• No results found

First measurement of Xi(-) polarization in photoproduction

N/A
N/A
Protected

Academic year: 2019

Share "First measurement of Xi(-) polarization in photoproduction"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/136373/

Version: Published Version

Article:

Bono, J., Guo, L., Raue, B. A. et al. (115 more authors) (2018) First measurement of Xi(-)

polarization in photoproduction. Physics Letters B. pp. 280-286. ISSN 0370-2693

https://doi.org/10.1016/j.physletb.2018.07.004

[email protected]

https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence

allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the

authors for the original work. More information and the full terms of the licence here:

https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

First

measurement

of

polarization

in

photoproduction

J. Bono

a

,

b

,

1

,

,

L. Guo

a

,

,

B.A. Raue

a

,

S. Adhikari

a

,

M.C. Kunkel

c

,

K.P. Adhikari

af

,

2

,

Z. Akbar

p

,

M.J. Amaryan

af

,

J. Ball

j

,

L. Barion

t

,

M. Bashkanov

am

,

M. Battaglieri

u

,

V. Batourine

ak

,

I. Bedlinskiy

y

,

A.S. Biselli

n

,

W.K. Brooks

al

,

V.D. Burkert

ak

,

F. Cao

l

,

D.S. Carman

ak

,

A. Celentano

u

,

G. Charles

af

,

T. Chetry

ae

,

G. Ciullo

t

,

o

,

Brandon

A. Clary

l

,

P.L. Cole

s

,

M. Contalbrigo

t

,

V. Crede

p

,

A. D’Angelo

v

,

ag

,

N. Dashyan

ar

,

R. De Vita

u

,

M. Defurne

j

,

A. Deur

ak

,

S. Diehl

l

,

C. Djalali

ai

,

M. Dugger

e

,

H. Egiyan

ak

,

ac

,

A. El Alaoui

al

,

L. El Fassi

ab

,

P. Eugenio

p

,

G. Fedotov

ae

,

ah

,

A. Filippi

w

,

A. Fradi

x

,

3

,

G. Gavalian

ak

,

af

,

N. Gevorgyan

ar

,

Y. Ghandilyan

ar

,

F.X. Girod

ak

,

j

,

D.I. Glazier

an

,

W. Gohn

l

,

4

,

E. Golovatch

ah

,

R.W. Gothe

ai

,

K.A. Griffioen

aq

,

K. Hafidi

d

,

N. Harrison

ak

,

M. Hattawy

d

,

D. Heddle

k

,

ak

,

K. Hicks

ae

,

M. Holtrop

ac

,

Y. Ilieva

ai

,

D.G. Ireland

an

,

E.L. Isupov

ah

,

H.S. Jo

aa

,

S. Johnston

d

,

M.L. Kabir

ab

,

D. Keller

ao

,

ae

,

G. Khachatryan

ar

,

M. Khachatryan

af

,

M. Khandaker

ad

,

5

,

A. Kim

l

,

W. Kim

aa

,

A. Klein

af

,

F.J. Klein

i

,

V. Kubarovsky

ak

,

P. Lenisa

t

,

K. Livingston

an

,

I.J.D. MacGregor

an

,

N. Markov

l

,

B. McKinnon

an

,

T. Mineeva

al

,

l

,

R.A. Montgomery

an

,

C. Munoz Camacho

x

,

G. Niculescu

z

,

M. Osipenko

u

,

A.I. Ostrovidov

p

,

M. Paolone

aj

,

R. Paremuzyan

ac

,

K. Park

ak

,

ai

,

E. Pasyuk

ak

,

e

,

W. Phelps

a

,

O. Pogorelko

y

,

J.W. Price

f

,

Y. Prok

ap

,

af

,

D. Protopopescu

an

,

M. Ripani

u

,

A. Rizzo

v

,

ag

,

G. Rosner

an

,

F. Sabatié

j

,

C. Salgado

ad

,

R.A. Schumacher

h

,

Y. Sharabian

ak

,

Iu. Skorodumina

ai

,

ah

,

G.D. Smith

am

,

D. Sokhan

an

,

am

,

N. Sparveris

aj

,

S. Stepanyan

ak

,

I.I. Strakovsky

r

,

S. Strauch

ai

,

M. Taiuti

q

,

6

,

J.A. Tan

aa

,

M. Ungaro

ak

,

l

,

H. Voskanyan

ar

,

E. Voutier

x

,

R. Wang

x

,

X. Wei

ak

,

M.H. Wood

g

,

ai

,

N. Zachariou

am

,

L. Zana

am

,

ac

,

J. Zhang

ao

,

af

,

Z.W. Zhao

af

,

ai

,

m

aFloridaInternationalUniversity,Miami,FL 33199,UnitedStatesofAmerica bRiceUniversity,Houston,TX 77005,UnitedStatesofAmerica

cInstitutefurKernphysik(Juelich),Juelich,Germany

dArgonneNationalLaboratory,Argonne,IL 60439,UnitedStatesofAmerica eArizonaStateUniversity,Tempe,AZ 85287-1504,UnitedStatesofAmerica

fCaliforniaStateUniversity,DominguezHills,Carson,CA90747,UnitedStatesofAmerica gCanisiusCollege,Buffalo,NY,UnitedStatesofAmerica

hCarnegieMellonUniversity,Pittsburgh,PA 15213,UnitedStatesofAmerica iCatholicUniversityofAmerica,Washington,DC20064,UnitedStatesofAmerica jIRFU,CEA,Université Paris-Saclay,F-91191Gif-sur-Yvette,France

kChristopherNewportUniversity,NewportNews,VA 23606,UnitedStatesofAmerica lUniversityofConnecticut,Storrs,CT 06269,UnitedStatesofAmerica

mDukeUniversity,Durham,NC 27708-0305,UnitedStatesofAmerica nFairfieldUniversity,Fairfield,CT06824,UnitedStatesofAmerica oUniversità diFerrara,44121Ferrara,Italy

pFloridaStateUniversity,Tallahassee,FL 32306,UnitedStatesofAmerica qUniversitàdiGenova,16146Genova,Italy

rTheGeorgeWashingtonUniversity,Washington,DC20052,UnitedStatesofAmerica sIdahoStateUniversity,Pocatello,ID 83209,UnitedStatesofAmerica

tINFN,SezionediFerrara,44100Ferrara,Italy uINFN,SezionediGenova,16146Genova,Italy vINFN,SezionediRomaTorVergata,00133Rome,Italy wINFN,SezionediTorino,10125Torino,Italy

xInstitutdePhysiqueNucléaire,CNRS/IN2P3andUniversitéParisSud,Orsay,France yInstituteofTheoreticalandExperimentalPhysics,Moscow,117259,Russia zJamesMadisonUniversity,Harrisonburg,VA 22807,UnitedStatesofAmerica aaKyungpookNationalUniversity,Daegu41566,RepublicofKorea

abMississippiStateUniversity,MississippiState,MS39762-5167,UnitedStatesofAmerica

https://doi.org/10.1016/j.physletb.2018.07.004

(3)

acUniversityofNewHampshire,Durham,NH 03824-3568,UnitedStatesofAmerica adNorfolkStateUniversity,Norfolk,VA 23504,UnitedStatesofAmerica

aeOhioUniversity,Athens,OH 45701,UnitedStatesofAmerica afOldDominionUniversity,Norfolk,VA 23529,UnitedStatesofAmerica agUniversità diRomaTorVergata,00133RomeItaly

ahSkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,119234Moscow,Russia aiUniversityofSouthCarolina,Columbia,SC 29208,UnitedStatesofAmerica

ajTempleUniversity,Philadelphia,PA19122,UnitedStatesofAmerica

akThomasJeffersonNationalAcceleratorFacility,NewportNews,VA 23606,UnitedStatesofAmerica alUniversidadTécnicaFedericoSantaMaría,Casilla110-V,Valparaíso,Chile

amEdinburghUniversity,EdinburghEH93JZ,UnitedKingdom anUniversityofGlasgow,GlasgowG128QQ,UnitedKingdom

aoUniversityofVirginia,Charlottesville,VA 22901,UnitedStatesofAmerica apVirginiaCommonwealthUniversity,Richmond,VA23220,UnitedStatesofAmerica aqCollegeofWilliamandMary,Williamsburg,VA 23187-8795,UnitedStatesofAmerica arYerevanPhysicsInstitute,375036Yerevan,Armenia

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received12April2018

Receivedinrevisedform28June2018 Accepted2July2018

Availableonline9July2018 Editor:D.F.Geesaman

Keywords:

Polarization Cascade Xi

Photoproduction Hyperonspectroscopy Strange

Despite decades of studies of the photoproduction of hyperons, both their production mechanisms and theirspectraofexcitedstatesarestill largely unknown.Whilethe parity-violatingweakdecayof hyperons offers a meansof measuring their polarization, whichcould help discern their production mechanisms andidentifytheirexcitation spectra,nosuchstudyhasbeen possiblefor doublystrange baryons in photoproduction, due to low production cross sections. However, by making use of the reaction

γ

pK+K+−,wehave measured,for the firsttime, theinduced polarization, P,and the transferredpolarizationfromcircularlypolarizedrealphotons,characterizedbyCx andCz,torecoiling −s. Thedata wereobtainedusingthe CEBAFLargeAcceptance Spectrometer(CLAS)atJeffersonLab

forphotonenergiesfromjustoverthreshold(2.4 GeV)to5.45 GeV.Thesefirst-timemeasurementsare compared,and areshowntobroadlyagree,withmodelpredictionsinwhichcascadephotoproduction proceedsthroughthedecayofintermediatehyperonresonancesthatareproducedviarelativisticmeson exchange,offeringanewstepforwardintheunderstandingoftheproductionandpolarizationof doubly-strangebaryons.

2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thepolarization ofhyperonscanbemeasuredthroughthe an-gular distribution of their parity-violating weak decay products, providing insight into the mechanisms behind their production. Suchmeasurementsinvolvingthephoto- andelectroproductionof Strangeness number S

= −

1 hyperons [1–12] haveled to signifi-cantprogress in understanding the excitation spectrum of S

=

0 nucleons [13–25]. A similar opportunity exists in studying the polarization of S

= −

2 cascades, which could provevital for un-derstandingtheirproductionmechanismandingainingan under-standingoftheexcitationspectrumofS

= −

1 hyperons.However, because of the cascade’s low production cross section and the resulting lack of available data, no previous cascade polarization measurementsexistineitherphoto- orelectroproduction.

The CLAS collaboration has reported cross-section measure-mentsforcascadephotoproduction[26,27].Inthesedata,astrong back-angle peaking in the center-of-momentum cascade angular distribution (cos

θ

) was observed, which along withthe invari-antmassdistributions ofthe K+

− system,suggestedthe

signif-*

Correspondingauthors.

E-mailaddresses:[email protected](J. Bono),leguo@fiu.edu(L. Guo).

1 Currentaddress:ParticlePhysicsDivision,FermiNationalAccelerator

Labora-tory,Batavia,IL60510,UnitedStatesofAmerica.

2 Currentaddress:MississippiStateUniversity,MS39762-5167,UnitedStatesof

America.

3 Currentaddress: Imam Abdulrahman Bin Faisal University, Industrial Jubail

31961,SaudiArabia.

4 Currentaddress:Lexington,KY40506,UnitedStatesofAmerica. 5 Currentaddress:Pocatello,ID83209,UnitedStatesofAmerica. 6 Currentaddress:16146Genova,Italy.

icant role that intermediate hyperon resonances with masses of about2 GeV play incascadephotoproduction.Theseresults gen-eratedtheoreticalinterest inunderstanding theproduction mech-anism behind S

= −

2 states. In particular, Refs. [28,29] found it isnecessary toincludethecontributions fromthedecayof high-masshyperons (upto

(1890))

thatare predominatelyproduced in t-channel K

/

K∗ exchange, as illustrated in Fig. 1, to explain theCLAS cross-section measurements [27]. Furthermore,Ref. [29] investigated the role ofthe addition of high-spin hyperon states around 2 GeV and found significant contributions from spin/par-ity JP

=

5

2±and 72± resonances.Inparticular,theinclusionofthe

(2030)

7

2+stateimprovedthemodel’sagreementwiththedata.

These earlier photoproduction data from CLAS did not have either beamortarget polarization, and nostudy oninduced po-larizationwascarriedout.ButaspointedoutinRef. [29],boththe induced and transferred polarization of thecascade groundstate aresensitive totheproductionmechanism, particularly,themass, spinandparityofintermediatehyperonresonances,aswell asto themesonicexchangemechanisms.

The majority of early data for hyperon and cascade spec-troscopy was generated using K− beams on nuclear targets. However, the significance of the Y

K

decay has never been firmly established except for the small branching ratios and branching-ratio upper limits reported for

(2100)

7

2− and

(4)
[image:4.612.100.217.67.137.2]

Fig. 1.ApossibleFeynmandiagramof−photoproductionviathedecayof inter-mediatehyperonresonancesint-channelK/K∗exchange,whichisamajor compo-nentintheproductionmodelsofNakayama [28,29].

candidateexchange mechanisms,andevenpoint to theexistence ofhighermass/spinhyperons.

The understanding of the ground state cascade production mechanism is not limited to its connection to the intermediate hyperon resonances. The current spectrum of experimentally es-tablishedexcited cascadestateshasremainedvirtually unchanged inthepastthirtyyears [34].Atpresent,justsixstatesare consid-eredto have solid experimental evidence,and onlyhalf of these haveestablishedspinandparity.Furthermore,thenumberof cas-cade(aswellashyperon)statesthatappearinthemostrecent lat-ticeQCDcalculations[35] arenearly asnumerousaspredictedby earlyconstituentquarkmodels [36].Understandingtheproduction ofexcitedcascadescannot befullyachievedwithouta better un-derstandingofthegroundstate production,includingpolarization measurements.Thismanuscriptreportsthefirstmeasurements of both induced and transferred polarization of cascade baryons in photoproduction.

2. Experimentaldetails

A large-statistics dataset with an integrated luminosity of 68 pb−1 wascollectedwithCLAS [37] usingacircularlypolarized,

taggedphotonbeam [38] ofenergyrange1.1 to5.4 GeVincident onaliquidhydrogentarget [39].Thephoton beamwasproduced froma longitudinally polarizedprimary electron beamof energy 5.7 GeV,incident ona goldradiator.The electron-beam’shelicity was flipped pseudo-randomly at a rateof 30 Hz and was mea-sured periodically by a Møller polarimeter, yielding a degree of polarizationof0.68,averagedover theentirerun period.The de-greeofcircularphotonpolarizationwascalculatedandisknownto beproportionaltotheelectronbeampolarization,andtoincrease asa function of theratio ofphoton energy to theenergy ofthe primaryelectron beam [40].The targetconsistedofa40-cm-long cylindricalcellcontainingliquidhydrogen.Momentuminformation forchargedparticleswereobtainedviatrackingthroughthree re-gions ofmultiwiredrift chambers [41], withtheregion-two drift chambersinside a toroidalmagnetic field that was generated by six superconducting coils. Scintillators [42] outside of the drift chamberswere usedtomeasure time-of-flight(TOF) information, which,whencombinedwiththemomentuminformation,provided charged-particleidentification.

3. Analysis

Initialeventselectionrequiredtimingcoincidencesbetweenthe photon tagger andthe passage of two charged particles through theCLAS detector.Thephotonsthatproducedthe eventwere se-lected using vertex information obtained from tracking, and the timing information from a start counter [43], which surrounded thetarget.The timethat aneventoccurredatits vertex,as mea-sured by the start counter, was required to be within

±

1 ns of thephoton time provided by theaccelerator radio-frequency sig-nal.Furthermore,thevertextimedeterminedfromtheTOFsystem

Fig. 2.Massdistributionsfor alleventspassingcutson timing,detectedparticle mass,andvertexlocationareshownbythedatapointswitherrorbars.Topleft: MissingmassspectrumoftheK+K+system;Topright:Missingmassspectrumof the K+K+π− system;Bottomleft:Invariantmassspectrumoftheπ− system; Bottomright:Invariantmassspectrumasreconstructedfromthefour-momentum differenceofthe−andπ−system.Inallplots,aGaussianisfittothesignalover apolynomialbackground(dashedredline).Thesamedistributionsafterapplying thehyperspherecutsareshownbythefilledhistograms.Theverticallinesrepresent theknownor−masses.Detectionoftheπ− originatingthedecay,rather than the− decay,isevidentinthe leftand rightofthe signalregion,inthe bottomleftandbottomrightplots,respectively.(Forinterpretationofthecolorsin thefigures,thereaderisreferredtothewebversionofthisarticle.)

was required to be within

±

1 ns of the photon time forall de-tectedchargedparticles.

The next stepinthe identificationofthe

γ

p

K+K+

− re-action with the subsequent decay of

π

− was selecting events with three charged mesons, K+, K+, and

π

−, detected. Their momentumwas corrected forthe energylossin thetarget region,aswellasotherdetectoreffectssuchasmisalignmentsand errorsinthemagneticfieldmap. Thesignalswerethenextracted usingthefollowingfourmassdistributions:

1. Missingmassinthe

γ

p

K+K+

(

X

)

reaction,where X indi-catesthemissingparticle,labeledasM M

(

K+K+

).

2. Missing mass in the

γ

p

K+K+

π

(

X

)

reaction, where X indicatesthemissingparticle,labeledasM M

(

K+K+

π

).

3. Invariantmassofthe

(

+

π

)

system,labeledasM

(

+

π

),

andwheretheknown

mass,1115.683 GeV [34],was com-bined with the missing three-momentum of the K+K+

π

systemtodefinethe

four-momentumvector.

4. Invariantmassreconstructedfromthefour-momentum differ-enceofthe

− and

π

− system,labeledasM

(

π

),

and wheretheknown

− mass,1321.71 GeV[34],wascombined with the missing three-momentum of the K+K+ system to definethe

−four-momentumvector.

The mass distributions for events passing cuts on event timing, eventvertexlocation,anddetectedparticlemassareshownbythe data points witherrorbars inFig.2. Clearsignalsforthe

and

− areseen.

[image:4.612.301.551.69.269.2]
(5)
[image:5.612.314.563.66.186.2]

Fig. 3.PlaneandangledefinitionsforthepolarizationobservablesofCx,Cz,andP.

Seethetextforafulldescriptionofthecoordinates.

displacements.The width

σ

,of each massdistribution was mea-suredbyfittingitwithaGaussianplusapolynomialtomodelthe signalandbackground,asshownbythe fitsinFig. 2.The hyper-spherecoordinatesweredefinedas

x1

=

M M

K+K+

mass

/

3

σ

1

,

(1)

x2

=

M M

K+K+

π

mass

/

3

σ

2

,

x3

=

M

+

π

mass

/

3

σ

3

,

x4

=

M

π

mass

/

3

σ

4

,

r

=

x21

+

x22

+

x23

+

x24

,

where

σ

n denotes the Gaussian widthof the associated quantity asdisplayed in Fig. 2. A cut on the hypersphere radius r repre-sentsa simultaneouscutonall fourmassquantities,wherea3

σ

cutcorresponds totakingeventswithinthehypervolumedefined by r

<

1. This cut, asopposedto simply rectangular cutson the masses,allowed thebestsignal tobackground ratio,even though xi’s are not totally independent. The final data sample of 5143 eventsareshowninthefilledhistogramsinFig.2.

The

−polarizationisrelatedtotheangulardistributionofthe decay

π

−asmeasuredintherestframeofthe

−by [44]

I

(

cos

θ

πi

)

=

N

2

(

1

Pi

α

cos

θ

i

π

),

(2)

where

θ

πi isthepionanglerelativetothei

=

x

,

y,orzaxesinthe

− rest frame, N is the total number ofevents in the I

(cos

θ

πi

)

distribution, Pi isthe i-component ofthe

− polarization, and

α

isthe

−weak-decayasymmetryoranalyzingpowerwith

α

=

0.458

±

0.012 [34]. The axesare defined in the

− rest-frame (Fig.3)as

ˆ

z

=

pγ

|

pγ

|

,

(3)

ˆ

y

=

z

ˆ

×

p

z

×

p

|

,

ˆ

x

= ˆ

y

× ˆ

z

,

where

pγ and

p are the photon and cascademomentum vec-tors, respectively, both in the center-of-momentum frame of the beam-plus-targetsystem. The spin observables P, Cx, andCz are connectedtotherecoilpolarization P

through,

Px

=

PCx

,

Py

=

P

,

Pz

=

PCz

,

(4)

[image:5.612.92.248.70.193.2]

wherePisthedegreeofphoton-beampolarization.

Fig. 4.Aboveshowsthebeamhelicityasymmetriesacrossxandzforthe−decay, theslopesofwhich,alongwiththedilutionfactor,D,areusedtocalculateCxand Cz.Theeventsdisplayedincludeallanglesbetween− andthe z-axis,butare

limitedtophotonenergiesbetween3.81and4.43 GeV.

Theinducedpolarization,P,canbeextractedfromtheforward– backward asymmetry, Ay, of the pion angular distribution. This method has the advantage of the cancelation of detector-accep-tanceeffects,whichfollowsfromthefactthatthepolarizationaxis

ˆ

y points isotropicallyinthelabframe. Theasymmetry isdefined as

Ay

N+y

Ny N+y

+

Ny

,

(5)

whereN+y andNy representthenumberofeventswithcos

θ

πy as

positiveandnegative,respectively.Theasymmetryisrelatedtothe induced

−polarizationby

P

=

2Ay

α

.

(6)

ThedoublepolarizationobservablesCx andCz characterizethe transferredpolarizationofthephotontothe

− andareextracted fromthephoton-helicityasymmetry,

A

=

N

+

hel

N−hel

N+hel

+

Nhel

,

(7)

where Nhel+ and Nhel are the number of events associated with positiveandnegativephoton-beamhelicitystates,respectively.The transferredpolarization isrelatedtothephoton-helicity asymme-tryby

A

(

cos

θ

πi

)

|

P

|

α

=

Cicos

θ

i

π

.

(8)

The value and uncertainty of Ci can thus be obtained from the slopeofAcos

θ

πi.ExamplesofthelinearfitsusedtoextractCxand Cz areshowninFig.4.IntheasymmetrydefinedinEquation (7), systematiceffectssuchasdetectoracceptancemostlycancel,since theyoccurirrespectiveofthephotonhelicity.

It was found that overall around 15% ofthe eventssurviving the final cuts were unpolarized background events. The fraction oftheseeventswereestimatedineachkinematicbinby evaluat-ingthebackgroundsubtracted yieldthroughaGaussianfitwitha polynomialbackground.Theseeventswerefoundtohave polariza-tions consistent with zero,thus reducing the measured polariza-tionbythedilutionfactor,

D

=

1

fBG

,

(9)

where fBGisthefractionofbackgroundeventsineachsample.In

(6)
[image:6.612.298.555.90.461.2]

Table 1

SummaryofPmeasurementsanduncertainties.ThevaluesofEγ andcosθgiven

arethemeansoftheirdistributionswithineachbin.

Eγ (GeV) cosθ P δstatP δsysP δtotalP δsclP/P

3.47 1 to 1 0.011 0.12 0.022 0.12 0.026 4.09 1 to 1 0.089 0.12 0.022 0.12 0.026 4.88 1 to 1 0.006 0.13 0.022 0.13 0.026 2.8 to 5.5 0.79 0.045 0.12 0.022 0.12 0.026 2.8 to 5.5 0.41 0.15 0.12 0.022 0.12 0.026 2.8 to 5.5 0.19 0.19 0.12 0.022 0.12 0.026 3.47 0.80 0.088 0.21 0.022 0.21 0.026 4.10 0.79 0.14 0.20 0.022 0.20 0.026 4.86 0.77 0.036 0.22 0.022 0.22 0.026 3.45 0.44 0.15 0.20 0.022 0.20 0.026 4.09 0.40 0.16 0.22 0.022 0.22 0.026 4.88 0.36 0.10 0.22 0.022 0.22 0.026 3.50 0.12 0.10 0.20 0.022 0.20 0.026 4.10 0.19 0.27 0.21 0.022 0.21 0.026 4.90 0.26 0.12 0.21 0.022 0.22 0.026

factor, the values of which were found to be between 0.82 and 0.91.

Asidefromthedilutionfactor,threemainsourcesofsystematic uncertainty contributed to the overall uncertainties in the mea-surements. For one, systematic effects due to acceptance-related factors,includingtheselection ofthefiducialregionofthe detec-tor, were estimatedby comparingthe final resultsobtained with andwithoutthesecuts,andwerefoundtobe,integratingoverall kinematic bins,

δ

accP

=

0.022,

δ

accCx

=

0.01 and

δ

accCz

=

0.052. Additionally, uncertainty in the degree of photon-beam polariza-tion,which inturn resultedfrom theuncertainty inthe primary electronbeampolarization,contributedarelativescale-type uncer-taintyof

δ

P·Ci

/

Ci

=

0.03.Finally,theuncertaintyintheanalyzing power of the cascade, which is

±

0.012 [34], leads to a relative scale-type uncertainty of

δ

αP

/

P

=

δ

αCi

/

Ci

=

0.026. Forboth the inducedandtransferred polarizationmeasurements,thestatistical uncertaintydominatesthecumulativesystematicuncertainty.

4. Results&comparisonwiththeory

Intheextractionof P,datawerebinned intonineregions de-finedby threebinsofthecascadeanglebetweenthephoton and target momenta in the c.m. frame with event-weighted average valuesofcos

θ

= −

0.79,

0.41,and0.19,andthreebinsof pho-tonenergywithevent-weighted averagesof Eγ

=

3.47,4.09, and

4.88 GeV.Sincethe extractionsofCx andCz requiremoreevents to achieve the same statistical uncertainty as P, these variables were binned into only threeregions ofcos

θ

andsummed over 2.8

Eγ

5.5 GeV,orconversely,binnedintothreeregionsofEγ

andsummedover

1

cos

θ

1.The P resultsaregivenin Ta-ble1 andthe Cx andCz results are givenin Table 2,as well as showninFigs.5,6,and7.TheseresultscanbefoundinRef. [45].

Forcomparison, thepolarization predictions ofthethree phe-nomenological model variants put forth by Refs. [28,29] to help explain thedifferential crosssectionsreported byRef. [27], over-lay our results in Figs. 5, 6, and 7. All three model variants share the same framework, in which cascade photoproduction proceeds through the decay of intermediate hyperon resonances thatareproducedviarelativisticmesonexchange.Thepredictions are based on pseudoscalar (solid red) andpseudovector (dashed blue)relativisticmeson-exchange.Contributionsfromthe

(2030),

whichhasspin-7/2,wereintroducedinRef. [29] (dottedgreen).

Thepredictedvaluesof P andCx followfairlyflat curves,that whendeterminedovertheentireangularand/orenergyrange, in-tegrateto nearly zero.Conversely, the predictedvalues ofCz are

Table 2

SummaryofCxandCzmeasurementsanduncertainties.

Eγ (GeV) cosθ Cx δstatC δsysC δtotalC δsclC/C

3.47 1 to 1 0.21 0.39 0.01 0.39 0.039 4.09 1 to 1 0.083 0.34 0.01 0.34 0.039 4.88 1 to 1 0.021 0.32 0.01 0.32 0.039 2.8 to 5.5 0.79 0.21 0.33 0.01 0.33 0.039 2.8 to 5.5 0.41 0.37 0.35 0.01 0.40 0.039 2.8 to 5.5 0.19 0.012 0.40 0.01 0.40 0.039

Eγ (GeV) cosθ Cz δstatC δsysC δtotalC δsclC/C

[image:6.612.34.284.100.257.2]

3.47 1 to 1 0.52 0.35 0.052 0.35 0.039 4.09 1 to 1 0.67 0.29 0.052 0.29 0.039 4.88 1 to 1 0.001 0.26 0.052 0.26 0.039 2.8 to 5.5 0.79 0.52 0.32 0.052 0.33 0.039 2.8 to 5.5 0.41 0.49 0.28 0.052 0.29 0.039 2.8 to 5.5 0.19 0.13 0.30 0.052 0.30 0.039

Fig. 5.P(top),Cx(middle)andCz(bottom)asafunctionofEγ andsummedover

cosθ.Theerrorbarsrepresentthetotaluncertainty.Thelegendspecifies

pseu-doscalar(ps)orpseudovector(pv)coupling,aswellasthejournalofpublicationfor theassociatedmodel.

Fig. 6. P (top),Cx(middle)andCz (bottom)asafunctionofcosθ andsummed

[image:6.612.344.508.515.723.2]
(7)
[image:7.612.86.249.66.281.2]

Fig. 7.PasafunctionofcosθforthreeEγ binsasindicated.Errorbarsandcurves

arethesameasinFig.5.

positiveandsizableoverthekinematicrangeandthusdonot in-tegratetozeroonanyinterval.

As shown in Figs. 5, 6, and 7, our measurements are gener-allywell described by the pseudoscalar (solidred)and the2011 pseudovector(dottedgreen)modelsbutnotthe2006pseudovector model(dashedblue). Wehaveperformeda statisticalcomparison ofthe three model variants to 15 independent data points, 9 of whichcomefromtheinducedpolarization, P,intheun-integrated binning scheme in Table 1, while the other 6 data points come fromthetransferredpolarization,CxandCz,summedoverEγ.The

agreementbetweenthedataandthepseudoscalarvariantisgood, with a

χ

2

=

13.0. The 2006 variant of the pseudovector model has

χ

2

=

33.0 and istherefore excludedby the datawith

99% confidence. The 2011 variant of the pseudoscalar model (dotted green) has

χ

2

=

17.4. Similar resultsare found when comparing themodeltothecosθintegratedtransferredpolarizationresults. Howeveritisimporttopointoutthesemodelsweretestedagainst thecrosssectionsmeasurementsuptoaround4 GeV.Abovethat, itispossiblethatothermechanismsnotaccountedforsuchasthe Reggetrajectories andother higher-masshyperons mightneedto beincluded.

Finally,itisworth pointingoutthatthephotoproduced

was observed [8] to exhibit nearly 100% polarization by evaluationof R

=

C2x

+

C2z

+

P2.Thisquantity forthe

−,integratingour re-sultsover all bins,is 0.30

±

0.14,which is non-zero but signifi-cantlysmallerthanthe

counterpart.

5. Conclusion

To summarize, we have made the first polarization measure-ments forthe

− inphotoproduction by measuring the induced polarization, P,aswellastransferredpolarization,Cx andCz, us-ing a circularly polarizedphoton beam. We havefound that the totalintegrated

− polarization departs fromzeroby 2

σ

, butis significantly smaller than inthe analogous casefor

photopro-duction.Theresultshavebeencompared,andshowgeneral agree-ment withthe predictions of a phenomenological model of cas-cade photoproductioninvolving intermediate hyperon resonances that are produced, predominantly in the t-channel, via relativis-ticpseudoscalar mesonexchange. The results strongly disfavored a model variant that excludes significant contributions from the

(2030)

72+.Preciselydeterminingtheroleofhigh-spinexcited hy-peronsand the contributions fromscalar versus vector exchange mechanisms will be left to future experiments at CLAS12 and GlueX [46]. Nevertheless, we have made the first step toward a detailedunderstandingof

− photoproduction.

Acknowledgements

We thankK. Nakayamaformanyfruitfuldiscussions in which he provided his insight and support. We acknowledge the out-standing efforts of the staff of the Accelerator and the Physics DivisionsatJeffersonLabthatmadethisexperimentpossible.This work was supported in part by the U.S. Department of Energy, theNationalScienceFoundation,theItalianInstitutoNazionale di FisicaNucleare,theFrenchCentreNationalde laRecherche Scien-tifique,theFrenchCommissariatàl’ÉnergieAtomique,theNational ResearchFoundationofKorea,theUK ScienceandTechnology Fa-cilities Council (STFC), and the Physics Department at Moscow State University. The Jefferson Science Associates (JSA) operates the Thomas Jefferson NationalAccelerator Facility forthe United StatesDepartmentofEnergy undercontractDE-AC05-06OR23177. TheFIUgroup issupportedbytheU.S.DepartmentofEnergy, Of-ficeofNuclearPhysics,undercontractNo. DE-SC0013620.

References

[1]C.A.Paterson,etal.,Photoproductionofand0hyperonsusinglinearly po-larizedphotons,Phys.Rev.C93(2016)065201.

[2]M.Q. Tran,etal., MeasurementofγpK+and γpK+0 atphoton energiesupto2 GeV,Phys.Lett.B445(1998)20–26.

[3]D.S.Carman,etal.,Firstmeasurementoftransferredpolarizationinthe exclu-sivepolarizedepeK+reaction,Phys.Rev.Lett.90(2003)131804.

[4]K.H.Glander,etal.,MeasurementofγpK+andγpK+0atphoton energiesupto2.6 GeV,Eur.Phys.J.A19(2004)251–273.

[5]R.G.T. Zegers,etal.,Beampolarizationasymmetriesforthe p(γ,K+)and p(γ,K+)0 reactionsat E(γ)=1.5 GeV–2.4 GeV,Phys.Rev.Lett.91(2003) 092001.

[6]J.W.C.McNabb,etal.,Hyperonphotoproductioninthenucleonresonance re-gion,Phys.Rev.C69(2004)042201.

[7]M.Sumihama,etal.,ThepolarizedγpK+andpolarizedγpK+0 re-actionsatforwardangleswithphotonenergiesfrom1.5-GeVto2.4-GeV,Phys. Rev.C73(2006)035214.

[8]R.Bradford,etal.,Firstmeasurementofbeam-recoilobservablesCxandCzin

hyperonphotoproduction,Phys.Rev.C75(2007)035205.

[9]M.McCracken,etal.,Differentialcrosssectionandrecoilpolarization measure-mentsfortheγpK+reactionusingCLASatJeffersonLab,Phys.Rev.C81

(2010)025201.

[10]B.Dey,etal.,Differentialcrosssectionsandrecoilpolarizationsforthereaction

γpK+0,Phys.Rev.C82(2010)025202.

[11]D.S.Carman,etal.,Beam-recoilpolarizationtransferinthenucleonresonance region inthe exclusivee peK+ and e peK+0 reactions at CLAS,

Phys.Rev.C79(2009)065205.

[12]M.Gabrielyan,etal.,Inducedpolarizationof(1116)inkaon electroproduc-tion,Phys.Rev.C90 (3)(2014)035202.

[13]A.V. Anisovich,V.Kleber,E.Klempt,V.A.Nikonov, A.V.Sarantsev,U.Thoma, Baryonresonancesandpolarizationtransferinhyperonphotoproduction,Eur. Phys.J.A34(2007)243–254.

[14]V.A.Nikonov,A.V.Anisovich,E.Klempt,A.V.Sarantsev,U.Thoma,Further ev-idenceforN(1900)P(13)fromphotoproductionofhyperons,Phys.Lett.B662 (2008)245–251.

[15]A.V.Anisovich,E.Klempt,V.A.Nikonov,A.V.Sarantsev,U.Thoma,P-wave ex-citedbaryonsfrompion- andphoto-inducedhyperonproduction,Eur.Phys.J. A47(2011)27.

[16]A.V.Anisovich,E.Klempt,V.A.Nikonov,A.V.Sarantsev,U.Thoma,Nucleon res-onancesinthefourthresonanceregion,Eur.Phys.J.A47(2011)153.

[17]A.V. Anisovich,E.Klempt, V.A.Nikonov, A.V.Sarantsev, U.Thoma,Evidence for aspin-quartetofnucleonresonancesat2 GeV,Phys. Lett.B711(2012) 167–172.

[18]A.delaPuente,O.V.Maxwell,B.A.Raue,NewfitstothereactionγpK+, Phys.Rev.C80(2009)065205.

[19]O.V.Maxwell,Beampolarizationasymmetryandtheelectromagnetic produc-tionofkaonsfromprotons,Phys.Rev.C86(2012)064612.

(8)

[21]O.V.Maxwell,NewfittothereactionγpK+0,Phys.Rev.C92 (4)(2015)

044614.

[22]O.V.Maxwell,ElectromagneticproductionofKmesonsfromtheproton:a new fittorecentdata,Phys.Rev.C93 (1)(2016)014605.

[23]G.Penner,U.Mosel,Vectormesonproductionandnucleonresonance analy-sisinacoupled-channelapproachforenergiesmN<√s<2 GeV II:

photon-inducedresults,Phys.Rev.C66(2002)055212.

[24]M.Döring,etal.,Thereactionπ+pK++inaunitarycoupled-channels model,Nucl.Phys.A851(2011)58.

[25]H.Kamano,S.Nakamura,T.-S.Lee,T.Sato,ExtractionofP11resonancesfrom

πNdata,Phys.Rev.C81(2010)065207.

[26]J.W.Price,etal.,ExclusivephotoproductionofthecascadeX ihyperons,Phys. Rev.C71(2005)058201.

[27]L.Guo,etal.,CascadeproductioninthereactionsγpK+K+(X)andγp K+K+π−(X),Phys.Rev.C76(2007)025208.

[28]K.Nakayama,Y.Oh,H. Haberzettl,Photoproductionofoffnucleons,Phys.

Rev.C74(2006)035205.

[29]J.K.S.Man,Y.Oh,K.Nakayama,Roleofhigh-spinhyperonresonancesinthe reactionofγpK+K+−,Phys.Rev.C83(2011)055201.

[30]P.J.Litchfield,et al., Kpelasticand charge-exchangescatteringinthe c.m. energyrange1915–2168MeV,Nucl.Phys.B30(1971)125.

[31]R.A.Muller,AStudyoftheReactionKNKfromThresholdto2.7-GeV/c, Ph.D.thesis,LBL,Berkeley,1969.

[32]R.D.Tripp,etal.,BaryonresonancesinSU(3),Nucl.Phys.B3(1967)10.

[33]G.Burgun, etal., Resonanceformationinthe reactions KpK+− and KpK00 inthe massregionfrom1915to2168 MeV,Nucl.Phys.B8

(1968)447.

[34]C.Patrignani,etal.,Reviewofparticlephysics,Chin.Phys. C40 (10)(2016) 100001.

[35]R.Edwards,etal.,Theflavorstructureoftheexcitedbaryonspectrafrom lat-ticeQCD,Phys.Rev.D87(2013)054506.

[36]S.Capstick,N.Isgur,Baryonsinarelativizedquarkmodelwith chromodynam-ics,Phys.Rev.D34(1986)2809.

[37]B.A.Mecking,et al.,The CEBAFlargeacceptancespectrometer (CLAS),Nucl. Instrum.Meth.A503(2003)513–553.

[38]D.I.Sober,etal.,ThebremsstrahlungtaggedphotonbeaminHallBat JLab, Nucl.Instrum.Meth.A440(2000)263–284.

[39] G12 ExperimentalGroup,CLAS-NOTE 2017-002,https://misportal.jlab.org/ul/ Physics/Hall-B/clas/viewFile.cfm/2017-002.pdf?documentId=756,2017. [40]H. Olsen, L.C. Maximon, Photon and electron polarization in high-energy

bremsstrahlung and pair production with screening, Phys. Rev. 114(1959) 887–904.

[41]M.D.Mestayer,etal.,TheCLASdriftchambersystem,Nucl.Instrum.Meth.A 449(2000)81–111.

[42]E.S.Smith,etal.,Thetime-of-flightsystemforCLAS,Nucl.Instrum.Meth.A 432(1999)265–298.

[43]Y.G.Sharabian,etal.,AnewhighlysegmentedstartcounterfortheCLAS de-tector,Nucl.Instrum.Meth.A556(2006)246–258.

[44]M.Huang,etal.,Newmeasurementof−π− decayparameters,Phys. Rev.Lett.93(2004)011802.

[45] DatareportedheremaybeaccessedintheCLASPhysicsDatabaseat:http:// clas.sinp.msu.ru/cgi-bin/jlab/db.cgi.

Figure

Fig. 1. Anent possible Feynman diagram of �− photoproduction via the decay of inter-mediate hyperon resonances in t-channel K/K ∗ exchange, which is a major compo- in the production models of Nakayama [28,29].
Fig. 4. Above shows the beam helicity asymmetries across x and z for the �− decay,the slopes of which, along with the dilution factor, D, are used to calculate Cx andCz
Fig. 5. Pcos (top), Cx (middle) and Cz (bottom) as a function of Eγ and summed over θ�
Fig. 7. P as a function of cosθ� for three Eγ bins as indicated. Error bars and curves are the same as in Fig

References

Related documents

This essay asserts that to effectively degrade and ultimately destroy the Islamic State of Iraq and Syria (ISIS), and to topple the Bashar al-Assad’s regime, the international

Мөн БЗДүүргийн нохойн уушгины жижиг гуурсанцрын хучуур эсийн болон гөлгөр булчингийн ширхгийн гиперплази (4-р зураг), Чингэлтэй дүүргийн нохойн уушгинд том

19% serve a county. Fourteen per cent of the centers provide service for adjoining states in addition to the states in which they are located; usually these adjoining states have

National Conference on Technical Vocational Education, Training and Skills Development: A Roadmap for Empowerment (Dec. 2008): Ministry of Human Resource Development, Department

Our study successfully implemented a referral program for maternal contraceptive services within pediatric care by having pediatric residents assess postpartum women ’ s needs

It was decided that with the presence of such significant red flag signs that she should undergo advanced imaging, in this case an MRI, that revealed an underlying malignancy, which

Therefore the aim of this observational study was to assess the utility of the MYMOP2 and W-BQ12 health outcomes measures for measuring clinical change asso- ciated with a course

Also, both diabetic groups there were a positive immunoreactivity of the photoreceptor inner segment, and this was also seen among control ani- mals treated with a