthenonlinear Schrödinger(NLS)hierarchy.Foreachintegrablenonlinearevolutionequation(NLEE)inthehierarchy, dualintegrablestructuresarecharacterizedbythefactthatthezero-curvaturerepresentationoftheNLEE canberealizedby twoHamiltonianformulationsstemmingfromtwodistinctchoicesofthe configura-tionspace,yieldingtwoinequivalentPoissonstructuresonthecorrespondingphasespaceandtwodistinct Hamiltonians.Thisisfundamentallydifferentfrom thestandardbi-Hamiltonian orgenerallymultitime structure.Thefirstformulationchoosespurelyspace-dependentfieldsasconfigurationspace;ityieldsthe standardPoissonstructureforNLS.Theotheroneisnew:itchoosespurelytime-dependentfieldsas con-figurationspaceandyieldsadifferentPoissonstructureateachlevelofthehierarchy.Thecorresponding NLEEbecomesaspaceevolutionequation.WeemphasizetheroleoftheLagrangianformulationasa uni-fyingframeworkforderivingbothPoissonstructures,usingideasfromcovariantfieldtheory.Oneofour mainresultsistoshowthatthetwomatricesoftheLaxpairsatisfythesameformofultralocalPoisson algebra(uptoasign)characterizedbyanr-matrixstructure,whereastraditionallyonlyoneofthemis in-volvedintheclassicalr-matrixmethod.WeconstructexplicitdualhierarchiesofHamiltonians,andLax representationsofthetriggereddynamics,fromthemonodromymatricesofeitherLaxmatrix.An

appeal-* Correspondingauthor.

E-mailaddresses:Jean.Avan@u-cergy.fr(J. Avan), v.caudrelier@city.ac.uk(V. Caudrelier), A.Doikou@hw.ac.uk (A. Doikou), Anjan.Kundu@saha.ac.in(A. Kundu).

http://dx.doi.org/10.1016/j.nuclphysb.2015.11.024

(3)

ingproceduretobuildamulti-dimensionallatticeofLaxpair,throughsuccessiveusesofthedualPoisson structures,isbrieflyintroduced.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thediscoveryoftheintegrabilityofcertainnonlinear evolutionequations(NLEE),starting with the pioneering work of Gardner et al. [1] and Zakharov–Shabat [2], and based on the fundamental notionof aLax pair [3],has markedacrucialturninseveral majordomainsof mathematicalphysicsofthelastcentury.The influenceisstill stronglyfelttoday.Many com-plementaryandinterrelatedpointsofviewandtheorieshavebeendevelopedaroundthissingle theme,tonamebutafew:

• theanalyticapproachculminatingintheinversescatteringapproach(seee.g. [4]),

• thegeometricapproachculminatinginthePoisson–Liegroupformulationofintegrable hi-erarchiesviatheclassicalr-matrixformalism,e.g. [5–8],andtherelatedalgebraicapproach tointegrablehierarchiesviaKac–Moodyalgebras(seee.g. [9]andreferencestherein),

• thealgebro-geometricapproachdealingwithperiodicsolutions ofintegrableNLEE,with stronglinkstoRiemannsurfacetheory,e.g. [10–12],

• thepseudo-differential operatorapproach [13,14]applicableinparticularto higher-dimen-sionalintegrablesystemssuchasKPhierarchy.

Thereaderwillhavetoexcuseouroversimplifiedlistoftopicsandreferenceswhichcannotmake justicetothehugeamountofliteratureaccumulatedoverdecadesonthistheme.Severalbooks canbeconsultedforamuchbetterandfairerdescriptionoftheseareas,e.g. [15–17].

Despiteallthesefacets,afewkeyingredientsarealwayspresentandprovideaunifiedbasis forsuchtreatments:aLaxpairformulationandtheassociatedzerocurvaturerepresentationof theNLEE.Thevariousapproachesmentionedabove(andthemanymorehiddenwithinthem) aremotivated by differentgoals: for instance,the Hamiltonian description of aNLEE is not necessaryifoneisonlyinterestedinviewingitasaPDEandfindingitssolutions.However,it becomesofimportanceifoneinsistsonprovingLiouvilleintegrabilityofthisNLEEviewedas aninfinitedimensionaldynamicalsystemorifonehasinminditsquantization(oneofthekey motivationsbehindtheclassicalr-matrixapproach).

Wewouldliketomakeonesimplebutstrikingobservation:mostoftheseapproaches,and mostnoticeablythe(Liouville)Hamiltonianconceptofintegrability,alwayssetemphasisonthe x-part of theLax pair as basicobjectandviewthe t-partas auxiliary.In asense, thisisnot at allsurprisingsincethe very phrase“nonlinearevolution equations”suggeststhat timeisa distinguishedvariableas theparameterof theevolutionflow underinvestigation.Adeparture fromthispointofviewalreadyariseswhenagivenNLEEisviewedasamemberofanentire integrable hierarchy describing the commuting flows for an infinite numberof times tn.The

independent variablex isthensimplyoneofthe“times”. However,evenwiththispicture,as soonasonesinglesoutagivenLaxpairinthehierarchyinviewofstudyingthecorresponding

evolutionequation,thebiasmentionedaboveisrestoredandtheequationisseenasanevolution

(4)

Inparticular,consideringNLEEformulatedbyanAKNSauxiliaryproblem

∂x=U , (1.1)

∂t=V , (1.2)

andtherelatedzerocurvaturecondition,

∂tU−∂xV+

U,V

=0, (1.3)

andformulatingthesysteminthefamousclassicalr-matrixapproachtointegrableNLEE,the fundamentalresultdealswiththePoissonalgebrasatisfiedbythe“fundamental”,x-relatedLax matrixU.Thet-relatedhalfoftheLaxpair,V,playsasecondaryroleinthatitisdeterminedby ther-matrixandthechoiceofHamiltonianinthehierarchydeducedfromthemonodromyofU. Thispointofviewisinsharpcontrastwiththenaturalsymmetricrolesplayedaprioribyxand tintheAKNSformulation.

Thissymmetrybetweenxandtnaturallysuggestsanotionofdualityintheprocessof choos-ingxortastheevolutionparameterdefiningtheintegrablepicture.Notealsothattheapproach todiscretizationofconformalintegrablequantumtheories,e.g.àladeVega–Destri [18]already usesasfundamentalevolutionvariablesthelightconecoordinatesx±t,departingthusfromthe x,tformulation.Onemayevenimagineresortingtosomemoregeneral(linear)functionofx,t astheadequateevolutionparameter,dependingonthephysicalinterpretationofthedynamical problem.Inotherwordsonemayhaveseveralrelevantchoicesofclassicalconfigurationspace, determiningthe phasespaceandtheHamiltonianformulationofthe dynamicalproblem.The issueisthenwhethersomeotherchoicesthantheusualone(herethespacesliceoffields sym-bolicallydenoted{φ(x)})alsoyieldLiouville-integrableHamiltoniansystems.Thisisthecore issueofourinvestigations.

Theneedtoexploitthissimpleobservationwasfeltwhendealingwithinitial-boundaryvalue problemsasopposedtoinitial-valueproblems.Itwasusedtoitsfullextentinthedevelopmentof theso-calledunifiedmethodofFokasforinitial-boundaryvalueproblems [19].Thismethodfalls intotheanalyticcategorymentionedabove.Morerecently,stillintherealmofinitial-boundary valueproblems, twoof thepresent authorsintroducedsomeideasfromcovariantfieldtheory intotheHamiltoniantheoryofintegrablesystemstotacklethequestionofLiouvilleintegrability foraNLEEwithanintegrabledefect [20].Thisapproachfallsintothegeometric/Hamiltonian approachmentionedabove.Ithadbeenmotivatedbyanapparentconceptualgapbetweenearlier studiesonclassicalintegrabilitywithdefects,seee.g. [21–23]andreferencestherein.Themain ideawas totreatthe two independentvariablesonequal footing whendeveloping aclassical r-matrix approachtointegrable defects.This putsome of the pointsmade in [24] ona firm basis.Asaconsequence,ontheexampleofthenonlinearSchrödinger(NLS)equation,several importantobservationsweremade:

• InadditiontotheusualPoissonstructure{,}SusedfortheHamiltoniandescriptionofNLS

asanevolutionequationintime,onecanconstructanotherPoissonstructure{,}T which

(5)

multitimeHamiltonianprocedurewherethesamephasespaceisendowedwithahierarchy ofmutuallycompatiblePoissonstructures.Inthiswell-knownframeworkthex-evolutionis triggeredbythechoiceofthemomentumPasHamiltonian,andthesamePoissonstructure. Inanutshell:hierarchiesofPoissonbracketstructuresaremutuallycompatibleonthesame phasespace; dualPoissonstructures liveondifferent phasespaces arisingfrom different choicesofconfigurationspace,albeitforthesameoriginal“dynamical”system.

• ThesecondPoissonstructure{, }T givesrisetoanultralocalPoissonalgebraforthet-part

VoftheLaxpair,withthesameclassicalr-matrix(uptoasign)astheultralocalPoisson algebrasatisfiedbythe x-partUwithrespecttothe usualPoissonbracket{, }S.We

in-sistthatthissecondPoissonstructureisnotacompatiblePoissonstructureinthesenseof bi-Hamiltoniantheory [25].

• TheLagrangianformulationbecomesthemostfundamentaldescriptioninthiscontext. In-deed,bothPoissonstructurescanbederivedfromit,togetherwiththecorrespondingspace andtimeHamiltonians,onceachoiceofgeneralcoordinatesorconfigurationspaceis stipu-lated.TheideaofgoingbacktoaLagrangianformulationofintegrableequationsofmotion, encapsulatingaso-calledmultisymplecticform,goesbackatleasttotheworksin [14]:at thattimeitwasundertakeninthecontextofmultitimecompatibleHamiltonianstructures. Herehowever,asalreadyemphasized,weusetheLagrangianformulationtoextracttwo in-equivalentchoicesofconfigurationspace,inducingtheconstructionofdifferentphasespaces andassociatedPoissonstructuresforourdynamicalsystem.

Inouropinion,thelastobservationaboveisthemainconceptualbasisforanunderstandingof space–timeduality(andpossiblymoregeneraldualities)inintegrablehierarchies.Lagrangians naturallycontaininformationonspace–timesymmetriesanddonotdiscriminatebetweenspace andtime.WhenonegoesovertothetraditionalHamiltonianpictureforatwo-dimensionalfield theory,adistinctionbetweentimeandspaceimmediatelyarisesonceonechooseswhattocall generalizedcoordinatesandtheirgeneralvelocities.

Note thatthe distinctionalsooccurs,evenbeforeHamiltonianformulation,as soonas one is leadtospecify“boundary conditions”for instancedistinguishingbetweenx=cstandt = cst boundaries. The validityof thisscheme andof theseobservations wasalso provedinthe context ofdefecttheory for thesine-Gordon modelby oneofthe authors [26].Althoughthe secondPoissonstructureanditsconsequenceswereoriginallyintroducedtosolvetheproblem ofLiouvilleintegrabilityinthepresenceofadefectraisedin [27],itbecameclearthattheabove observationsareofamorefundamentalnature.

Letusnowspecifyhowweplantousethisscheme.WeshallusebothLagrangianand Hamil-tonianformalismsjointlyandsuccessively.Inafirststep,thewell-known(Hamiltonian-based) constructionofahierarchyofHamiltoniansprovidesuswithahierarchyofsimultaneously solv-ableNLEE.ThederivationofadualPoissonstructurethenrequirestoidentifytheLagrangian densityyieldingeachNLEE.WerecoverthatthePoissonstructuredescribingthetn evolution

is theinitialPoissonstructure, asit shouldbeby firstprinciplesof Hamiltonianintegrability. ThedualPoissonstructuredescribingthexevolutionatlevelnmustbeconstructedasasecond stepbyapplicationofthecanonicalprocedurewithrespecttoxderivativesofthefields,as dic-tatedbythecovariantapproachtofieldtheoryandthedualchoiceofphasespaceandsymplectic structure.Onceitisconstructed,theexistenceof anr-matrixstructureforthePoissonalgebra ofthetn shiftoperatorV(n),naturallyidentifiedastheLax operatorinthisalternativechoice,

(6)

theprocedurejustdescribed,inanintegrablehierarchy.Weshallparticularizeourapproachto thenonlinearSchrödingerequationasasimplebutenlighteningexample.Butitisclearthatour ideascanbeadaptedtootherAKNS-describedhierarchies,withappropriatechanges.

Thispaperisorganisedasfollows.InSection2,wegivesomeusefulnotationsand conven-tions.Section3isdevotedtotheintroductionofthemainconceptsof thispaper.Wedescribe thedualHamiltonianformulationoftheNLShierarchy,theexplicitconstructionbeingdonefor level2(NLS)andlevel3(complexMKdV).TheroleoftheLagrangianformulationcombined withideasfromcovariantfieldtheoryisemphasizedinordertoderivethetwoPoissonstructures forthedynamicalfields.Thelastpartofthissectionexplainshowtheresultscanbegeneralized toallthelevelsinthehierarchy.InSection4,wethenbuildther-matrixformulationassociated withthisdualpicture.OntopoftheusualultralocalPoissonalgebraforthespaceLaxmatrixof NLS,wederivethesamePoissonalgebraforthehierarchyoftimeLaxmatrices(uptoasign). Consequencesfor conservedquantitiesandintegrabilityarediscussed.Section5isconcerned withsomeconclusions,remarks anddefinitionsbased onthe resultsobtainedinthe previous sections.Aphysicalapplicationandanexcitingnewperspectiveoffuturedevelopmentsarealso given.Technicalissuesregardingtheconstructionofdualhierarchiesaregivenin Appendices A andB.

2. Notationsandconventions

InthestandardapproachtotheNLShierarchyin1+1 dimensions,thedependentvariables (fields)ψ,ψ¯ areconsideredtobefunctionsofaninfinitesequenceoftimestn,n≥0,withthe

spacevariablexbeingt0forinstance.Wewillkeepitexplicitly asxtomakecontactwithsome

well-knownequationsintheNLShierarchy.EachHamiltonianHS(n)atlevelninthehierarchy describestheevolutionofthesystemwithrespecttoagiventimetninsuchawaythat

ψtn= {H

(n)

S , ψ}, ψ¯tn= {H

(n)

S ¯}, (2.1)

withappropriatelychosenPoissonbrackets,isequivalenttothezerocurvatureconditionforthe Laxpair(U,V(n))atleveln

∂tnU−∂xV

(n)+ [U,V(n)] =0. (2.2)

Inthecourseofourstudy,thenotionofdualdescriptionwillemergewhereby,theequationsof motioncapturedby (2.2)canbeequivalentlyrewrittenasthex evolutionoffieldsgovernedby HamiltoniansthataredualtoHS(n)inaprecisesense.ThisiswhyweintroducedthesubscriptS in (2.1)toindicatethattheHamiltonianisaxintegralofalocalHamiltoniandensityinthefields andtheirx derivatives.Thisisofcoursecompletelyredundantinthetraditionalapproachsince thisisalways assumedtobe thecase. But, inourtheory,the dualHamiltoniansHT(n) appear naturallyfromaLagrangianpictureandare nowintegrals overtheformerlyidentified“time” variablestnoflocalHamiltoniandensitiesinthefieldsandtheirtnderivatives.

Thefieldsandtheirderivativeswithrespecttoagivensubsetoftheindependentvariablesare denotedasfollows

ψ (x,t) , ψ(x,¯ t) , ∂xtj1...jqψ (x,t)=

∂q+1ψ (x,t) ∂x∂tj1. . . ∂tjq

, etc. (2.3)

(7)

confusionarises,weomittheargumentsaltogether.Whenonlysomeoftheindependentvariables areinvolved,typicallyx andonetn orpossiblytwotn’s,wemaydisplayexplicitlyonlythose

variablesthatplayarole,forinstancebywritingexpressionslike

ψ (x, t2) , ∂xt5ψ=ψxt5, etc. (2.4)

Wewillusethesamerulesforalltheobjectsbuiltfromthefieldsandtheirderivatives (La-grangians,Hamiltonians, Laxpairs).Finally,thenotionof equal-timePoissonbracket{, }(n)S andequal-spacePoissonbrackets{, }(n)T willplayanimportantroleinourtheory.Thesubscript SisusedtoemphasizethatthePoissonbracketdependsonlyonthespacevariable(equal-time) whileT istheretoremindusthatthePoissondependsonlyonthetimevariable(equal-space). The superscriptencodesthe levelof the hierarchythat we arelookingat.Whenwritingsuch Poissonbrackets,onlytheindependentvariablethatareinvolvedwillbeshown.Forinstance,an expressionlike

{ψ (x),ψ(y)¯ }(S2)=iδ(xy) (2.5)

involvingψ (x,t)andψ(y,¯ t)isshortfor

{ψ (x, t2),ψ (y, t¯ 2)}S(2)=iδ(xy) (2.6)

andmeansthatweworkatequaltime(indicatedbythesubscriptS)andforn=2 (indicatedby thesuperscript(2))i.e.t2=t2.TheunderstandingisthatsuchaPoissonbracketwillcontrolthe

evolutionwithrespecttot2ofasystemdescribedbyaHamiltoniandensitydependingonx.

Inthispaper,weconsiderasboundaryconditionstheeasy-to-handlechoiceofperiodic bound-aryconditionsonafiniteinterval,bothinspaceandtimegivenourpurposes.Werewetoconsider fieldtheoriesoninfiniteintervalswewouldintroducethestandardfast-decayconditionsonthe fields. More specificboundary conditionson the intervalmaybe consideredfor specific pur-poses,interplayingwithbulkintegrabilitypropertiesusingsuitableformulationsdrawnfromthe well-knownCherednik–Sklyaninapproaches.

Finally, it isquiteprofitable tousea notionof scaling dimensionto keeptrackof various quantitiesinthehierarchy.Forinstance,weattachascalingdimension1 tothefieldsψ,ψ,¯ to thespectralparameterλ,aswellastothederivativewithrespecttox,andascalingdimension ofntothetimetn.Aswewillseeinthefollowing,thesuperscriptinV(n)capturesthisnotionin

thatV(n)isapolynomialinλoftheform

V(n)(x, λ)=λnV(n)(x)+λn−1V(n−1)(x)+ · · · +V(0)(x) (2.7)

whereV(j )isofscalingdimensionnj andcontainsonlythefieldsandtheirx-derivativesin combinationsofscalingnj.Forinstance,inV(2),V(2)=i2σ3,V(1)= −√κQ,with

Q=

0 ψ¯

ψ 0

, (2.8)

andV(0)=iκQ2−3Qx.HigherV(j )’scanbedeterminedrecursively.Thescalingdimension

(8)

3. TheNLShierarchyrevisited:LagrangiananddualHamiltonianpictures

3.1. LagrangiananddualHamiltonianpictureforNLS

Wereviewtheresultsfirstobtainedin [20]inlightofthepresentcontextandnotations.ALax pairforNLSreads

U(1)= −iλ

2σ3+

κQ=

λ

2i

κψ¯

κψ2λi

, (3.1)

V(2)=iλ2

2 σ3−λ

κQ(x)+iκQ2−3Qx

=

λ2

2i +|ψ|

2 λκψ¯ iκψ¯

x

λκψ+iκψx λ 2

2i|ψ|

2

. (3.2)

Intherestofthispaper,wedropthesuperscript(1)onU(1)asthisUwillbetheonlyoneinvolved here.Thezerocurvaturecondition

∂t2U−∂xV

(2)+ [U,V(2)] =

0, (3.3)

yieldstheNLSequation,

iψt2+ψxx=2κ|ψ|

2ψ (and complex conjugate). (3.4)

ALagrangian densityforNLSis

L(2)= i

2(ψ ψ¯ t2−ψψ¯t2)− ¯ψxψxκ(ψ ψ )¯

2.

(3.5)

Wenow derivethetwoPoissonbrackets{, }S(2) (whichisthestandardoneused e.g.in [15]) and{, }(T2),thenewequal-spacePoissonbracketfirstintroducedin [20].Wewillalsofindthe correspondingHamiltoniansHS(2)andHT(2).Forconvenience,letusdenoteφ1=ψandφ2= ¯ψ

whichare treatedas independentfields. Withinthissection, sincewe workat thefixedlevel n=2, it isconvenient todrop the subscripton t2 andwe simplyuse t.Finally, whetherwe

discusstheequal-timepictureortheequal-spacepicture,oneofthetwoindependentvariables willbefixed.Hence,wecanaffordtouseclassicalmechanicsnotationsinsteadoffieldtheoretic ones(wewillthenalsorestrictourattentiontodensities).Bythiswemeanthatinsteadofwriting anexpressionlike

{j(x, t), φk(y, t)} =δj kδ(xy) , (3.6)

wewillsimplywrite

{j, φk} =δj k. (3.7)

Similarly,aquantitylike ∂tφj will bewritten asφ˙j and∂xφj asφj.Thecontextwill always

beclearsothisabuseofnotationshouldnotleadtoanyconfusion.Withthisinmind,theusual canonicalconjugatetoφj isdefinedby

1=

∂L(2) ∂φ˙1

= i

2φ2, 2= ∂L(2)

∂φ˙2

= −i

(9)

Theseequationscannotbeusedtoeliminateφ˙j infavourofthemomentajwhenformingthe

Hamiltonian.Onthecontrary,weseethattheyrelatevariablesthataresupposedtobe indepen-dentintheHamiltonianpicturei.e.jandφk.SowefallwithinDirac’sschemeforconstrained

dynamics [28],theprimaryconstraintsbeing

C1=1−

i

2φ2, C2=2+ i

2φ1. (3.9)

TheenlargedHamiltoniandensity,takingtheseconstraintsintoaccount,istheusualHamiltonian plusalinearcombinationoftheconstraints,

H(2) S =H

(2)

S +λ1C1+λ2C2 (3.10)

=1φ˙1+2φ˙2−L(2)+λ1C1+λ2C2. (3.11)

TheinitialcanonicalPoissonbracketsaregivenasusualby

{j, φk} =δj k, (3.12)

andalltheothersarezero.TheevolutionoftheconstraintsunderHS(2)andwithrespecttothese bracketsmustremainzero,whichentailstheconsistencyconditions

{H(2)

S , Cj} =0, j=1,2. (3.13)

Onecomputes

{C1, C2} = −i , (3.14)

whichshowsthattheseprimaryconstraintsare secondclass.Then,theconsistencyconditions yield

λ1= −i{H(S2), C2}, λ2=i{H(S2), C1}, (3.15)

whichfixesthe valueofλj andshowsthat therearenomoreconstraints.Dirac’s generalized

Hamiltoniantheory [28]teachesusthatwecaneitheruse{, }withHS(2)asdeterminedabove todescribethedynamicsofthesystem,orwecanusethefamousDirac’sbracket{, }D which

allowsustosetCj=0 identically,andhenceuseHS(2)todescribethedynamics.Tothisend,we

needthematrixofPoissonbracketsofsecondclassconstraints

M=

0 {C1, C2}

{C2, C1} 0

=

0 −i

i 0

. (3.16)

TheDiracbracketisthendefinedas

{f, g}D= {f, g} −

2

j,k=1

{f, Cj}(M−1)j k{Ck, g}, (3.17)

foranyfunctionsf,gofthedynamicalvariables.Thenonzerocanonicalbracketswithrespect to{, }Darethenmodifiedto

{φ1, φ2}D=i , {j, φk}D=

1

2δj k, {1, 2}D= − i

4. (3.18)

We can seethat theyare of courseconsistent with the constraintsCj =0 andthese are the

bracketsweshouldidentifywith{, }(S2).Withthesebrackets,wecanusetheHamiltonianH(S2) moduloCj=0,whichreads

H(2)

(10)

Intermsoftheoriginalfieldsψ,ψ,¯ thethreebrackets (3.18)allconsistentlyreducetothe well-knownone [15]

{ψ (x),ψ (y)¯ }(S2)=iδ(xy) , (3.20)

andH(S2)istheNLSHamiltoniandensity|ψx|2+κ|ψ|4.Theequationsofmotionarisefrom

ψt= {HS(2), ψ}(S2) (and complex conjugate), (3.21)

whereHS(2)isthespaceintegralofHS(2).

Followingthesameprinciple we nowturn tothe equal-spacePoissonbracket.The ideais tocompletetheLegendretransformandconsideranothersetofcanonical conjugatemomenta definedwithrespecttothexderivativeofφj,

P1=

∂L(2) ∂φ1 = −φ

2, P1=

∂L(2) ∂φ2 = −φ

1. (3.22)

Hence,fromthepointofviewofthex variable,weareinthestandardsituationwherewecan eliminatethe“velocities”φj infavourofthemomentaPj whenformingtheHamiltonian.The

analysisisthereforestraightforwardandwecanusethedefaultcanonicalPoissonbrackets

{Pj, φk} =δj k (all others zero), (3.23)

asourequal-spacebracket{, }T(2).TheHamiltoniandensityisalsoreadilyfoundtobe H(2)

T =P1φ1+P2φ2−L(2). (3.24)

Intermsoftheoriginalfields,thisreads

H(2) T =

i

2(ψψ¯t− ¯ψψt)− ¯ψxψx+κ(ψ ψ )¯

2,

(3.25)

togetherwith1

{ψ (t ),ψ¯x(τ )}T(2)=δ(tτ ) , {ψ (t ),ψ (τ )¯ } (2)

T =0= {ψx(t),ψ¯x(τ )}(T2). (3.26)

Theequationsofmotionarethenconsistentlygivenby

ψx= {HT(2), ψ}(T2) (and complex conjugate), (3.27)

(ψx)x= {HT(2), ψx}(T2) (and complex conjugate), (3.28)

whereHT(2)isthetimeintegralofH(T2).

AsindicatedintheIntroductionwenowhavetwoequallyacceptablePoissonstructures yield-ingthe sameequationsof motion,albeit withtwodistinctconfigurationspaces andunrelated Hamiltonians.

1 Thedifferenceinsignscomparedtotheresultsin [20]comesfromthefactthatweusetheconvention{p,q}=1 and ˙

(11)

3.2. LagrangiananddualHamiltonianpictureforthecomplexmKdVequation

Atlevel(3),thezerocurvatureconditionbasedonthepair(U,V(3)),with

V(3)=

λ3

2i +iλκ|ψ|

2+X λ2√κψ¯κψ¯

x+ ¯Y

λ2√κψ+κψx+Y λ 3

2iiλκ|ψ|

2X

(3.29)

and

X= −κ(ψ¯ψxψ),¯ Y=

κψxx−2κ 3

2|ψ|2ψ , (3.30)

yieldsthecomplexmodifiedKdVequation [29].

ψt3−ψxxx+6κ|ψ|

2ψ

x=0, (and complex conjugate). (3.31)

NoticethatourV(3),asderivedfromtheformulasin Appendix A,yieldsaminussigninfrontof thethirdspacederivative,whereas(complex)MKdVisusuallypresentedwithaplussign.That isirrelevantasonecansimplysett3= −t andκ→ −κ.

Weusethesameshorthandnotationsasbefore:t3=t (asweworkatthefixedleveln=3),

˙

φj for∂tφj,φj for∂xφj,etc.ALagrangiandensityforthisequationis

L(3)=i

2(ψ ψ¯ tψψ¯t)+ i

2¯xψxxψxψ¯xx)− 3iκ

2 ψψ(ψ¯ ψ¯x− ¯ψ ψx) (3.32)

=i

22φ˙1−φ1φ˙2)+ i 2

2φ1−φ1φ2)

3iκ

2 φ2φ11φ

2−φ2φ1) . (3.33)

Thederivationoftheequal-timebracket{, }S(3) isexactlythesameas inthepreviouscase sincethepartofL(3)involvingthetimederivativesofthefieldsisidenticaltothatofL(2).This

isunchangedandthisisofcourseconsistentwiththefactthatweuseUagainandonlychange the Vpart,from V(2) toV(3).TheLagrangianapproach presentedisthusconsistentwiththe

traditional Hamiltonianpicturewherethe Poissonbracketisintrinsictothedynamicalsystem (againwe arenotconsideringhereMagri’smulti-Hamiltonian approach),andthechangeinV correspondstoachangeinthechoiceofcommutingHamiltonians.Italsomeansthatfromnow on,wecandropthesuperscriptontheequal-timebracket{, }S.Again,asiswellknown fromthe

usualHamiltonianapproachandfromwhatwefindgenericallyatlevel nfromtheLagrangian picture(seenextsubsection),theequal-timebracket{, }S isthesameforthewholehierarchy.

ThecorrespondingHamiltoniandensityreads,intermsoftheoriginalfields,

H(3) S = −

i

2¯xψxxψxψ¯xx)+ 3iκ

2 ψψ(ψ¯ ψ¯x− ¯ψψx) . (3.34)

(12)

tooursingularcase.Thisgoesasfollows.Thefirststepistoreducetheorderofthehigherorder Lagrangianbyintroducingnewfieldsϕj suchthat

ϕj=φj, j=1,2. (3.35)

TheLagrangianL(3)theneffectivelybecomesastandardfirstorderLagrangianinthe indepen-dentfieldsφj,ϕj

L(3)=L(3)

j,φ˙j, ϕj, ϕj) . (3.36)

Theimportantrelation (3.35)ensuringequivalencewiththeoriginalLagrangianisnowdealtwith as aconstraintbyintroducing Lagrangemultipliers μj.Weintroduce thefollowing auxiliary

Lagrangian

Laux(φj,φ˙j, ϕj, ϕj, μj)=L(3)(φj,φ˙j, ϕj, ϕj)+

2

j=1

μj(ϕjφj) . (3.37)

Forconvenience,letussplitL(3)as L(3)

j,φ˙j, ϕj, ϕj)=L0(φj, ϕj, ϕj)+L1(φj,φ˙j) , (3.38)

with

L0(φj, ϕj, ϕj)=

i 22ϕ

1−ϕ1ϕ2)

3iκ

2 φ2φ11ϕ2−φ2ϕ1) , (3.39) L1(φj,φ˙j)=

i

22φ˙1−φ1φ˙2) . (3.40)

ThisismotivatedbythefactthatL1doesnotplayanactiveroleintheconstructionofH(T3)and

thecorrespondingPoissonbrackets,beingthetimepartoftheLagrangian.

WeapplythevariationalprincipletotheauxiliaryLagrangianfortheindependentfieldsφj,

ϕj andμj asusual.Ofcourse,avariationinμj enforcestheconstraints (3.35).Avariationin

φj yields

∂L0

∂φj +

μj+∂L1 ∂φj =

∂L˙1

∂φ˙j

. (3.41)

Avariationinϕj producesanequationfixingμj

μj= −

∂L0

∂ϕj +

∂L0

∂ϕj

. (3.42)

Inparticular,

μ1=2−

3iκ 2 φ

2

2φ1, (3.43)

μ2= −1+

3iκ 2 φ

2

1φ2. (3.44)

Notethat,uponinserting (3.35)and (3.42)into (3.41),weobtaintheequationsofmotion

˙

φ1−φ1+6κφ 2

2φ1=0, (3.45)

˙

φ2−φ2+6κφ 2

(13)

thatis, (3.31)anditscomplexconjugate,asrequired.Notealsothat (3.42)allowustoeliminate ϕj infavouroftheotherfieldsμj andφj whenformingtheHamiltonianbelow.

Wecannow proceed tothetransition tothe Hamiltonianpicture.Wedefinethe conjugate momentaofthefieldsφj,ϕj andμj,

P0

j =

∂Laux ∂φj , P

1

j =

∂Laux

∂ϕj , j= ∂Laux

∂μj . (3.47)

TheinitialcanonicalPoissonbracketsaretherefore

{P0

j, φk} =δj k, {Pj1, ϕk} =δj k, {j, μk} =δj k, (3.48)

withallothersequaltozero.Explicitly,theconjugatemomentaread

P0

j = −μj, j=0, (3.49)

and

P1 1=

i 2φ2, P

1 2= −

i

2φ1. (3.50)

OntheHamiltonianphasespaceparametrizedby(φj,Pj0;ϕj,Pj1;μj,j),theseequations

rep-resentprimaryconstraints.Thefirstset (3.49)isinherenttotheconstructionof [30].Thesecond set (3.50)isonlypresentinourcasebecauseourLagrangianissingular,inparticular,itislinear inthe“velocities”ϕj.NotethattheyareexactlyofthesamenatureastheconstraintsCj

dis-cussedintheNLScase,andtheywillhaveexactlythesameeffectonthePoissonbracketstobe derivedbelow.WealsocallthemCj here.Summarizing,wenowneedtoapplyDirac’sscheme

withtheprimaryconstraints

C1=P11−

i

2φ2, C2=P

1 2+

i

2φ1, (3.51)

C3=P10+μ1, C4=P20+μ2, C5=1, C6=2. (3.52)

WecomputethefollowingnonvanishingPoissonbracketsamongtheseconstraints,whichshow thattheyaresecondclass

{C1, C2} =i , {C3, C5} =1= {C4, C6}. (3.53)

WenowformtheHamiltonianHauxintheusualway

Haux=

2

j=1

(Pj0φj +Pj1ϕj +jμj)Laux (3.54)

aswellastheextendedHamiltonianwithconstraintsH

H∗=Haux+

6

j=1

αjCj. (3.55)

TheconstraintsshouldremainequaltozerounderevolutionbyH∗andthisyieldstheconsistency conditions

(14)

Afterstraightforwardbutlengthycalculations,wefindthatthesegive

αj=0, j=1,2,5,6, αj=

∂L˙1

∂φ˙j2

, j=3,4. (3.57)

Thustherearenosecondaryconstraintsandthecoefficientsαjarefixed.Thelaststepistoderive

theDiracbracketsforthissystemsothatwecansettheconstraintstozeroidentically.TheDirac bracketswillalsobetheequal-spacebrackets{, }T(3) thatwe arelookingfor. Tothisend,we needthematrixofPoissonbracketsoftheconstraints

M=({Cj, Ck})=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

0 i 0 0 0 0

i 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 −1 0 0 0

0 0 0 −1 0 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

. (3.58)

AsbeforetheDiracbracketforanytwofunctionsf,gofthedynamicalvariablesisdefinedby,

{f, g}D= {f, g} −

6

j,k=1

{f, Cj}(M−1)j k{Ck, g}. (3.59)

Usingthesebrackets,theconstraintscanbesettozeroidenticallyintheHamiltonianH∗andwe canworkonthereducedphase spaceconsistingofthefields(φj,Pj0,ϕj).Weobtain

Hred=P0

1ϕ1+P20ϕ2+

3iκ

2 φ2φ11ϕ2−φ2ϕ1)i

22φ˙1−φ1φ˙2) , (3.60) withtheDiracbrackets

{φ1, φ2}D=0, {ϕ1, ϕ2}D=i , {P10,P20}D=0, (3.61)

{φj, ϕk}D=0, {Pj0, φk}D=δj k, {Pj0, ϕk}D=0. (3.62)

Restoring allthe results interms of the originalfields ψ andψ,¯ we obtain ourHamiltonian densityH(T3)aftersimplificationas

H(3)

T =i(ψ¯xψxxψxψ¯xx)

i

2(ψ ψ¯ tψψ¯t) . (3.63)

TheDiracbracketistheequal-spacebracket{, }T(3)wewantand (3.61)–(3.62)translateinto

{ψ (t ),ψ (τ )¯ }(T3)=0, (3.64)

{ψ (t ), ψx(t)}(T3)=0= {ψ (t ),ψ¯x(τ )}(T3), (3.65)

{ψx(t), ψxx(τ )}(T3)=0= {ψx(t),ψ¯xx(τ )}(T3), (3.66)

{ψx(t),ψ¯x(τ )}T(3)=iδ(tτ ) , (3.67)

{ ¯ψ (t ), ψxx(τ )}(T3)=iδ(tτ ) , {ψ (t ), ψxx(τ )}(T3)=0, (3.68)

{ψxx(t),ψ¯xx(τ )}T(3)= −6iκ|ψ|2(t)δ(tτ ) . (3.69)

Onecannowverifythat

(15)

anditscomplexconjugateareindeedequivalenttothecomplexmKdVequationandits conju-gate (3.31).ThisconcludesourdualHamiltonianformulationofcomplexmKdV,theequation correspondingtothelevel(3)intheNLShierarchy.

Themostimportantoutcomeinviewofourdualclassicalr-matrixapproachtobedeveloped inthenextsectionisthederivationofthebrackets (3.64)–(3.69).Indeed,theseallowusto com-putethe Poissonbracketrelationsof theentriesofV(3),withthe fundamentalresultthat they obeytheultralocalPoissonalgebrawithrationalrmatrix,justlikeUdoeswithrespectto{ }(S3), butuptoaminussign.

3.3. Generalizationtohigherlevelsinthehierarchy

The previous two explicitlevels indicate awayinwhich ourscheme willhold forhigher levels.Letusgivehereasketchofthisgeneralization.FirstofallitisclearthattheLagrangian densityatlevelnisoftheform

L(n)= i

2(ψ ψ¯ tnψψ¯tn)H

(n)

S (3.71)

whereH(n)S isdeterminedfromthegeneratingfunctionz(L,L,λ)via (B.18).Thetotalnumber of x derivatives appearing under the integral in HS(n) is equal to n, inview of the recursion relationsdefiningW(n),andalsoconsistentlywithscalingarguments.Thereforeusingintegration bypartsrepeatedly,inviewofourassumptionofperiodicboundaryconditions,wecanalways bringH(n)S tosuchaformthatthehighestordertermisproportionalto

∂xpψ∂¯ xpψ , n=2p ,

i(∂xpψ∂¯ xp+1ψ∂xpψ ∂xp+1ψ) , n¯ =2p+1,

(3.72)

NLSisanexampleoftheevencaseandcomplexmKdVanexampleoftheoddcase,bothwith p=1.Forhighervaluesofp,thegeneralstrategytoobtainafulldualHamiltoniandescription ofthemodelisclear.Theequal-timebracket{, }S isthesameatalllevelsandisobtainedas

previouslydescribed for NLSor complex mKdV.To obtain the equal-spacebrackets{, }(n)T andthecorrespondingHamiltoniandensity H(n)T ,weproceedasexplainedaboveforNLSand complexmKdV,byusingtheformalismof [30].Forevencases,theLagrangianisregularand the only constraintsappearing are the ones intrinsic tothat higher orderformalism. Forodd cases, oneobtains two moreconstraints duetothe linearityof the Lagrangianin thehighest x derivative.Irrespectiveof theirorigin, alltheconstraintsaresecondclassandnoadditional constraintsappearasaresultoftheconsistencyconditions.Onethensimplyproceedsasinthe complexmKdVcase,derivingtheDiracbracketsandthecorrespondingreducedHamiltonian. Thesearethenidentifiedwith{, }(n)T andH(n)T .

4. Classical r-matrixformulationinthedualpicture

4.1. Theoriginalobservation:twoultralocalPoissonalgebrasforNLS

(16)

HamiltoniandualformulationsbyconstructionofmonodromymatriceswithPoisson-commuting traces.ForNLSitself,theresultwasalreadyobtainedandusedin [20]forthespecificpurpose ofstudyingintegrabledefects.Letussimplyrestatetheresultinthepresentcontext.

Proposition4.1. Equipped withthe canonicalPoisson brackets {, }S(2) and {, }(T2),the Lax

matricesUandV(2)satisfythefollowingultralocalPoissonalgebras

{U1(x, λ),U2(y, μ)}S(2)=δ(xy)[r12μ),U1(x1, λ)+U2(y1, μ)], (4.1)

{V(2)

1 (t2, λ),V

(2)

2 2, μ)}

(2)

T = −δ(t2−τ2)[r12μ),V (2)

1 (t2, λ)+V

(2)

2 2, μ)], (4.2)

whereristhesl(2)rationalclassicalr-matrix

r12(λ)=

κ

λP12, (4.3)

P12isthepermutationoperatoractingonC2⊗C2,andwehaveusedthetensorproductnotation

withindices1and2.

Itisquiteremarkable,andapriorinotexpectedtobeageneralfeatureofsuchdualitypictures, thatbothHamiltonianstructuresbedescribedbythesamer matrix.In anycaseanimmediate consequenceoftheexistenceofthesetwoHamiltonianstructuresisthat,inadditiontotheusual spacemonodromymatrixTU(L,L,λ)builtfromUandcontainingalltheinformationabout thesystem, inparticular theconserved charges intime,we maynow considerthe time mon-odromymatrixT(V2)(T ,T ,λ)builtfromV(2).Inparticular,itgeneratestheconservedchargesin space.OnecantalkaboutintegrabilityofthemodelwithrespecttothesetwoPoissonstructures andhence,about“dualintegrable”hierarchies,inasensetobegeneralizedintheConclusion.

4.2. HierarchyofdualultralocalPoissonalgebrasforhigherNLSsystems

Atlevel(3),wemayusethePoissonbrackets (3.64)–(3.69)andtheexplicitform (3.29)for

V(3)toshowdirectlythatV(3)satisfiestheultralocalPoissonalgebra (4.2)withrespectto{,}(3) T .

AsexplainedinSection3.3,onecanobtainthehigherPoissonbrackets{,}(n)S (whicharethe sameatalllevels)and{, }(n)T forthefieldssystematically.Itisnothardtoconvinceoneselfthat theultralocalPoissonalgebrastructuremayholdalsoforhigherV(n).Hence,weconjecture

Proposition4.2. Equipped withthe canonicalPoisson brackets{, }(n)S and {, }(n)T , theLax

matricesUandV(n)satisfythefollowingultralocalPoissonalgebras,foralln∈N,

{U1(x, λ),U2(y, μ)}(n)S =δ(xy)[r12μ),U1(x, λ)+U2(y, μ)], (4.4)

{V(n)

1 (tn, λ),V

(n)

2 (τn, μ)}

(n)

T = −δ(tnτn)[r12μ),V (n)

1 (tn, λ)+V

(n)

2 (τn, μ)]. (4.5)

Remark. the Poissonalgebra for V(n) givenin the proposition is not just aconsequence of the Poisson brackets on the dynamical fields involved in V(n) but is in fact equivalent to them. For n=3, this means that the Poisson algebra for V(3) is equivalent to the brackets

(17)

n=2[20].Atthislevel,itwasalsoknownthattheequal-spacebracketsforthefieldscouldbe

derivedfromacovariantLagrangianpicture.Oneofourmainsuccessesinthepresentpaperisto

showthatwecancompletethispicturefromtheLagrangianpointofviewalsoatthehigher lev-elsinthehierarchy,aswedidexplicitlyforn=3,henceproducing (4.5)asaniceconsequence oftheLagrangianapproach.However,this“historicalremark”showstheguidingpowerofthe algebraicapproachtoHamiltonianclassicalintegrablesystems.

4.3. AhierarchyofmatricesUforeachV(n)

Recallthatfollowing [15](see Appendix A),giventheLaxmatrixUanditsultralocalPoisson algebra (4.1),onecanderiveanexplicitexpressionforthegeneratingfunctionofallthematrices

V(n),nNoftheNLShierarchy.Forinstance,onefindsthefirstfewas:

V(0)(λ)= −1

2i

1 0

0 −1

,

V(1)(x, λ)=

λ

2i

κψ¯

−√κψ 2λi

,

V(2)(x, λ)=

λ2

2i +|ψ|

2 λκψ¯ iκψ¯

x

λκψ+iκψx λ 2

2i|ψ|

2

,

V(3)(x, λ)=

λ3

2i +iλκ|ψ|2+X −λ2

κψ¯ −κψ¯x+ ¯Y

λ2√κψ+κψx+Y λ 3

2iiλκ|ψ|

2X

, (4.6)

where

X= −κ(ψ¯ψxψ),¯ Y=

κψxx−2κ 3

2|ψ|2ψ . (4.7)

In view of our results, inparticular the ultralocal Poisson algebra (4.5) satisfied by V(n) (provedfromn=1,2,3,conjecturedforhighern),itseemsnaturaltofollowthesameprocedure startingfromafixedV(n)anditsultralocalPoissonalgebrathistime.Followingtheconstruction detailed in Appendix A,we obtainahierarchy ofmatricesU(m,n),m∈N associatedtoV(n). Asanillustration,supposewepickV(2)correspondingtoξ=t2.Wefindthefirstfewmatrices U(m,2)as

U(0,2)(t

2, λ)=

1 2i

1 0

0 −1

,

U(1,2)(t

2;λ)=

λ

2i +

κψ¯

κψ2λi

,

U(2,2)(t

2;λ)=

λ2

2i|ψ|

2 +λκψ¯+iκψ¯

x

λκψiκψxλ 2

2i +|ψ|2

,

U(3,2)(t

2;λ)=

λ3

2iiλκ|ψ|

2 λ2√κψ¯ +κψ¯

x− ¯

λ2√κψκψxλ 3

2i +iλκ|ψ|

2+

, (4.8)

wherewedefine

= −κ(ψ¯ψxψ ), ¯ = −i

κψt2−2κ 3

2|ψ|2ψ (4.9)

(18)

Oncethishierarchyisconstructed,wecaninprinciplerepeattheprocessstartingfromagiven

U(m,n)andobtainahierarchyofassociatedLaxmatricesV(p,m,n),pN,andsoon.

Thisappealingidea suggeststhatonecan constructacollectionof Lax pairs(U(I ),V(J )), whereI,J aremultiindices,whichcouldbeorganisedinamultidimensionallattice,hence pro-ducingmultidimensionalintegrablePDEs.Oneisnaturallyledtodistinguishbetween“vertical” and“horizontal”indicesdependingwhethertheindexlabelsahierarchyofelementsbuiltfrom a“equal-space”or“equal-time”Poissonbracket.Quiteobviouslytheeven(resp.odd)indicesof

V(respU)arehorizontalindicesinthissense.Thedetailedinvestigationofsuchapossibility andofthecorrespondinglatticeofLaxpairsisleftforfuturework.Averyspecialexampleof thisideaappeareddifferentlyintheformofatripleofLaxmatricesin [31]andwasatthebasis ofacertain2+1-dimensionalversionofNLS.Ingeneral,itisfarfromobviousthattheprocess justdescribed“closes”inthesensethatthelatticeisfinitedimensionalandthatalltheequations obtainedbytakingthezerocurvatureassociatedtoeachpairinthelatticearemutually consis-tent.The lastissueisalready anontrivialresultinthe well-knowncaseof asinglehierarchy (a one-dimensionallatticefromourpointofview)thatcanbefounde.g.in [9].

5. Conclusionsandoutlook

Ourmainresultscanbesummarizedasfollows:

LagrangiananddualHamiltonianformulation:ForeachLaxpair(U,V(n))atlevelnin

theNLShierarchy,weconstructtwoPoissonbrackets{, }(n)S and{,}(n)T forthecanonicalfields andtwoHamiltoniansHS(n)andHT(n)(recallagainthatthesearenotMagri’smulti-Hamiltonian structures).Theyare derivedfromaLagrangianwhichreproducestheequations ofmotion of thezerocurvatureconditionfor(U,V(n))throughitsEuler–Lagrangeequations.Theequal-time bracket{,}(n)S foundinthisprocedureisthesameateachleveln,whichisconsistentwithwhat isknownfromthetraditionalHamiltonianapproachtoanintegrablehierarchy.

Dualclassicalr-matrixformulation:ForeachLaxpair(U,V(n))atlevel nintheNLS hierarchy,thePoissonbracket{, }(n)S (resp.{,}(n)T )forthecanonicalfieldsinducesanultralocal PoissonalgebraforU(resp.V(n)).Aconsequenceofthisisthatthespacemonodromymatrix

TU generates integrals of motion (intime)that are ininvolutionwithrespect to{, }(n)S (the well-knownresult)andthetimemonodromymatrixTV(n)generatesintegralsofmotion(inspace) thatareininvolutionwithrespectto{, }T(n)(thenew,dualresult).TheHamiltoniansHS(n)and HT(n)arecontainedinthesefamiliesofintegralsofmotion.

Wearenowinapositiontoformulatesomegeneralremarksandmoreprecisedefinitionsof ourprocedures.

5.1. Thenotionofdualityinanintegrablehierarchy

Wehaveusedtheterminologydualordualityratherlooselysofar,countingonthefactthatit isself-explanatoryinthevariousexamplesthatwehaveusedtoillustrateit.However,wewould nowliketoproposeanattemptatamoreprecisedefinitiontobeusedinfuturedevelopments.

(19)

ThemonodromyTUofthisLaxmatrixthennaturallygeneratesPoissoncommuting Hamil-tonians asintegrals overx of (local)densities,andthedataof U(φ(x),λ)andr allowoneto constructanVmatrix dependingon λ,φ andpossiblythe x-derivatives of φ,for everysuch Hamiltonian,describingatimetranslationfortheauxiliarywavefunction,andsuchthatthe com-patibilityofthet- andx-evolutions(flatnessofconnection)impliestheHamiltonianequationsof motion(timeevolution)fortheinitialfieldsφ(x)nowviewedasφ(x,t ).ThePoissonstructure isherebyconstructionanequal-timePoissonbracket.

InviewoftheexplicitresultsobtainedsofaronourNLSexample,weshalldefinethenotion

ofdualformulationasfollows.Supposeonecanexhibitanother,equal-spacePoissonstructure

forthefields,nowchosentobeφ(t),parametrizinganotherchoiceofconfigurationspacesuch that:

–ThecorrespondingPoissonstructureofthematrixVnownaturallyidentifiedastherelevant Laxmatrix,hasalinearr-matrixdescriptionwithmatrixr,and,

–theλexpansionofthemonodromymatrixTVofthet-translationdescribedbyV(φ(t),λ) containsinparticularaHamiltonianintegralovert,suchthatitsassociatedtranslationoperator builtfromther-matrixstructurerasin Appendix AcoincideswithU.

Thenthedynamicalequationfor φ,containedinthezero-curvatureconditionforU,V,can beeitherrepresentedasaHamiltonianintegrableevolutionforφ(x)alongtorforφ(t)alongx. Thisdefinitionishereexplicitly formulatedforAKNSsystemsdescribingmutually compati-blexandt evolutions.Itmustbeemphasizedthatonemayeasilyextendthisnotiontoanypair of AKNS-type gaugeconnections over atwo-dimensional space–time, originally yielding by zero-curvaturecondition2-dimensionalnonlinearevolutionequationsforsomefields.Asabove, inthegeneralcasetheseconnectionswillberespectivelyidentifiedwiththeinfinitesimalshifts ofan auxiliarywavefunction, thistimealong twoindependent space–time coordinates,linear combinationsorevenalgebraiccombinationsofx andt:theexampleoflight-conecoordinates mentionedaboveisoneobvioussuchextension.

Wheneversuchaschemeisrealised,weshallspeakofdual(canonical)formulationsordual

(canonical)representationsof theintegrablePDE. Asisseenonthe definition we imposein

particularthatinbothcasesthe“generalizedtime-shift”elementoftheLaxconnectionwillbe identifiedas apartial trace describingan r-matrix co-adjointactiononthe differentialof the Hamiltonianderivedfromintervalmonodromiesofthe“generalizedspace-shift”element,such asderivedin [7].Thisimpliesaverynontrivial propertyonthe“initial”Laxmatrix(beitpicked asUorV),i.e.thatitmustberecoveredfromr-matrixcoadjointactiononthespectral-parameter expansion ofthe monodromymatrixofits Laxpartnerwhichisitselfobtainedfromr-matrix coadjointactiononthespectral-parameterexpansionofthefirstmatrix;averynontrivial consis-tencyoftheset(Laxmatrix/r-matrix)isthussuggested.

(20)

Inthecasewherether-matricescoincide,r=r,weshallcallthesystemaself-dual Hamil-toniansystem.Wedonothaveexamplesatthistimeofdualintegrablesystemswithdifferentr matricesforthetwodualintegrabilitystructuresbutwecannotexcludesuchsituations,hencethis particularization.NotethattheNLSequationcanthenbecalledanti-self-dualsinceweshowed thatwehaver= −rinthispaper.

Thedefinitioncanbeeasilyextendedtoawholehierarchy.Onceagain,givenaLaxmatrix

UanditsPoissonalgebracharacterisedbyr,onecanbuildawholeintegrablehierarchyofLax pairs(U,V(n)),n∈N,inwhichV=V(1)say.Then,bythenotionofdualityjustexplained,we havethedataofVanditsassociatedPoissonalgebracharacterisedbyr.Therefore,wecanbuild ahierarchyofLaxmatricesU(n),n∈N,withU(1)=U.Thehierarchies(U(1),V(n)),n∈Nand (U(n),V(1)),n∈Narecalleddualhierarchies.

Notethattheterminologyof“duality”hasalreadyappearedinthedomainofintegrable sys-tems,albeitinadifferentcontext,i.e.thefamousposition/momentumdualitybeforeHamiltonian reduction,relatingCalogero–MoserandRuijsenaars–Schneidermodelsunderthegenericname ofRuijsenaars duality [33,34],withidenticalPoissonstructure.Herebycontrastthe“duality” exchangestheroleofvariablesx andt inthedefinitionofintegrabilityitself,andthePoisson structuresaredistinct.In asense andtoborrowaphrasefromstringtheory,RSdualityis tar-getspace duality,whereasournotion ismorerelatedtoworldsheetduality, or changeof the conformalstructure.

5.2. Physicalapplication:aHamiltoniandescriptionofNLSinOptics

TheNLSequationthatservedasthemainbasistodevelopourformalismturnsouttobealso anexcellentphysicalexampleoftheinterchangebetweenspaceandtimeincertainintegrable systemswithauniversalcharacter.BythiswemeanthatNLSarisesasanapproximateequation inwavedynamicsunderfairlygeneralassumptionsbutwithdifferentinterpretationsofthe inde-pendentvariablesdependingonthecontext.Anicediscussionofthephysicalsignificanceand universalcharacterofNLScanbefoundin [35].Whenderivedinthefluidmechanicscontext forinstance,theusualformisrelevant

iφt+φxx=2κ|φ|2φ , (5.1)

wheret hasthemeaningoftimeandx themeaningofspace.Thatisbyfarthemostpopular settingandthestandardHamiltoniandescriptionisalwaysgivenforthisform.But,whenNLS isderivedinnonlinearoptics,thephysicalmeaningattachedtoxandtisswapped.Forinstance, inChapter5of [36],onefindsNLSintheform

iAz=

β2

2 Aτ τγ|A|

2A ,

(5.2)

whereA(z,τ )istheamplitudeofthe pulseenvelope andβ2,γ areparameterscharacterizing

thephysicalpropertiesoftheopticalfibre.Herezisthespatialcoordinatealongthefibre andτ isattachedtoaframeofreferencemovingwiththepulseatgroupvelocityvg,τ=tvzg.Of

coursethiscanalwaysberescaledtothestandardform (5.1)butthepointisthatxisnowatime andt aspacevariable.ToimplementtheHamiltonianapproachofthisformofNLSseenasan evolutionequationintime,onehasinfacttouseourformalismtoproduceφxx=(φx)xasthe

PoissonbracketofsomeHamiltonianwithφx.Thisisnothingbut (3.28).

(21)

bracketasjustdescribed,oneinsistsonusingthestandardHamiltonianformulationof (5.1)i.e.

(3.21),butnowinthephysicalcontextofopticalfibres.Thenoneisinfactdescribingthespace evolutionofthewave.

Thisdiscussion showsthateveninthenonrelativistic setting,it issometimesusefulnotto attachan intrinsicmeaningtowhat coordinatedescribesspaceandwhatcoordinatedescribes time.Westressonceagainthat,beitmathematicallyorphysically,treatingvariablesonanequal footinginagivenintegrablehierarchyprovidesnewinsight.

5.3. Multi-indexLaxpairs

Wehavesuggestedintheprevioussectionthatonecouldimaginesuccessiverepeatsof the dualization procedure,startingfrom the two initialhierarchies of Uand V,andsuccessively buildinghigherlevelsof“horizontal”orU-typeand“vertical”orV-typehierarchiesbystarting from alowerlevel hierarchyelement, assumingit isendowedwiththe doublesetof Poisson structures.Animmediatequestionariseswhetherthereexist connectionsbetweenUandV ob-jectsrespectivelylabelled bytheirorderedsetofalternatively“vertical”and“horizontal”indices: (U(I ),V(J ))whensomerelationexistsbetweentherespectivesetsI andJ(amoreprecise state-mentof the issueof “finite-dimensionality of the lattice” alluded tointhe previous section). Anobvioussecondquestioniswhetherthe dualPoissonstructuresapriorideducedfromthe Lagrangianformulationofhigher-levelhierarchyequationsarestillrepresentedbyr-matrix for-mulations;whethertheser-matriceswillthenremainthesame(as isthecaseforthefirsttwo levelsofhierarchyinNLS);orwhethernewr-matriceswillarise;or(worst-case)dual integra-bilitybreaksaltogetherathigherlevelsandnodualr-matrixformulationisavailable.

Acknowledgements

PreliminarystepsforthisworkwereundertakenwhileJ.A.visitedCityUniversityLondon andwhileV.C.visitedHeriot-WattUniversity.TheIndianNationalScienceAcademyiswarmly acknowledged forawardingtheDrRamalingaswamiINSAChair2015toV.C.andsupporting hisvisittotheBoseCentreandSahaInstituteinKolkata,duringwhichthemainpartofthiswork wascompleted.

Appendix A. HierarchyofLaxmatricesfromthe r-matrix

GiventhesymmetricrolesplayedbythematricesUandV(n)andinviewofthediscussionin Section4.3,wepresentinthisappendixthegeneralizationoftheconstructionof [15][Chap III, §3].Ityieldsaformula forageneratingfunctionof thehierarchy ofLax matricesV(n) given

(22)

Weneedneutralnotationstoallowforthisprocess.So,letusassumethatwehaveconstructed appropriatePoissonbrackets{, }(N )A ,2suchthatequationsofmotionarisingfromthezero cur-vaturefortheLaxpair(X,Y)

∂ηNX(ξ, ηN, λ)∂ξY(ξ, ηN, λ)+ [X,Y](ξ, ηN, λ)=0, (A.1) read

∂ηNX(ξ, ηN, λ)= {H

(N ),X(ξ, η

N, λ)}(N )A . (A.2)

Here,X,YmatrixpolynomialsinλofdegreeN andMrespectively,and

TrX=0 ,(ξ, η,λ)¯ =σX(ξ, η, λ) σ , (A.3)

whereσ=σ1ifκ >0 andσ=σ2ifκ <0.Wethenassumethattheseequationsofmotionat

thesinglelevelNareembeddedintothefollowinghierarchyofequations

∂ηnX(ξ, ηn, λ)= {H

(n),X(ξ, η

n, λ)}(N )A , n∈N, (A.4)

wheretheHamiltoniansH(n)areconstructedfromXasin Appendix B.Inaddition,assumethat

{X1(ξ, η, λ),X2(ζ, η, μ)}(N )A =γ δ(ξζ )[r12μ),X1(ξ, η, λ)+X2(ζ, η, μ)], (A.5)

whereγ= ±1 andristhestandardone-polerationalclassicalr-matrix.Thislastassumptionis motivatedbyoneofthemainresultsofthispaperwherebyUandV(n)satisfythesamePoisson

algebrauptoasign,hencetheintroductionofγ.

Atthisstage, wecanrepeattheargumentsof [15][ChapIII,§3]andsimplyincorporateγ. Weobtaintheequationsofmotioninzerocurvatureformforeachlevelnas

∂ηnX(ξ, ηn, λ)∂ξY

(n)(ξ, η

n, λ)+ [X,Y(n)](ξ, ηn, λ)=0, (A.6)

wherethehierarchyofmatricesY(n)isobtainedfromtheexpansion

Y(ξ, η, λ;μ)=κ

n=1

Y(n1)(ξ, η, λ)

μn , (A.7)

where

Y(ξ, η, λ;μ)= γ κ

2i(λ−μ)(1+W (ξ, η, μ)) σ3(1+W (ξ, η, μ))

−1. (A.8)

WehaveaddedtheexplicitηdependenceofW(definedin (B.4))forconsistency.Inparticular, weobtainthatYNcoincideswiththeoriginalYin (A.1),asitshould.

Ofcourse,ifweapplythisconstructiontoX=Uwithξ=x andγ=1,werecoverY(n)=

V(n)withη

n=tn.TheideaisthatwewanttobeabletoapplytheconstructiontoX=V(n)for

somefixednandξ=tn,toyieldahierarchy ofU(m)’s,etc.

Remark.Animportantconsequenceofformula (A.8)isthatthetwopropertiesofX,i.e. trace-lessness andsymmetry,transfertoalltheY(n)(ξ,η,λ)’s.Thisiscrucialifwewanttobeableto repeattheconstructionwithoneoftheY(n)’sasXsincethesepropertiesentertheargumentto

obtainformula (A.8).

2 AcanstandforeitherSorT heredependingonwhetherweuseξasspaceandηastimeorviceversa.Nisafixed

(23)

Wenowinvestigateaconsequenceofformula (A.8)thatgivesausefulrecursiveformulafor

Y(n)intermsofY(n−1)andthecoefficientsW(j ),j=1,. . . ,ndiscussedin Appendix B.Toour

knowledge,thisrecursionformulawasnotknown(atleastnotgiven)before.Itreads,

Y(0)(ξ, η, λ)=iγ κ

2 σ3, (A.9)

Y(n)(ξ, η, λ)=λY(n−1)(ξ, η, λ)+iγ σ

3

n

j=1

(−1)j

m1+···+mj=n

W(m1). . . W(mj). (A.10)

Inthelastsum,foragivenj,thesumrunsoverallpartitionofnintoj integersm1,. . . ,mj.To

proveit,simplymultiply (A.8)byλμandrewriteitas

n=1

1 μn

λY(n−1)−Y(n)

−Y(0)iγ

2σ3

= −iγ σ3(1+W )−1. (A.11)

Theresultfollows byidentifyingthetermoforderμnoneachside.

Appendix B. Riccatiequationandconservedquantities

WekeepthenotationsintroducedinthepreviousAppendixthatallowustodiscussthe con-structionof agenerating functionof conserved quantitiesintimeor space,depending onthe startingpointusedforXandξ asexplainedabove.Again,weextendtheargumentspresented in [15][ChapI,§4]toourcase.Theensuingresultsareobtainedbydirectcalculation.Consider theauxiliaryproblem

∂ξ(ξ, η, λ)=X(ξ, η, λ)(ξ, η, λ) (B.1)

∂η(ξ, η, λ)=Y(ξ, η, λ)(ξ, η, λ) (B.2)

withX,YmatrixpolynomialsinλofdegreeNandMrespectively,and

TrX=0 ,(ξ, η,λ)¯ =σX(ξ, η, λ) σ , (B.3)

where σ =σ1 if κ >0 and σ =σ2 if κ <0. Consider periodic boundary conditions in ξ

[−,].3 Let T(ξ,ζ,λ) bethe fundamentalsolution of (B.1)normalised toT(ξ,ξ,λ)=1. IntroducethelargeλexpansionofTasfollows

T(ξ, ζ, λ)=(1+W (ξ, λ))eZ(ξ,ζ,λ)(1+W (ζ, λ))−1, (B.4)

whereW isanoff-diagonalmatrix,Zadiagonalmatrix,andtheyhavethefollowingexpansion

W (ξ, λ)= ∞

n=1

W(n)(ξ )

λn , Z(ξ, ζ, λ)= N

n=0

Z(n)(ξ, ζ ) λn+ ∞

n=1

Z(n)(ξ, ζ )

λn . (B.5)

Ageneratingfunctionofthereal-valuedlocalconservedquantitiesinηisnowgivenby

1

2iκTr[σ3Z(,, λ)] (B.6)

3 Notethatingeneralξwillbeeitheraspacexoratimet

nsothatweworkwithperiodicconditionsbothinspaceand

References

Related documents

This essay asserts that to effectively degrade and ultimately destroy the Islamic State of Iraq and Syria (ISIS), and to topple the Bashar al-Assad’s regime, the international

This conclusion is further supported by the following observations: (i) constitutive expression of stdE and stdF in a Dam + background represses SPI-1 expression (Figure 5); (ii)

19% serve a county. Fourteen per cent of the centers provide service for adjoining states in addition to the states in which they are located; usually these adjoining states have

In contrast to other seawater bodies with 3.5% salinity, the recreational waters in the southern coast of the Caspian Sea possess its own salinity (about 1% w/v) and thus

/ L, and a different adsorbent mass, is shown in Figure 5. The results obtained show that the removal rate increases quickly at first, until a time of 60 min, and

Project Management, Configuration Services, Deployment Services, Asset Tagging, Apple One-to-One Services Solution, Remote Consulting, and Full-Time Resources are custom

An analysis of the economic contribution of the software industry examined the effect of software activity on the Lebanese economy by measuring it in terms of output and value

It has been accepted for inclusion in TREC Final Reports by an authorized administrator of PDXScholar. For more information, please