White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136373/
Version: Published Version
Article:
Bono, J., Guo, L., Raue, B. A. et al. (115 more authors) (2018) First measurement of Xi(-)
polarization in photoproduction. Physics Letters B. pp. 280-286. ISSN 0370-2693
https://doi.org/10.1016/j.physletb.2018.07.004
[email protected]
https://eprints.whiterose.ac.uk/
Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/
Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
First
measurement
of
−
polarization
in
photoproduction
J. Bono
a,
b,
1,
∗
,
L. Guo
a,
∗
,
B.A. Raue
a,
S. Adhikari
a,
M.C. Kunkel
c,
K.P. Adhikari
af,
2,
Z. Akbar
p,
M.J. Amaryan
af,
J. Ball
j,
L. Barion
t,
M. Bashkanov
am,
M. Battaglieri
u,
V. Batourine
ak,
I. Bedlinskiy
y,
A.S. Biselli
n,
W.K. Brooks
al,
V.D. Burkert
ak,
F. Cao
l,
D.S. Carman
ak,
A. Celentano
u,
G. Charles
af,
T. Chetry
ae,
G. Ciullo
t,
o,
Brandon
A. Clary
l,
P.L. Cole
s,
M. Contalbrigo
t,
V. Crede
p,
A. D’Angelo
v,
ag,
N. Dashyan
ar,
R. De Vita
u,
M. Defurne
j,
A. Deur
ak,
S. Diehl
l,
C. Djalali
ai,
M. Dugger
e,
H. Egiyan
ak,
ac,
A. El Alaoui
al,
L. El Fassi
ab,
P. Eugenio
p,
G. Fedotov
ae,
ah,
A. Filippi
w,
A. Fradi
x,
3,
G. Gavalian
ak,
af,
N. Gevorgyan
ar,
Y. Ghandilyan
ar,
F.X. Girod
ak,
j,
D.I. Glazier
an,
W. Gohn
l,
4,
E. Golovatch
ah,
R.W. Gothe
ai,
K.A. Griffioen
aq,
K. Hafidi
d,
N. Harrison
ak,
M. Hattawy
d,
D. Heddle
k,
ak,
K. Hicks
ae,
M. Holtrop
ac,
Y. Ilieva
ai,
D.G. Ireland
an,
E.L. Isupov
ah,
H.S. Jo
aa,
S. Johnston
d,
M.L. Kabir
ab,
D. Keller
ao,
ae,
G. Khachatryan
ar,
M. Khachatryan
af,
M. Khandaker
ad,
5,
A. Kim
l,
W. Kim
aa,
A. Klein
af,
F.J. Klein
i,
V. Kubarovsky
ak,
P. Lenisa
t,
K. Livingston
an,
I.J.D. MacGregor
an,
N. Markov
l,
B. McKinnon
an,
T. Mineeva
al,
l,
R.A. Montgomery
an,
C. Munoz Camacho
x,
G. Niculescu
z,
M. Osipenko
u,
A.I. Ostrovidov
p,
M. Paolone
aj,
R. Paremuzyan
ac,
K. Park
ak,
ai,
E. Pasyuk
ak,
e,
W. Phelps
a,
O. Pogorelko
y,
J.W. Price
f,
Y. Prok
ap,
af,
D. Protopopescu
an,
M. Ripani
u,
A. Rizzo
v,
ag,
G. Rosner
an,
F. Sabatié
j,
C. Salgado
ad,
R.A. Schumacher
h,
Y. Sharabian
ak,
Iu. Skorodumina
ai,
ah,
G.D. Smith
am,
D. Sokhan
an,
am,
N. Sparveris
aj,
S. Stepanyan
ak,
I.I. Strakovsky
r,
S. Strauch
ai,
M. Taiuti
q,
6,
J.A. Tan
aa,
M. Ungaro
ak,
l,
H. Voskanyan
ar,
E. Voutier
x,
R. Wang
x,
X. Wei
ak,
M.H. Wood
g,
ai,
N. Zachariou
am,
L. Zana
am,
ac,
J. Zhang
ao,
af,
Z.W. Zhao
af,
ai,
maFloridaInternationalUniversity,Miami,FL 33199,UnitedStatesofAmerica bRiceUniversity,Houston,TX 77005,UnitedStatesofAmerica
cInstitutefurKernphysik(Juelich),Juelich,Germany
dArgonneNationalLaboratory,Argonne,IL 60439,UnitedStatesofAmerica eArizonaStateUniversity,Tempe,AZ 85287-1504,UnitedStatesofAmerica
fCaliforniaStateUniversity,DominguezHills,Carson,CA90747,UnitedStatesofAmerica gCanisiusCollege,Buffalo,NY,UnitedStatesofAmerica
hCarnegieMellonUniversity,Pittsburgh,PA 15213,UnitedStatesofAmerica iCatholicUniversityofAmerica,Washington,DC20064,UnitedStatesofAmerica jIRFU,CEA,Université Paris-Saclay,F-91191Gif-sur-Yvette,France
kChristopherNewportUniversity,NewportNews,VA 23606,UnitedStatesofAmerica lUniversityofConnecticut,Storrs,CT 06269,UnitedStatesofAmerica
mDukeUniversity,Durham,NC 27708-0305,UnitedStatesofAmerica nFairfieldUniversity,Fairfield,CT06824,UnitedStatesofAmerica oUniversità diFerrara,44121Ferrara,Italy
pFloridaStateUniversity,Tallahassee,FL 32306,UnitedStatesofAmerica qUniversitàdiGenova,16146Genova,Italy
rTheGeorgeWashingtonUniversity,Washington,DC20052,UnitedStatesofAmerica sIdahoStateUniversity,Pocatello,ID 83209,UnitedStatesofAmerica
tINFN,SezionediFerrara,44100Ferrara,Italy uINFN,SezionediGenova,16146Genova,Italy vINFN,SezionediRomaTorVergata,00133Rome,Italy wINFN,SezionediTorino,10125Torino,Italy
xInstitutdePhysiqueNucléaire,CNRS/IN2P3andUniversitéParisSud,Orsay,France yInstituteofTheoreticalandExperimentalPhysics,Moscow,117259,Russia zJamesMadisonUniversity,Harrisonburg,VA 22807,UnitedStatesofAmerica aaKyungpookNationalUniversity,Daegu41566,RepublicofKorea
abMississippiStateUniversity,MississippiState,MS39762-5167,UnitedStatesofAmerica
https://doi.org/10.1016/j.physletb.2018.07.004
acUniversityofNewHampshire,Durham,NH 03824-3568,UnitedStatesofAmerica adNorfolkStateUniversity,Norfolk,VA 23504,UnitedStatesofAmerica
aeOhioUniversity,Athens,OH 45701,UnitedStatesofAmerica afOldDominionUniversity,Norfolk,VA 23529,UnitedStatesofAmerica agUniversità diRomaTorVergata,00133RomeItaly
ahSkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,119234Moscow,Russia aiUniversityofSouthCarolina,Columbia,SC 29208,UnitedStatesofAmerica
ajTempleUniversity,Philadelphia,PA19122,UnitedStatesofAmerica
akThomasJeffersonNationalAcceleratorFacility,NewportNews,VA 23606,UnitedStatesofAmerica alUniversidadTécnicaFedericoSantaMaría,Casilla110-V,Valparaíso,Chile
amEdinburghUniversity,EdinburghEH93JZ,UnitedKingdom anUniversityofGlasgow,GlasgowG128QQ,UnitedKingdom
aoUniversityofVirginia,Charlottesville,VA 22901,UnitedStatesofAmerica apVirginiaCommonwealthUniversity,Richmond,VA23220,UnitedStatesofAmerica aqCollegeofWilliamandMary,Williamsburg,VA 23187-8795,UnitedStatesofAmerica arYerevanPhysicsInstitute,375036Yerevan,Armenia
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received12April2018
Receivedinrevisedform28June2018 Accepted2July2018
Availableonline9July2018 Editor:D.F.Geesaman
Keywords:
Polarization Cascade Xi
Photoproduction Hyperonspectroscopy Strange
Despite decades of studies of the photoproduction of hyperons, both their production mechanisms and theirspectraofexcitedstatesarestill largely unknown.Whilethe parity-violatingweakdecayof hyperons offers a meansof measuring their polarization, whichcould help discern their production mechanisms andidentifytheirexcitation spectra,nosuchstudyhasbeen possiblefor doublystrange baryons in photoproduction, due to low production cross sections. However, by making use of the reaction
γ
p→K+K+−,wehave measured,for the firsttime, theinduced polarization, P,and the transferredpolarizationfromcircularlypolarizedrealphotons,characterizedbyCx andCz,torecoiling −s. Thedata wereobtainedusingthe CEBAFLargeAcceptance Spectrometer(CLAS)atJeffersonLabforphotonenergiesfromjustoverthreshold(2.4 GeV)to5.45 GeV.Thesefirst-timemeasurementsare compared,and areshowntobroadlyagree,withmodelpredictionsinwhichcascadephotoproduction proceedsthroughthedecayofintermediatehyperonresonancesthatareproducedviarelativisticmeson exchange,offeringanewstepforwardintheunderstandingoftheproductionandpolarizationof doubly-strangebaryons.
2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
Thepolarization ofhyperonscanbemeasuredthroughthe an-gular distribution of their parity-violating weak decay products, providing insight into the mechanisms behind their production. Suchmeasurementsinvolvingthephoto- andelectroproductionof Strangeness number S
= −
1 hyperons [1–12] haveled to signifi-cantprogress in understanding the excitation spectrum of S=
0 nucleons [13–25]. A similar opportunity exists in studying the polarization of S= −
2 cascades, which could provevital for un-derstandingtheirproductionmechanismandingainingan under-standingoftheexcitationspectrumofS= −
1 hyperons.However, because of the cascade’s low production cross section and the resulting lack of available data, no previous cascade polarization measurementsexistineitherphoto- orelectroproduction.The CLAS collaboration has reported cross-section measure-mentsforcascadephotoproduction[26,27].Inthesedata,astrong back-angle peaking in the center-of-momentum cascade angular distribution (cos
θ
) was observed, which along withthe invari-antmassdistributions ofthe K+− system,suggestedthesignif-*
Correspondingauthors.E-mailaddresses:[email protected](J. Bono),leguo@fiu.edu(L. Guo).
1 Currentaddress:ParticlePhysicsDivision,FermiNationalAccelerator
Labora-tory,Batavia,IL60510,UnitedStatesofAmerica.
2 Currentaddress:MississippiStateUniversity,MS39762-5167,UnitedStatesof
America.
3 Currentaddress: Imam Abdulrahman Bin Faisal University, Industrial Jubail
31961,SaudiArabia.
4 Currentaddress:Lexington,KY40506,UnitedStatesofAmerica. 5 Currentaddress:Pocatello,ID83209,UnitedStatesofAmerica. 6 Currentaddress:16146Genova,Italy.
icant role that intermediate hyperon resonances with masses of about2 GeV play incascadephotoproduction.Theseresults gen-eratedtheoreticalinterest inunderstanding theproduction mech-anism behind S
= −
2 states. In particular, Refs. [28,29] found it isnecessary toincludethecontributions fromthedecayof high-masshyperons (upto(1890))
thatare predominatelyproduced in t-channel K/
K∗ exchange, as illustrated in Fig. 1, to explain theCLAS cross-section measurements [27]. Furthermore,Ref. [29] investigated the role ofthe addition of high-spin hyperon states around 2 GeV and found significant contributions from spin/par-ity JP=
52±and 72± resonances.Inparticular,theinclusionofthe
(2030)
72+stateimprovedthemodel’sagreementwiththedata.
These earlier photoproduction data from CLAS did not have either beamortarget polarization, and nostudy oninduced po-larizationwascarriedout.ButaspointedoutinRef. [29],boththe induced and transferred polarization of thecascade groundstate aresensitive totheproductionmechanism, particularly,themass, spinandparityofintermediatehyperonresonances,aswell asto themesonicexchangemechanisms.
The majority of early data for hyperon and cascade spec-troscopy was generated using K− beams on nuclear targets. However, the significance of the Y∗
→
K decay has never been firmly established except for the small branching ratios and branching-ratio upper limits reported for(2100)
72− and
Fig. 1.ApossibleFeynmandiagramof−photoproductionviathedecayof inter-mediatehyperonresonancesint-channelK/K∗exchange,whichisamajor compo-nentintheproductionmodelsofNakayama [28,29].
candidateexchange mechanisms,andevenpoint to theexistence ofhighermass/spinhyperons.
The understanding of the ground state cascade production mechanism is not limited to its connection to the intermediate hyperon resonances. The current spectrum of experimentally es-tablishedexcited cascadestateshasremainedvirtually unchanged inthepastthirtyyears [34].Atpresent,justsixstatesare consid-eredto have solid experimental evidence,and onlyhalf of these haveestablishedspinandparity.Furthermore,thenumberof cas-cade(aswellashyperon)statesthatappearinthemostrecent lat-ticeQCDcalculations[35] arenearly asnumerousaspredictedby earlyconstituentquarkmodels [36].Understandingtheproduction ofexcitedcascadescannot befullyachievedwithouta better un-derstandingofthegroundstate production,includingpolarization measurements.Thismanuscriptreportsthefirstmeasurements of both induced and transferred polarization of cascade baryons in photoproduction.
2. Experimentaldetails
A large-statistics dataset with an integrated luminosity of 68 pb−1 wascollectedwithCLAS [37] usingacircularlypolarized,
taggedphotonbeam [38] ofenergyrange1.1 to5.4 GeVincident onaliquidhydrogentarget [39].Thephoton beamwasproduced froma longitudinally polarizedprimary electron beamof energy 5.7 GeV,incident ona goldradiator.The electron-beam’shelicity was flipped pseudo-randomly at a rateof 30 Hz and was mea-sured periodically by a Møller polarimeter, yielding a degree of polarizationof0.68,averagedover theentirerun period.The de-greeofcircularphotonpolarizationwascalculatedandisknownto beproportionaltotheelectronbeampolarization,andtoincrease asa function of theratio ofphoton energy to theenergy ofthe primaryelectron beam [40].The targetconsistedofa40-cm-long cylindricalcellcontainingliquidhydrogen.Momentuminformation forchargedparticleswereobtainedviatrackingthroughthree re-gions ofmultiwiredrift chambers [41], withtheregion-two drift chambersinside a toroidalmagnetic field that was generated by six superconducting coils. Scintillators [42] outside of the drift chamberswere usedtomeasure time-of-flight(TOF) information, which,whencombinedwiththemomentuminformation,provided charged-particleidentification.
3. Analysis
Initialeventselectionrequiredtimingcoincidencesbetweenthe photon tagger andthe passage of two charged particles through theCLAS detector.Thephotonsthatproducedthe eventwere se-lected using vertex information obtained from tracking, and the timing information from a start counter [43], which surrounded thetarget.The timethat aneventoccurredatits vertex,as mea-sured by the start counter, was required to be within
±
1 ns of thephoton time provided by theaccelerator radio-frequency sig-nal.Furthermore,thevertextimedeterminedfromtheTOFsystemFig. 2.Massdistributionsfor alleventspassingcutson timing,detectedparticle mass,andvertexlocationareshownbythedatapointswitherrorbars.Topleft: MissingmassspectrumoftheK+K+system;Topright:Missingmassspectrumof the K+K+π− system;Bottomleft:Invariantmassspectrumoftheπ− system; Bottomright:Invariantmassspectrumasreconstructedfromthefour-momentum differenceofthe−andπ−system.Inallplots,aGaussianisfittothesignalover apolynomialbackground(dashedredline).Thesamedistributionsafterapplying thehyperspherecutsareshownbythefilledhistograms.Theverticallinesrepresent theknownor−masses.Detectionoftheπ− originatingthedecay,rather than the− decay,isevidentinthe leftand rightofthe signalregion,inthe bottomleftandbottomrightplots,respectively.(Forinterpretationofthecolorsin thefigures,thereaderisreferredtothewebversionofthisarticle.)
was required to be within
±
1 ns of the photon time forall de-tectedchargedparticles.The next stepinthe identificationofthe
γ
p→
K+K+− re-action with the subsequent decay of −→
π
− was selecting events with three charged mesons, K+, K+, andπ
−, detected. Their momentumwas corrected forthe energylossin thetarget region,aswellasotherdetectoreffectssuchasmisalignmentsand errorsinthemagneticfieldmap. Thesignalswerethenextracted usingthefollowingfourmassdistributions:1. Missingmassinthe
γ
p→
K+K+(
X)
reaction,where X indi-catesthemissingparticle,labeledasM M(
K+K+).
2. Missing mass in the
γ
p→
K+K+π
−(
X)
reaction, where X indicatesthemissingparticle,labeledasM M(
K+K+π
−).
3. Invariantmassofthe(
+
π
−)
system,labeledasM(
+
π
−),
andwheretheknown
mass,1115.683 GeV [34],was com-bined with the missing three-momentum of the K+K+π
−systemtodefinethe
four-momentumvector.4. Invariantmassreconstructedfromthefour-momentum differ-enceofthe
− andπ
− system,labeledasM(
−−
π
−),
and wheretheknown− mass,1321.71 GeV[34],wascombined with the missing three-momentum of the K+K+ system to definethe−four-momentumvector.The mass distributions for events passing cuts on event timing, eventvertexlocation,anddetectedparticlemassareshownbythe data points witherrorbars inFig.2. Clearsignalsforthe
and − areseen. [image:4.612.301.551.69.269.2]Fig. 3.PlaneandangledefinitionsforthepolarizationobservablesofCx,Cz,andP.
Seethetextforafulldescriptionofthecoordinates.
displacements.The width
σ
,of each massdistribution was mea-suredbyfittingitwithaGaussianplusapolynomialtomodelthe signalandbackground,asshownbythe fitsinFig. 2.The hyper-spherecoordinatesweredefinedasx1
=
M MK+K+−
mass−/
3σ
1,
(1)x2
=
M MK+K+π
−−
mass/
3σ
2,
x3
=
M+
π
−−
−mass/
3σ
3,
x4
=
M−−
π
−−
mass/
3σ
4,
r
=
x21
+
x22+
x23+
x24,
where
σ
n denotes the Gaussian widthof the associated quantity asdisplayed in Fig. 2. A cut on the hypersphere radius r repre-sentsa simultaneouscutonall fourmassquantities,wherea3σ
cutcorresponds totakingeventswithinthehypervolumedefined by r
<
1. This cut, asopposedto simply rectangular cutson the masses,allowed thebestsignal tobackground ratio,even though xi’s are not totally independent. The final data sample of 5143 eventsareshowninthefilledhistogramsinFig.2.The
−polarizationisrelatedtotheangulardistributionofthe decayπ
−asmeasuredintherestframeofthe−by [44]I
(
cosθ
πi)
=
N2
(
1−
Piα
cosθ
iπ
),
(2)where
θ
πi isthepionanglerelativetothei=
x,
y,orzaxesinthe − rest frame, N is the total number ofevents in the I(cos
θ
πi)
distribution, Pi isthe i-component ofthe − polarization, andα
isthe−weak-decayasymmetryoranalyzingpowerwithα
=
−
0.458±
0.012 [34]. The axesare defined in the− rest-frame (Fig.3)asˆ
z
=
pγ|
pγ|
,
(3)ˆ
y
=
zˆ
×
p|ˆ
z×
p|
,
ˆ
x
= ˆ
y× ˆ
z,
where
pγ and p are the photon and cascademomentum vec-tors, respectively, both in the center-of-momentum frame of the beam-plus-targetsystem. The spin observables P, Cx, andCz are connectedtotherecoilpolarization Pthrough,
Px
=
P⊙Cx,
Py
=
P,
Pz
=
P⊙Cz,
(4)
[image:5.612.92.248.70.193.2]whereP⊙isthedegreeofphoton-beampolarization.
Fig. 4.Aboveshowsthebeamhelicityasymmetriesacrossxandzforthe−decay, theslopesofwhich,alongwiththedilutionfactor,D,areusedtocalculateCxand Cz.Theeventsdisplayedincludeallanglesbetween− andthe z-axis,butare
limitedtophotonenergiesbetween3.81and4.43 GeV.
Theinducedpolarization,P,canbeextractedfromtheforward– backward asymmetry, Ay, of the pion angular distribution. This method has the advantage of the cancelation of detector-accep-tanceeffects,whichfollowsfromthefactthatthepolarizationaxis
ˆ
y points isotropicallyinthelabframe. Theasymmetry isdefined as
Ay
≡
N+y
−
N−y N+y+
N−y,
(5)whereN+y andN−y representthenumberofeventswithcos
θ
πy aspositiveandnegative,respectively.Theasymmetryisrelatedtothe induced
−polarizationbyP
=
−
2Ayα
.
(6)ThedoublepolarizationobservablesCx andCz characterizethe transferredpolarizationofthephotontothe
− andareextracted fromthephoton-helicityasymmetry,A
=
N+
hel
−
N−helN+hel
+
N−hel,
(7)where Nhel+ and N−hel are the number of events associated with positiveandnegativephoton-beamhelicitystates,respectively.The transferredpolarization isrelatedtothephoton-helicity asymme-tryby
−
A(
cosθ
πi)
|
P⊙|
α
=
Cicosθ
iπ
.
(8)The value and uncertainty of Ci can thus be obtained from the slopeofAcos
θ
πi.ExamplesofthelinearfitsusedtoextractCxand Cz areshowninFig.4.IntheasymmetrydefinedinEquation (7), systematiceffectssuchasdetectoracceptancemostlycancel,since theyoccurirrespectiveofthephotonhelicity.It was found that overall around 15% ofthe eventssurviving the final cuts were unpolarized background events. The fraction oftheseeventswereestimatedineachkinematicbinby evaluat-ingthebackgroundsubtracted yieldthroughaGaussianfitwitha polynomialbackground.Theseeventswerefoundtohave polariza-tions consistent with zero,thus reducing the measured polariza-tionbythedilutionfactor,
D
=
1−
fBG,
(9)where fBGisthefractionofbackgroundeventsineachsample.In
Table 1
SummaryofPmeasurementsanduncertainties.ThevaluesofEγ andcosθgiven
arethemeansoftheirdistributionswithineachbin.
Eγ (GeV) cosθ P δstatP δsysP δtotalP δsclP/P
3.47 −1 to 1 −0.011 0.12 0.022 0.12 0.026 4.09 −1 to 1 −0.089 0.12 0.022 0.12 0.026 4.88 −1 to 1 0.006 0.13 0.022 0.13 0.026 2.8 to 5.5 −0.79 −0.045 0.12 0.022 0.12 0.026 2.8 to 5.5 −0.41 0.15 0.12 0.022 0.12 0.026 2.8 to 5.5 0.19 −0.19 0.12 0.022 0.12 0.026 3.47 −0.80 −0.088 0.21 0.022 0.21 0.026 4.10 −0.79 −0.14 0.20 0.022 0.20 0.026 4.86 −0.77 0.036 0.22 0.022 0.22 0.026 3.45 −0.44 0.15 0.20 0.022 0.20 0.026 4.09 −0.40 0.16 0.22 0.022 0.22 0.026 4.88 −0.36 0.10 0.22 0.022 0.22 0.026 3.50 0.12 −0.10 0.20 0.022 0.20 0.026 4.10 0.19 −0.27 0.21 0.022 0.21 0.026 4.90 0.26 −0.12 0.21 0.022 0.22 0.026
factor, the values of which were found to be between 0.82 and 0.91.
Asidefromthedilutionfactor,threemainsourcesofsystematic uncertainty contributed to the overall uncertainties in the mea-surements. For one, systematic effects due to acceptance-related factors,includingtheselection ofthefiducialregionofthe detec-tor, were estimatedby comparingthe final resultsobtained with andwithoutthesecuts,andwerefoundtobe,integratingoverall kinematic bins,
δ
accP=
0.022,δ
accCx=
0.01 andδ
accCz=
0.052. Additionally, uncertainty in the degree of photon-beam polariza-tion,which inturn resultedfrom theuncertainty inthe primary electronbeampolarization,contributedarelativescale-type uncer-taintyofδ
P·Ci/
Ci=
0.03.Finally,theuncertaintyintheanalyzing power of the cascade, which is±
0.012 [34], leads to a relative scale-type uncertainty ofδ
αP/
P=
δ
αCi/
Ci=
0.026. Forboth the inducedandtransferred polarizationmeasurements,thestatistical uncertaintydominatesthecumulativesystematicuncertainty.4. Results&comparisonwiththeory
Intheextractionof P,datawerebinned intonineregions de-finedby threebinsofthecascadeanglebetweenthephoton and target momenta in the c.m. frame with event-weighted average valuesofcos
θ
= −
0.79,−
0.41,and0.19,andthreebinsof pho-tonenergywithevent-weighted averagesof Eγ=
3.47,4.09, and4.88 GeV.Sincethe extractionsofCx andCz requiremoreevents to achieve the same statistical uncertainty as P, these variables were binned into only threeregions ofcos
θ
andsummed over 2.8≤
Eγ≤
5.5 GeV,orconversely,binnedintothreeregionsofEγandsummedover
−
1≤
cosθ
≤
1.The P resultsaregivenin Ta-ble1 andthe Cx andCz results are givenin Table 2,as well as showninFigs.5,6,and7.TheseresultscanbefoundinRef. [45].Forcomparison, thepolarization predictions ofthethree phe-nomenological model variants put forth by Refs. [28,29] to help explain thedifferential crosssectionsreported byRef. [27], over-lay our results in Figs. 5, 6, and 7. All three model variants share the same framework, in which cascade photoproduction proceeds through the decay of intermediate hyperon resonances thatareproducedviarelativisticmesonexchange.Thepredictions are based on pseudoscalar (solid red) andpseudovector (dashed blue)relativisticmeson-exchange.Contributionsfromthe
(2030),
whichhasspin-7/2,wereintroducedinRef. [29] (dottedgreen).Thepredictedvaluesof P andCx followfairlyflat curves,that whendeterminedovertheentireangularand/orenergyrange, in-tegrateto nearly zero.Conversely, the predictedvalues ofCz are
Table 2
SummaryofCxandCzmeasurementsanduncertainties.
Eγ (GeV) cosθ Cx δstatC δsysC δtotalC δsclC/C
3.47 −1 to 1 0.21 0.39 0.01 0.39 0.039 4.09 −1 to 1 −0.083 0.34 0.01 0.34 0.039 4.88 −1 to 1 −0.021 0.32 0.01 0.32 0.039 2.8 to 5.5 −0.79 −0.21 0.33 0.01 0.33 0.039 2.8 to 5.5 −0.41 0.37 0.35 0.01 0.40 0.039 2.8 to 5.5 0.19 0.012 0.40 0.01 0.40 0.039
Eγ (GeV) cosθ Cz δstatC δsysC δtotalC δsclC/C
[image:6.612.34.284.100.257.2]3.47 −1 to 1 0.52 0.35 0.052 0.35 0.039 4.09 −1 to 1 0.67 0.29 0.052 0.29 0.039 4.88 −1 to 1 0.001 0.26 0.052 0.26 0.039 2.8 to 5.5 −0.79 0.52 0.32 0.052 0.33 0.039 2.8 to 5.5 −0.41 0.49 0.28 0.052 0.29 0.039 2.8 to 5.5 0.19 0.13 0.30 0.052 0.30 0.039
Fig. 5.P(top),Cx(middle)andCz(bottom)asafunctionofEγ andsummedover
cosθ.Theerrorbarsrepresentthetotaluncertainty.Thelegendspecifies
pseu-doscalar(ps)orpseudovector(pv)coupling,aswellasthejournalofpublicationfor theassociatedmodel.
Fig. 6. P (top),Cx(middle)andCz (bottom)asafunctionofcosθ andsummed
[image:6.612.344.508.515.723.2]Fig. 7.PasafunctionofcosθforthreeEγ binsasindicated.Errorbarsandcurves
arethesameasinFig.5.
positiveandsizableoverthekinematicrangeandthusdonot in-tegratetozeroonanyinterval.
As shown in Figs. 5, 6, and 7, our measurements are gener-allywell described by the pseudoscalar (solidred)and the2011 pseudovector(dottedgreen)modelsbutnotthe2006pseudovector model(dashedblue). Wehaveperformeda statisticalcomparison ofthe three model variants to 15 independent data points, 9 of whichcomefromtheinducedpolarization, P,intheun-integrated binning scheme in Table 1, while the other 6 data points come fromthetransferredpolarization,CxandCz,summedoverEγ.The
agreementbetweenthedataandthepseudoscalarvariantisgood, with a
χ
2=
13.0. The 2006 variant of the pseudovector model hasχ
2=
33.0 and istherefore excludedby the datawith∼
99% confidence. The 2011 variant of the pseudoscalar model (dotted green) hasχ
2=
17.4. Similar resultsare found when comparing themodeltothecosθintegratedtransferredpolarizationresults. Howeveritisimporttopointoutthesemodelsweretestedagainst thecrosssectionsmeasurementsuptoaround4 GeV.Abovethat, itispossiblethatothermechanismsnotaccountedforsuchasthe Reggetrajectories andother higher-masshyperons mightneedto beincluded.Finally,itisworth pointingoutthatthephotoproduced
was observed [8] to exhibit nearly 100% polarization by evaluationof R=
C2x+
C2z+
P2.Thisquantity forthe−,integratingour re-sultsover all bins,is 0.30±
0.14,which is non-zero but signifi-cantlysmallerthanthecounterpart.5. Conclusion
To summarize, we have made the first polarization measure-ments forthe
− inphotoproduction by measuring the induced polarization, P,aswellastransferredpolarization,Cx andCz, us-ing a circularly polarizedphoton beam. We havefound that the totalintegrated − polarization departs fromzeroby 2σ
, butis significantly smaller than inthe analogous casefor photopro-duction.Theresultshavebeencompared,andshowgeneral agree-ment withthe predictions of a phenomenological model of cas-cade photoproductioninvolving intermediate hyperon resonances that are produced, predominantly in the t-channel, via relativis-ticpseudoscalar mesonexchange. The results strongly disfavored a model variant that excludes significant contributions from the(2030)
72+.Preciselydeterminingtheroleofhigh-spinexcited hy-peronsand the contributions fromscalar versus vector exchange mechanisms will be left to future experiments at CLAS12 and GlueX [46]. Nevertheless, we have made the first step toward a detailedunderstandingof− photoproduction.Acknowledgements
We thankK. Nakayamaformanyfruitfuldiscussions in which he provided his insight and support. We acknowledge the out-standing efforts of the staff of the Accelerator and the Physics DivisionsatJeffersonLabthatmadethisexperimentpossible.This work was supported in part by the U.S. Department of Energy, theNationalScienceFoundation,theItalianInstitutoNazionale di FisicaNucleare,theFrenchCentreNationalde laRecherche Scien-tifique,theFrenchCommissariatàl’ÉnergieAtomique,theNational ResearchFoundationofKorea,theUK ScienceandTechnology Fa-cilities Council (STFC), and the Physics Department at Moscow State University. The Jefferson Science Associates (JSA) operates the Thomas Jefferson NationalAccelerator Facility forthe United StatesDepartmentofEnergy undercontractDE-AC05-06OR23177. TheFIUgroup issupportedbytheU.S.DepartmentofEnergy, Of-ficeofNuclearPhysics,undercontractNo. DE-SC0013620.
References
[1]C.A.Paterson,etal.,Photoproductionofand0hyperonsusinglinearly po-larizedphotons,Phys.Rev.C93(2016)065201.
[2]M.Q. Tran,etal., Measurementofγp→K+and γp→K+0 atphoton energiesupto2 GeV,Phys.Lett.B445(1998)20–26.
[3]D.S.Carman,etal.,Firstmeasurementoftransferredpolarizationinthe exclu-sivepolarizedep→e′K+reaction,Phys.Rev.Lett.90(2003)131804.
[4]K.H.Glander,etal.,Measurementofγp→K+andγp→K+0atphoton energiesupto2.6 GeV,Eur.Phys.J.A19(2004)251–273.
[5]R.G.T. Zegers,etal.,Beampolarizationasymmetriesforthe p(γ,K+)and p(γ,K+)0 reactionsat E(γ)=1.5 GeV–2.4 GeV,Phys.Rev.Lett.91(2003) 092001.
[6]J.W.C.McNabb,etal.,Hyperonphotoproductioninthenucleonresonance re-gion,Phys.Rev.C69(2004)042201.
[7]M.Sumihama,etal.,Thepolarizedγp→K+andpolarizedγp→K+0 re-actionsatforwardangleswithphotonenergiesfrom1.5-GeVto2.4-GeV,Phys. Rev.C73(2006)035214.
[8]R.Bradford,etal.,Firstmeasurementofbeam-recoilobservablesCxandCzin
hyperonphotoproduction,Phys.Rev.C75(2007)035205.
[9]M.McCracken,etal.,Differentialcrosssectionandrecoilpolarization measure-mentsfortheγp→K+reactionusingCLASatJeffersonLab,Phys.Rev.C81
(2010)025201.
[10]B.Dey,etal.,Differentialcrosssectionsandrecoilpolarizationsforthereaction
γp→K+0,Phys.Rev.C82(2010)025202.
[11]D.S.Carman,etal.,Beam-recoilpolarizationtransferinthenucleonresonance region inthe exclusivee p→e′K+ and e p→e′K+0 reactions at CLAS,
Phys.Rev.C79(2009)065205.
[12]M.Gabrielyan,etal.,Inducedpolarizationof(1116)inkaon electroproduc-tion,Phys.Rev.C90 (3)(2014)035202.
[13]A.V. Anisovich,V.Kleber,E.Klempt,V.A.Nikonov, A.V.Sarantsev,U.Thoma, Baryonresonancesandpolarizationtransferinhyperonphotoproduction,Eur. Phys.J.A34(2007)243–254.
[14]V.A.Nikonov,A.V.Anisovich,E.Klempt,A.V.Sarantsev,U.Thoma,Further ev-idenceforN(1900)P(13)fromphotoproductionofhyperons,Phys.Lett.B662 (2008)245–251.
[15]A.V.Anisovich,E.Klempt,V.A.Nikonov,A.V.Sarantsev,U.Thoma,P-wave ex-citedbaryonsfrompion- andphoto-inducedhyperonproduction,Eur.Phys.J. A47(2011)27.
[16]A.V.Anisovich,E.Klempt,V.A.Nikonov,A.V.Sarantsev,U.Thoma,Nucleon res-onancesinthefourthresonanceregion,Eur.Phys.J.A47(2011)153.
[17]A.V. Anisovich,E.Klempt, V.A.Nikonov, A.V.Sarantsev, U.Thoma,Evidence for aspin-quartetofnucleonresonancesat2 GeV,Phys. Lett.B711(2012) 167–172.
[18]A.delaPuente,O.V.Maxwell,B.A.Raue,Newfitstothereactionγp→K+, Phys.Rev.C80(2009)065205.
[19]O.V.Maxwell,Beampolarizationasymmetryandtheelectromagnetic produc-tionofkaonsfromprotons,Phys.Rev.C86(2012)064612.
[21]O.V.Maxwell,Newfittothereactionγp→K+0,Phys.Rev.C92 (4)(2015)
044614.
[22]O.V.Maxwell,ElectromagneticproductionofKmesonsfromtheproton:a new fittorecentdata,Phys.Rev.C93 (1)(2016)014605.
[23]G.Penner,U.Mosel,Vectormesonproductionandnucleonresonance analy-sisinacoupled-channelapproachforenergiesmN<√s<2 GeV II:
photon-inducedresults,Phys.Rev.C66(2002)055212.
[24]M.Döring,etal.,Thereactionπ+p→K++inaunitarycoupled-channels model,Nucl.Phys.A851(2011)58.
[25]H.Kamano,S.Nakamura,T.-S.Lee,T.Sato,ExtractionofP11resonancesfrom
πNdata,Phys.Rev.C81(2010)065207.
[26]J.W.Price,etal.,ExclusivephotoproductionofthecascadeX ihyperons,Phys. Rev.C71(2005)058201.
[27]L.Guo,etal.,Cascadeproductioninthereactionsγp→K+K+(X)andγp→ K+K+π−(X),Phys.Rev.C76(2007)025208.
[28]K.Nakayama,Y.Oh,H. Haberzettl,Photoproductionofoffnucleons,Phys.
Rev.C74(2006)035205.
[29]J.K.S.Man,Y.Oh,K.Nakayama,Roleofhigh-spinhyperonresonancesinthe reactionofγp→K+K+−,Phys.Rev.C83(2011)055201.
[30]P.J.Litchfield,et al., K−pelasticand charge-exchangescatteringinthe c.m. energyrange1915–2168MeV,Nucl.Phys.B30(1971)125.
[31]R.A.Muller,AStudyoftheReactionK−N→KfromThresholdto2.7-GeV/c, Ph.D.thesis,LBL,Berkeley,1969.
[32]R.D.Tripp,etal.,BaryonresonancesinSU(3),Nucl.Phys.B3(1967)10.
[33]G.Burgun, etal., Resonanceformationinthe reactions K−p→K+− and K−p→K00 inthe massregionfrom1915to2168 MeV,Nucl.Phys.B8
(1968)447.
[34]C.Patrignani,etal.,Reviewofparticlephysics,Chin.Phys. C40 (10)(2016) 100001.
[35]R.Edwards,etal.,Theflavorstructureoftheexcitedbaryonspectrafrom lat-ticeQCD,Phys.Rev.D87(2013)054506.
[36]S.Capstick,N.Isgur,Baryonsinarelativizedquarkmodelwith chromodynam-ics,Phys.Rev.D34(1986)2809.
[37]B.A.Mecking,et al.,The CEBAFlargeacceptancespectrometer (CLAS),Nucl. Instrum.Meth.A503(2003)513–553.
[38]D.I.Sober,etal.,ThebremsstrahlungtaggedphotonbeaminHallBat JLab, Nucl.Instrum.Meth.A440(2000)263–284.
[39] G12 ExperimentalGroup,CLAS-NOTE 2017-002,https://misportal.jlab.org/ul/ Physics/Hall-B/clas/viewFile.cfm/2017-002.pdf?documentId=756,2017. [40]H. Olsen, L.C. Maximon, Photon and electron polarization in high-energy
bremsstrahlung and pair production with screening, Phys. Rev. 114(1959) 887–904.
[41]M.D.Mestayer,etal.,TheCLASdriftchambersystem,Nucl.Instrum.Meth.A 449(2000)81–111.
[42]E.S.Smith,etal.,Thetime-of-flightsystemforCLAS,Nucl.Instrum.Meth.A 432(1999)265–298.
[43]Y.G.Sharabian,etal.,AnewhighlysegmentedstartcounterfortheCLAS de-tector,Nucl.Instrum.Meth.A556(2006)246–258.
[44]M.Huang,etal.,Newmeasurementof−→π− decayparameters,Phys. Rev.Lett.93(2004)011802.
[45] DatareportedheremaybeaccessedintheCLASPhysicsDatabaseat:http:// clas.sinp.msu.ru/cgi-bin/jlab/db.cgi.