Structure, metamorphism and tectonics of the Central Nepal Himalayas
Full text
(2) STRUCTURE, METAMORPHISM AND TECTONICS OF THE CENTRAL NEPAL HIMALAYAS. Volume II (Figures, Tables and Appendices). Thesis submitted by Jyotindra Sapkota, BSc, MSc Tribhuvan University, Nepal in November 2011. for the degree of Doctor of Philosophy in the School of Earth and Environmental Sciences James Cook University, Australia.
(3) PhD Thesis. J. Sapkota. CONTENT OF VOLUME II. List of Figures and Tables. i-vii. Section A The post garnet growth history of foliation development along the Main Central Thrust. 1-15. Section B Preservation of deep Himalayan PT conditions that formed during multiple events in garnet cores: mylonitization produces erroneous results for rims. 16-38. Section C Multiple alternations of bulk horizontal shortening and gravitational collapse during Himalayan orogenesis. 39-51. Section D Episodic gravitational collapse and migration of the mountain chain during orogenic roll-on in the Himalayas. 52-63. Appendix 1. 1-3. Appendix 2. 1-18. Appendix 3. 1-2. Appendix 4. 1-11. i.
(4) PhD Thesis. J. Sapkota. LIST OF FIGURES AND TABLES. Section A Figure 1: Simplified regional geological map of the Central Nepal Himalayas and cross section along XY. 2. Figure 2: Spiral-shaped inclusion trails in a garnet porphyroblast and line diagram. 3. Table 1: Orientation of different foliations calculated from apparent dips measured in vertical thin sections striking in various directions.. 4. Figure 3: Photomicrographs and line diagrams of differentiation asymmetries looking west. 6. Figure 4: Photomicrographs and line diagrams of differentiation asymmetries looking west. 7. Figure 5: Photomicrographs and line diagrams of differentiation asymmetries looking west. 8. Figure 6: Photomicrographs and drawings of overprinting differentiation asymmetries looking west. 9. Figure 7: Schematic diagrams showing the effects of folding by the Gorkha-Kathmandu fold couplet on MCT fabric. 11. Figure 8: A photomicrograph and line diagram looking west showing relics of subvertically oriented S1 preserved in low strain areas. 12. Figure 9: A portion of the geological map in Fig. 1 showing different generations of matrix foliations and their equal area, lower hemispheric pole projections. 13. ii.
(5) PhD Thesis. J. Sapkota. Section B Figure 1: Geological map of the Himalayas and southern Tibet showing major tectonic units and location of the Central Nepal Himalayas. 17. Figure 2: Geological map of the Central Nepal Himalayas outlined in Fig. 1 by a boxed area and cross section along XY. 18. Figure 3: Spiral- and sigmoidal-shaped inclusion trails preserved in garnet porphyroblasts and line diagrams. 19. Figure 4: A simplified diagram showing 3D geometry of inclusion trails preserved in a porphyroblast. 20. Figure 5: A schematic diagram showing asymmetry method of FIA determination. 21. Table 1: FIA trends measured in garnet porphyroblasts. 22. Figure 6: An equal area rose diagram of FIA trends measured from 78 samples, core to rim changes in FIA trends and a FIA succession. 24. Figure 7: Photomicrographs and line diagrams drawn at very high magnification showing the truncation of inclusion trails containing different FIA sets by various generations of matrix foliations. 25. Figure 8: Photomicrographs and line diagrams drawn at very high magnification showing the truncation of inclusion trails containing different FIA sets by various generations of matrix foliations. 26. Figure 9: Photomicrographs and line diagrams drawn at very high magnification showing the truncation of inclusion trails containing different FIA sets by various generations of matrix foliations. 27. Table 2: Electron microprobe analysis of biotite grains averaged for different samples using about 4 spots per sample. 28 iii.
(6) PhD Thesis. J. Sapkota. Table 3: Electron microprobe analysis of muscovite grains averaged for different samples using about 4 spots per sample. 29. Table 4: Electron microprobe analysis of plagioclase averaged for different samples using about 5 spots per sample. 30. Table 5: Electron microprobe analysis of garnet cores and rims averaged for different samples using about 7 spots for cores and 4 spots for rims per sample. 31. Figure 10: A PT pseudosection modelled for sample K17 in MnNCKFMASH system on Thermocalc with quartz, muscovite and water in excess. 33. Figure 11: P-T pseudosections and garnet core compositional isopleths for samples representing FIAs 1, 2 and 3. 34. Figure 12: P-T pseudosections and garnet core compositional isopleths for samples representing FIAs 4 and 5. 35. Table 6: Summary of PT calculations. 36. Figure 13: A vertical rose diagram of the pitches of internal foliations preserved in inclusion trails in garnet porphyroblasts measured in vertical thin sections cut at high angle to the related FIA trends. 37. Figure 14: India’s motion relative to Asia between 70 and 10 Ma. and possible correlation of FIA sets with the relative plate motions. 38. iv.
(7) PhD Thesis. J. Sapkota. Section C Figure 1: Map and cross-section showing geology of region and sample sites and numbers. 40. Figure 2: Rose diagram showing FIA distribution, vertical arrows showing core to rim changes and the FIA succession that explains the core to rim and inclusion trail asymmetry changes. 41. Figure 3: Inclusion trail asymmetries looking overall west recorded out from the core in sections at a high angle to each of the FIAs on the rose diagram with data separated into changes from sub-vertical to subhorizontal and vice versa. 42. Figure 4: Photo showing how pitches of foliations defined by inclusion trails were measured and vertical rose diagrams of the pitch measurements. 43. Table 1: Measurement of pitches of internal foliations preserved in garnet porphyroblasts. 44. Figure 5: Pseudosections (MnNCKFMASH, Ms, SiO2, H2O) with Mn, Ca and Fe isopleths for garnet cores for 8 samples. 47. v.
(8) PhD Thesis. J. Sapkota. Section D Figure 1: Geological map of the region showing sample and cross-section X-Y locations. 43. Figure 2: Spiral-shaped inclusion trails in garnet porphyroblast truncated by the matrix foliation. 54. Figure 3: S1, S2, S3 and Sh relationships in different parts of the Gorkha-Kathmandu fold couplet. 55. Figure 4: FIA trends on a rose diagram, core to rim changes and the FIA succession. 56. Figure 5: Photo of a garnet porphyroblast showing how the inclusion trail pitches were measured in sections near orthogonal to the FIA trend; rose diagram of pitch measurements of all foliations and of those that formed against an earlier formed phase of garnet growth; and histogram of the asymmetry of inclusion trails as they change (moving out towards the porphyroblast extremities) from steep to gentle pitches or gentle to steep pitches for each sample separated according to FIA trend. 57. Figure 6: Garnet core isopleths for Mn, Fe and Ca plotted on PT pseudosections determined for 8 samples. 58. Figure 7: Series of S-N schematic cross-sections showing the progressive roll-on of India into Eurasia and the style of bulk shortening followed by gravitational collapse cycles that the successions of subvertical/sub-horizontal foliation successions suggest must occur. 59. Figure 8: Schematic S-N cross-sections through the centre of an orogen containing a portion of crust prior to and after being affected by gravitational collapse plus schematic S-N cross-sections across the core of the orogen in a collapse phase showing the location of all samples during and after the formation of FIAs 1 through 5. 60. vi.
(9) PhD Thesis. J. Sapkota. Figure 9: Sketch showing the intersection of a sub-vertical and sub-horizontal foliation, which defines the FIA trend. 62. Figure 10: Motion of India relative to a constant Eurasia, the direction of bulk shortening that each FIA set reflects, and the plots containing the vector of relative plate motion between India and Eurasia. 63. vii.
(10) SECTION A THE POST GARNET GROWTH HISTORY OF FOLIATION DEVELOPMENT ALONG THE MAIN CENTRAL THRUST.
(11) Section A. J. Sapkota. 85o30’E. 85oE Y. Kathmandu Sediments. Thrust. Siwaliks. Antiform. Nawakot Complex. Synform. Phulchauki Group. River. Bhimphedi Group. Dhunche. Gneiss Tris hu. S20. .. S10b. S13. 28oN. li R. S29. S30. S1. K K5K6 K7 8. S S1821b S S15 16 S17 S3 Galchhi. Sample location. MBT: Main Boundary Thrust MCT: Main Central Thrust MT: Mahabharat Thrust. Granite. K K 10 K2S23 S26 9. K19. 0. 28oN. 10 km. S7. Kh ol Ta di. Trishuli Bud. R. d ak an. T17. iR. T11. .. T9. M14. Melamchi M1. T6 T5. Kakani. Galchhi. K19 K14. M alekhu Kho la. K23 K20. T8. M10. Ind. M ahesh Kho la. raw ati R. .. S un. K. os. hi. KATHMANDU. R.. hi G Kuringhat. M M12 11. Likhu Khola. Tr i shuli T T13 16 T14. Dhading. a. Ro. Bhimphedi H2. R.. H1. MB. s. Dolalghat. T. Dhulikhel. iK ho la. h. Ra p ti. MC. T). 27o30’N. Palung. (M. BT. B agmati R .. CT. M. M. T. 27o30’N. Narayan Than. Hetauda. ti R.. X Bag m. a. 85oE. a. 4 km. 85o30’E. Kathmandu Synform. X. 4 km. Gorkha Antiform M. CT. CT. M. 0. CT. M. BT. M. 0. Kok hajor Khol a. Y. b Fig. 1: (a) Simplified regional geological map of the Central Nepal Himalayas (modified after Stöcklin, 1980; Pearson et al, 2002; and Rai, 2001). The boxed area with broken lines is that shown in Fig. 9. (b) Cross section (looking west) along XY.. 2.
(12) 3 Section A. J. Sapkota. 150 S26. 0.3 mm. (a). (b). Fig. 2: Spiral-shaped inclusion trails in a garnet porphyroblast (a) and line diagram (b). Inclusion trails in the porphyroblast define near orthogonal sub-horizontal and sub-vertical foliations. The internal foliations are sharply truncated by matrix foliations. Vertical thin section with strike and way up shown by a single barbed arrow. Plane polarized light.. 3.
(13) Foliations Sample. 1 Amt. S1 S3 S7 S10b S13 S14 S15 S16 S17 S18 S20 S21b S23 S27 S29 S30 T5 T6 T8 T9 T11 T13 T14 T16 T17 K2 K5 K6 K7 K8 K9 K10 K14 K19 K20 M1 M10 M12 H1 H2. 60 67 49 75 40 69 14 21 41 18 52 80 69 76 48 38 42 46 49 16 53 15 52 52 26 64 40 61 65 66 58 60 60 66 56 17 25 46 50 38. 2. Direction 170 161 153 180 204 180 180 180 178 150 175 162 170 166 178 179 182 173 169 133 178 171 173 170 175 176 167 195 159 168 172 167 184 145 169 355 18 337 4 358. Amt 40 44 68 89 25 87 42 46 13 47 79 79 88 51 80 9 12 80 17 54 82 49 80 85 52 89 63 81 89 89 81 84 81 86 79 10 5 18 29 7. 3. Direction 166 164 166 3 165 351 185 182 172 174 172 341 169 181 175 171 175 163 163 156 164 181 169 164 186 147 161 163 169 164 152 2 8 158 173 150 3 317 1 351. Amt. Direction. 66 76 79. 352 140 0. 66. 352. 69. 26. 67 67 68. 343 12 352. 52 56 52. 6 346 0. Differentiation asymmetry looking west and shear sense 1 2 Shear Shear Asymmetry Asymmetry sense sense S/Cw TN S/Cw TN S/Acw TS V/Acw NU N/Acw TS S/Cw TN V/Acw NU V/Acw NU N/Acw TS S/Acw TS S/Acw TS G/Cw TN S/Acw TS V/Acw NU N/Acw TS V/Acw NU N/Acw TS S/Cw TN V/Acw NU G/Cw TN G/Cw TN V/Acw NU G/Cw TN S/Acw TS V/Acw NU S/Acw TS V/Acw NU V/Acw NU S/Acw TS V/Acw NU N/Acw TS S/Acw TS V/Acw NU N/Acw TS V/Acw NU N/Acw TS V/Acw NU N/Acw TS V/Acw NU V/Acw NU N/Acw TS V/Acw NU N/Acw TS V/Acw NU N/Acw TS V/Acw NU G/Acw TS G/Acw TS G/Acw TS N/Acw TS G/Acw TS. 4.
(14) Section A. J. Sapkota. Table 1: Orientation of different foliations calculated from apparent dips measured in vertical thin sections striking in various directions. These foliations display seven differentiation asymmetries (looking west) and shear senses. G/Acw: Gently dipping foliations with anticlockwise differentiation asymmetry; G/Cw: Gently-dipping foliations with clockwise differentiation asymmetry; V/Acw: Sub-vertical foliations with anticlockwise differentiation asymmetry; N/Acw: Moderately north-dipping foliations with anticlockwise differentiation asymmetry; S/Acw: Moderately south-dipping foliations with anticlockwise differentiation asymmetry; S/Cw: Moderately south-dipping foliations with clockwise differentiation asymmetry; TS: Top to the south; TN: Top to the north; NU: North side up.. 5.
(15) Section A. a. J. Sapkota. b. S1. S2. 0 M12 0.5 mm. c. d. S2. S5. 1.5 mm. 0 S17. Fig. 3: Photomicrographs and line diagrams of differentiation asymmetries looking west. (a, b) Gently dipping foliations – anticlockwise; crossed polars. (c, d) Gently dipping foliations – clockwise; plane polarized light. Vertical thin sections with strike and way up shown by a single barbed arrow.. 6.
(16) Section A. J. Sapkota. a. S3. b. S2. 0 T16 0.5 mm. c. S3. 30 H1. 0 S18. d. S1. S2. S2. 1 mm. f. e. 1 mm 1 mm. g. 0 K10 S4. S3. Fig. 4: Photomicrographs and line diagrams of differentiation asymmetries looking west. (a, b) Subvertical foliations – anticlockwise; plane polarized light. (c) Sub-vertical foliations – clockwise; plane polarized light. (d, e) South-dipping foliations – anticlockwise; crossed polars. (f, g) North-dipping foliations – anticlockwise; crossed polars. Vertical thin sections with strike and way up shown by a single barbed arrow. 7.
(17) Section A. J. Sapkota. a. b. c. 0.5 mm. S1. (re act iva ted ). S1 S2. S. 2. 30 H1. 0 S3 1 mm. Fig. 5: Photomicrographs and line diagrams of differentiation asymmetries looking west. (a) Northdipping foliations – anticlockwise; plane polarized light. (b, c) North-dipping foliations – clockwise; crossed polars. Vertical thin sections with strike and way up shown by a single barbed arrow.. 8.
(18) Section A. J. Sapkota. 0 T14. a. b. S3 S2. S1. 1 mm. c. d. 0 S7 3 mm S2 S1. S3. e. f S4. S5. S3. S2 S5 S2. 0 K14. 0 S30. S1. 0.5 mm. 0.5 mm. 9.
(19) Section A. J. Sapkota. Fig. 6: Photomicrographs and drawings of overprinting differentiation asymmetries looking west. (a, b) Moderately south-dipping foliations bending anticlockwise into sub-vertical foliations contain relics of clockwise asymmetry; crossed polars. (c, d) South-dipping foliations preserving anticlockwise differentiation asymmetry curves anticlockwise into weakly developed sub-vertical foliations; crossed polars. (e) Sub-vertical foliations with anticlockwise differentiation asymmetry bend anticlockwise into moderately north-dipping foliations; plane polarized light (f) Moderately south-dipping foliations with relics of anticlockwise asymmetry bend clockwise into sub-horizontal foliations; plane polarized light. Vertical thin sections with strike and way up shown by a single barbed arrow.. 10.
(20) Section A. J. Sapkota. S1. S2. (a). Sample H1 Fig. 5a. Sample S18 Fig. 4d. Sample M12 Fig. 3a. Sample H1 Fig. 4c. Sample S3 Fig. 5b. Sample T16 Fig. 4a. Bulk shear sense. Reactivation shear sense S1. S1. S1. S2. S2 Gorkha antiform. S3 Kathmandu synform. (b). S1. Gorkha antiform. S3 Kathmandu synform. (c). Fig. 7: Schematic diagrams showing the effects of folding by the Gorkha-Kathmandu fold couplet on MCT fabric. View towards west. (a) MCT shear fabric. (b) Cross section of the fold couplet showing post-folding geometry of the shear fabric where no reactivation has occurred. (c) Cross section of the fold couplet showing syn-folding reactivation of the limbs with a shear sense antithetic to the bulk axial plane shear. On the external limbs of the fold couplet, reactivation operates with a top-to-thesouth sense of shear. However, it acts with a top-to-the-north shear sense on the central limb and has locally rotated the MCT shear indicators to display an opposite shear sense. Portions of some photomicrographs used in Fig. 3, 4 and 5 and their location on the fold couplet are shown in (b) and (c).. 11.
(21) Section A. J. Sapkota. relics of S1 with sub-vertical orientation S2. 2 mm. 0. S1. M12. (a). (b). Fig. 8: A photomicrograph (a) and line diagram (b) looking west showing relics of sub-vertically oriented S1 preserved in low strain areas. Elsewhere, S1 pitches towards north at about 40o and curves into weakly differentiated S2 to indicate a top-to-the-south sense of shear. Crossed polars; strike and up direction shown by a single barbed arrow.. 12.
(22) Section A. J. Sapkota. a. 40 46. Dhading. 25 50. 15 77 18 40 67 14 60 49. 40 21. 26 16. 17. Kakani. KATHMANDU. N. Palung. Dhulikhel n=19 in central limb in central limb (reactivated) in external limbs. MC. T (M. T). MB. T. Bhimphedi. 38 50. 6. b. 18. Dhading 52 49. 51. 44 47 63 69 25 52 75 56 40 42 41 38 66 60 48 68 69 46. 52 49 53 54. 52 46 42. 3 10 10. Kakani. KATHMANDU. Palung. N. Dhulikhel n=41. MC. T (M. T). MB. T. Bhimphedi. 38 50. in central limb in external limbs. 13.
(23) Section A. J. Sapkota. c Dhading 85 84 89 80 81 89 88. 89 86 76 79 81 80 87. 79. 82. 80 80. Kakani. 80. KATHMANDU. N. Palung. Dhulikhel n=20. MC. T (M. T). MB. Bhimphedi. T. d. Dhading. 68. 52 66 79. 52 69 79 67 66. Kakani. 67. 56. KATHMANDU. N. Palung. Dhulikhel n=11. MC. T (M. T). MB. Bhimphedi. T. 14.
(24) Section A. e. J. Sapkota. Dhading 17 9. 12. Kakani. 3. KATHMANDU. N. Palung. Dhulikhel n=4. MC. T (M. T). MB. Bhimphedi. T. Fig. 9: A portion of the geological map in Fig. 1 showing different generations of matrix foliations and their equal area, lower hemispheric pole projections. (a) S1. (b) S2. (c) S3. (d) S4. (d) S5. S1 on the central limb of the Gorkha-Kathmandu fold couplet has a gentler dip than S2 into which it curves. However, S1 on the external limbs and reactivated S1 in the central limb are steeper than S2.. 15.
(25) SECTION B PRESERVATION OF DEEP HIMALAYAN PT CONDITIONS THAT FORMED DURING MULTIPLE EVENTS IN GARNET CORES: MYLONITIZATION PRODUCES ERRONEOUS RESULTS FOR RIMS.
(26) Section B. J. Sapkota. TIBET. Lhasa. Indus Tsangpo Suture. STDS MC. MBT. T. STDS. 80oE 28oN. NEP AL. Higher Himalayan crystallines. MCT Ophiolite. Lesser Himalayan formations. Kathmandu Gangdese Batholith. Tethyan metasediments. Tertiary leucogranite. MBT. 0. 100. 200 km. Fig. 1: Geological map of the Himalayas and southern Tibet showing major tectonic units (after Harrison et al., 1997) and location of the Central Nepal Himalayas (boxed area). MBT: Main Boundary Thrust; MCT: Main Central Thrust; STDS: South Tibetan Detachment System.. 17.
(27) Section B. J. Sapkota. 85o30’E. 85oE Y. Kathmandu Sediments. Thrust. Siwaliks. Antiform. Nawakot Complex. Synform. Phulchauki Group. River. Bhimphedi Group. Dhunche. Gneiss Tris hu S11. .. S10b. S13S. 14. 28oN. li R. K11 K K13 12. K S19,20 K5K6 K7 8 K K3,4 K9 10 S S S21a,b 23 25,26 S S24a,b 18 S S15 16 S17 S3 Galchhi. K19. Sample location. MBT: Main Boundary Thrust MCT: Main Central Thrust MT: Mahabharat Thrust. Granite. 0. 28oN. 10 km. S30 S1S4 S27. S7 S8. Trishuli. d ak an. T17. iR . K17 K22 K K 23 20 K19K18 K14 K21. T14 T4 T11T12 T8 T5. M M12 11 M14 M8 M10 Melamchi M M20 7 M6 M M M 5 3 2 M M18 17 M M M19 16 1 M15. T21 T20. T3. Kakani. M alekhu Kho la. Galchhi Ind. M ahesh Kho la. raw ati R. .. S un. K. os. hi. KATHMANDU. R.. hi G. Tr i shuli T T13 16 T15 T22 T23. Dhading. a. Likhu Khola. R. Bud. Kuringhat. Kh ol Ta di. Ro. Bhimphedi. s. Dolalghat. T. Dhulikhel. iK ho la. h. Ra p ti. MC. T). 27o30’N. Palung. (M. BT. B agmati R .. CT. M. M. R.. H1. MB. T. 27o30’N. Narayan Than. Hetauda. ti R.. X Bag m. a. 85oE. 4 km. 85o30’E. Kathmandu Synform. X. 4 km. Gorkha Antiform M. CT. CT. M. 0. CT. M. BT M. 0. Kok hajor Khol a. Y. Fig. 2: (a) Geological map of the Central Nepal Himalayas outlined in Fig. 1 by a boxed area. (b) Cross section along X-Y. 18.
(28) Section B. J. Sapkota. S19. S1. FIA 4. FIA 3 S2. 1 mm. N30o. (a). (b) K22. S3. N30o. 0.3 mm. (c). FIA 4. (d). Fig. 3: Spiral- (a) and sigmoidal-shaped (c) inclusion trails preserved in garnet porphyroblasts and line diagrams (b, d). A careful examination of spiral shaped inclusion trails (a) reveals a series of truncating near-orthogonal foliations (b). Inclusion trails in the porphyroblasts are truncated by matrix foliations (b, d). Vertical thin sections with strikes and up direction shown by half arrows. Plane polarised light.. 19.
(29) Section B. J. Sapkota. Foliation Inflection axis. Foliation Intersection Axis. Fig. 4: A simplified diagram showing 3D geometry of inclusion trails preserved in a porphyroblast. A FIA lies parallel to the curvature axis of asymmetrically curving inclusion trails.. 20.
(30) Section B. J. Sapkota. N0o. N30o. N60o. N90o. N120o. N150o. Fig. 5: A schematic diagram showing asymmetry method of FIA determination (modified after Bell et al., 2004). This method involves FIA measurement using a series of differently striking vertical thin sections. The FIA lies between the strikes of two thin sections that exhibit a switch in inclusion trail asymmetry.. 21.
(31) Section B. J. Sapkota. FIA trend. FIA trend. Sample. Sample Core. Rim. Core. Rim 90. S1. 75. H1. 165. S3. 25. K3. 170. S4. 135. K4. 80. S7. 65. K5. 135. S8. 90. K6. 95. S10b. 75. K7. 95. S11. 95. K8. 25. S13. 20. K9. 25. S14. 95. K10. 60. S15. 165. K11. 60. S16. 125. K12. 50. S17. 25. K13. 35. S18. 35. K14. 60. S19. 125. K17. 70. S20. 75. K18. 135. S21. 65. K19. 160. S21b. 95. K20. 165. S23. 85. K21. 60. S24a. 20. K22. 95. S24b. 20. K23. 150. S25. 65. M1. 165. S26. 60. M2. 20. S27. 90. M3. 70. S29. 95. M5. 170. S30. 155. M6. 105. T3. 25. M7. 120. T4. 70. M8. 35. T5. 40. M10. 55. T8. 135. M11. 100. T11. 95. M12. 95. T12. 65. M14. 60. T13. 90. M15. 25. 45. 35. 95. 110. 95. 95. 22.
(32) Section B. J. Sapkota. T14. 50. M16. 130. T15. 90. M17. 95. T16. 85. M18. 60. T17. 95. M19. 60. T20. 75. M20. 90. T21. 165. T22. 100. T23. 155. 135. Table 1: FIA trends measured in garnet porphyroblasts. 23.
(33) Section B. J. Sapkota N. S30. S15. M18 K17. H1 K19 K23. FIA 4. K5. FIA 3. S15 H1 K19 K23 S30 S15 core trails. (a). FIA 2. K17 K5. M18 n = 85. FIA 5. (b). FIA 1. S15 rim trails. (c). Fig. 6: (a) An equal area rose diagram of FIA trends measured from 78 samples. (b) Core-rim changes in FIA trends observed in various samples. (c) A FIA succession interpreted from the core-rim changes.. 24.
(34) Section B. J. Sapkota. K19. N120o. FIA 1 S3. FIA 1. 1 mm. (a). (b). S25. N150o. FIA 2. 0.5 mm. (c). (d). Fig. 7: Photomicrographs and line diagrams drawn at very high magnification showing the truncation of of inclusion trails containing different FIA sets by various generations of matrix foliations. a, b. FIA 1. c, d. FIA 2. Vertical thin sections with strikes and up direction shown by half arrows. Plane polarised light.. 25.
(35) Section B. J. Sapkota. N30o. K5. FIA 3. FIA 4. S2. FIA 4. 1 mm. (a). (b). S18. N30o. S1 S2. FIA 5. 0.5 mm. (c). (d). Fig. 8: Photomicrographs and line diagrams drawn at very high magnification showing the truncation of of inclusion trails containing different FIA sets by various generations of matrix foliations. a, b. FIAs 3 and 4. c, d. FIA 5. Vertical thin sections with strikes and up direction shown by half arrows. Plane polarised light.. 26.
(36) Section B. J. Sapkota. K13. N150o. FIA 5 S3. 0.3 mm. (a). (b). Fig. 9: Photomicrographs and line diagrams drawn at very high magnification showing the truncation of of FIA 5 inclusion trails by external foliations. Vertical thin sections with strikes and up direction shown by half arrows. Plane polarised light.. 27.
(37) Section B. J. Sapkota. Weight percent in different samples Spot analyses S26. M1. S30. K22. M16. K17. S16. SiO2. 37.61. 35.98. 36.95. 36.74. 36.48. 37.00. 36.26. TiO2. 1.52. 2.55. 1.19. 1.00. 1.84. 1.40. 2.03. Al2O3. 17.50. 16.98. 17.72. 16.50. 17.05. 18.32. 17.42. FeO. 17.03. 19.80. 16.19. 20.94. 20.24. 17.72. 19.84. MnO. 0.10. 0.14. 0.10. 0.13. 0.22. 0.10. 0.11. MgO. 12.31. 8.90. 12.40. 9.70. 8.75. 10.81. 9.89. CaO. 0.04. 0.03. 0.03. 0.03. 0.04. 0.04. 0.01. Na2O. 0.15. 0.15. 0.19. 0.18. 0.12. 0.14. 0.18. K2O. 8.58. 9.65. 9.58. 9.31. 9.83. 8.50. 9.49. Total. 94.84. 94.18. 94.35. 94.52. 94.57. 94.02. 95.21. Structural formulae based on 22 oxygen Si. 5.64. 5.57. 5.59. 5.68. 5.63. 5.60. 5.54. Al4+. 2.36. 2.43. 2.41. 2.32. 2.37. 2.40. 2.46. Al6+. 0.73. 0.67. 0.75. 0.68. 0.74. 0.87. 0.67. Ti. 0.17. 0.30. 0.14. 0.12. 0.21. 0.16. 0.23. Fe. 2.13. 2.56. 2.05. 2.71. 2.61. 2.24. 2.53. Mn. 0.01. 0.02. 0.01. 0.02. 0.03. 0.01. 0.01. Mg. 2.75. 2.05. 2.79. 2.23. 2.01. 2.43. 2.25. Ca. 0.01. 0.01. 0.01. 0.01. 0.01. 0.01. 0.00. Na. 0.04. 0.05. 0.05. 0.05. 0.04. 0.04. 0.05. K. 1.64. 1.91. 1.85. 1.83. 1.94. 1.74. 1.85. Total. 15.49. 15.56. 15.65. 15.65. 15.59. 15.50. 15.61. Fe/(Fe+Mg). 0.44. 0.56. 0.42. 0.55. 0.57. 0.48. 0.53. Table 2: Electron microprobe analysis of biotite grains averaged for different samples using about 4 spots per sample.. 28.
(38) Section B. Spot analyses. J. Sapkota. Weight percent in different samples S26. M1. S30. K22. M16. H1. K17. S16. SiO2. 47.07. 46.37. 46.02. 45.98. 46.48. 48.08. 47.52. 46.61. TiO2. 0.52. 0.66. 0.75. 0.15. 0.46. 0.24. 0.51. 0.80. Al2O3. 33.68. 30.52. 31.59. 31.21. 31.02. 31.69. 34.19. 33.22. FeO. 1.58. 3.72. 3.63. 3.90. 3.26. 2.91. 1.72. 2.30. MnO. 0.02. 0.01. 0.01. 0.00. 0.02. 0.02. 0.00. 0.02. MgO. 1.45. 1.57. 1.16. 1.14. 1.49. 1.43. 1.24. 1.13. CaO. 0.00. 0.01. 0.02. 0.03. 0.01. 0.02. 0.00. 0.01. Na2O. 0.62. 0.30. 0.93. 0.67. 0.23. 0.66. 0.59. 0.49. K2O. 9.01. 10.82. 9.87. 9.34. 10.52. 8.72. 9.38. 10.22. 93.95. 93.98. 93.97. 92.41. 93.50. 93.76. 95.14. 94.79. Total. Structural formulae based on 22 oxygen Si. 6.30. 6.36. 6.29. 6.36. 6.37. 6.47. 6.29. 6.26. Al4+. 1.70. 1.64. 1.71. 1.64. 1.63. 1.53. 1.71. 1.74. Al6+. 3.62. 3.30. 3.38. 3.45. 3.39. 3.51. 3.63. 3.52. Ti. 0.05. 0.07. 0.08. 0.02. 0.05. 0.02. 0.05. 0.08. Fe. 0.18. 0.43. 0.42. 0.45. 0.37. 0.33. 0.19. 0.26. Mn. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Mg. 0.29. 0.32. 0.24. 0.24. 0.30. 0.29. 0.24. 0.23. Ca. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Na. 0.16. 0.08. 0.25. 0.18. 0.06. 0.17. 0.15. 0.13. K. 1.54. 1.89. 1.72. 1.65. 1.84. 1.50. 1.59. 1.75. Total. 13.84. 14.09. 14.07. 13.99. 14.02. 13.82. 13.85. 13.97. 0.09. 0.04. 0.13. 0.10. 0.03. 0.10. 0.09. 0.07. Na/(Na+K). Table 3: Electron microprobe analysis of muscovite grains averaged for different samples using about 4 spots per sample.. 29.
(39) Section B. Spot analyses. J. Sapkota. Weight percent in different samples S26. M1. S30. K22. M16. H1. K17. S16. SiO2. 61.45. 61.01. 61.33. 64.88. 61.86. 68.88. 55.57. 60.20. TiO2. 0.01. 0.02. 0.03. 0.00. 0.02. 0.05. 0.13. 0.01. Al2O3. 23.40. 24.44. 24.11. 22.45. 23.84. 19.27. 26.45. 24.70. FeO. 0.02. 0.10. 0.10. 0.08. 0.08. 0.04. 1.00. 0.04. MnO. 0.01. 0.01. 0.00. 0.00. 0.00. 0.01. 0.01. 0.01. MgO. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 1.33. 0.00. CaO. 5.19. 6.12. 5.69. 3.26. 5.32. 0.90. 6.43. 6.67. Na2O. 8.90. 8.41. 8.44. 9.03. 8.98. 11.55. 7.06. 8.60. K2O. 0.08. 0.22. 0.31. 0.08. 0.16. 0.07. 0.07. 0.09. 99.05. 100.45. 100.00. 99.77. 100.29. 100.77. 98.05. 100.32. Total. Structural formulae based on 8 oxygen Si. 2.77. 2.70. 2.73. 2.85. 2.74. 2.99. 2.64. 2.68. Ti. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Al. 1.22. 1.28. 1.26. 1.16. 1.25. 0.99. 1.33. 1.30. Cr. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Fe. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Mn. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Mg. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Ca. 0.23. 0.30. 0.27. 0.15. 0.25. 0.04. 0.36. 0.32. Na. 0.79. 0.72. 0.73. 0.77. 0.77. 0.97. 0.70. 0.74. K. 0.00. 0.01. 0.02. 0.00. 0.01. 0.00. 0.00. 0.01. Ab. 0.77. 0.70. 0.72. 0.83. 0.75. 0.96. 0.66. 0.70. An. 0.23. 0.28. 0.27. 0.17. 0.24. 0.04. 0.34. 0.30. Or. 0.00. 0.01. 0.02. 0.00. 0.01. 0.00. 0.00. 0.00. Table 4: Electron microprobe analysis of plagioclase averaged for different samples using about 5 spots per sample.. 30.
(40) Section B. J. Sapkota. Weight percent in different samples Spot analyses. S26 Core. M1 Rim. Core. S30 Rim. Core. T14 Rim. Core. K22 Rim. Core. Rim. SiO2. 37.96. 38.21. 37.58. 37.91. 37.70. 38.03. 37.72. 37.74. 37.33. 37.41. TiO2. 0.10. 0.04. 0.07. 0.02. 0.07. 0.02. 0.06. 0.00. 0.09. 0.04. Al2O3. 21.30. 21.56. 20.82. 21.13. 21.06. 21.40. 21.15. 21.39. 20.92. 21.04. FeO. 26.02. 28.07. 24.88. 26.60. 29.16. 28.94. 27.80. 28.15. 29.22. 32.36. MnO. 5.57. 1.75. 7.10. 2.81. 3.81. 3.65. 2.36. 0.82. 4.71. 0.99. MgO. 2.20. 2.90. 2.09. 2.30. 4.20. 4.17. 1.75. 2.16. 1.34. 1.24. CaO. 7.95. 8.72. 8.20. 10.35. 4.24. 4.60. 9.58. 10.23. 6.86. 7.73. Na2O. 0.04. 0.03. 0.05. 0.03. 0.07. 0.04. 0.04. 0.01. 0.02. 0.02. K2O. 0.00. 0.01. 0.00. 0.01. 0.00. 0.01. 0.00. 0.02. 0.01. 0.01. 101.14. 101.27. 100.78. 101.15. 100.30. 100.84. 100.46. 100.51. 100.50. 100.84. Total. Structural formula based on 12 oxygen Si. 3.00. 2.99. 2.99. 2.99. 2.99. 2.99. 3.00. 2.98. 2.99. 2.99. Ti. 0.01. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.01. 0.00. Al. 1.98. 1.99. 1.95. 1.96. 1.97. 1.99. 1.98. 1.99. 1.98. 1.98. Cr. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Fe. 1.72. 1.84. 1.66. 1.75. 1.94. 1.91. 1.85. 1.86. 1.96. 2.16. Mn. 0.37. 0.12. 0.48. 0.19. 0.26. 0.24. 0.16. 0.06. 0.32. 0.07. Mg. 0.26. 0.34. 0.25. 0.27. 0.50. 0.49. 0.21. 0.25. 0.16. 0.15. Ca. 0.67. 0.73. 0.70. 0.87. 0.36. 0.39. 0.81. 0.87. 0.59. 0.66. Na. 0.01. 0.00. 0.01. 0.00. 0.01. 0.01. 0.01. 0.00. 0.00. 0.00. K. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Total. 8.01. 8.01. 8.03. 8.03. 8.02. 8.01. 8.01. 8.02. 8.01. 8.02. Almandine. 0.57. 0.61. 0.54. 0.57. 0.63. 0.63. 0.61. 0.61. 0.65. 0.71. Grossular. 0.22. 0.24. 0.23. 0.28. 0.12. 0.13. 0.27. 0.29. 0.19. 0.22. Pyrope. 0.09. 0.11. 0.08. 0.09. 0.16. 0.16. 0.07. 0.08. 0.05. 0.05. Spessartine. 0.12. 0.04. 0.16. 0.06. 0.08. 0.08. 0.05. 0.02. 0.11. 0.02. Table 5 contd.. 31.
(41) Section B. J. Sapkota. Weight percent in different samples Spot analyses. M16. H1. K17. S16. S13 Core. Rim. Core. Rim. Core. Rim. Core. Rim. SiO2. 37.22. 37.68. 38.12. 38.03. 38.10. 37.55. 38.05. 37.77. 37.99. TiO2. 0.07. 0.03. 0.03. 0.05. 0.07. 0.07. 0.04. 0.09. 0.06. Al2O3. 20.65. 20.63. 21.25. 20.06. 20.09. 21.08. 21.42. 21.22. 21.38. FeO. 29.24. 23.78. 26.04. 24.65. 27.85. 27.58. 31.14. 27.21. 27.88. MnO. 6.71. 5.85. 2.26. 7.32. 3.98. 6.06. 0.51. 3.01. 2.24. MgO. 1.09. 1.93. 2.14. 0.59. 0.77. 2.58. 3.45. 2.51. 2.73. CaO. 5.54. 10.20. 11.50. 8.94. 8.97. 6.04. 6.85. 8.95. 9.18. Na2O. 0.06. 0.04. 0.02. 0.03. 0.02. 0.04. 0.01. 0.05. 0.02. K2O. 0.00. 0.25. 0.01. 0.00. 0.00. 0.00. 0.01. 0.00. 0.00. 100.57. 100.39. 101.36. 99.66. 99.85. 101.00. 101.47. 100.80. 101.46. Total. Structural formula based on 12 oxygen Si. 3.00. 3.00. 2.99. 3.06. 3.06. 2.98. 2.98. 2.98. 2.98. Ti. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.01. 0.00. Al. 1.96. 1.94. 1.96. 1.91. 1.90. 1.97. 1.98. 1.98. 1.98. Cr. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Fe. 1.97. 1.58. 1.71. 1.66. 1.87. 1.83. 2.04. 1.80. 1.83. Mn. 0.46. 0.39. 0.15. 0.50. 0.27. 0.41. 0.03. 0.20. 0.15. Mg. 0.13. 0.23. 0.25. 0.07. 0.09. 0.31. 0.40. 0.30. 0.32. Ca. 0.48. 0.87. 0.97. 0.77. 0.77. 0.51. 0.58. 0.76. 0.77. Na. 0.01. 0.01. 0.00. 0.00. 0.00. 0.01. 0.00. 0.01. 0.00. K. 0.00. 0.03. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. 0.00. Total. 8.02. 8.05. 8.03. 7.98. 7.98. 8.03. 8.02. 8.03. 8.03. Almandine. 0.65. 0.51. 0.56. 0.55. 0.62. 0.60. 0.67. 0.59. 0.60. Grossular. 0.16. 0.28. 0.31. 0.26. 0.26. 0.17. 0.19. 0.25. 0.25. Pyrope. 0.04. 0.07. 0.08. 0.02. 0.03. 0.10. 0.13. 0.10. 0.10. Spessartine. 0.15. 0.13. 0.05. 0.17. 0.09. 0.13. 0.01. 0.07. 0.05. Table 5: Electron microprobe analysis of garnet cores and rims averaged for different samples using about 7 spots for cores and 4 spots for rims per sample. 32.
(42) Section B. J. Sapkota. SiO2 80.02. 10. Al2O3 7.23. CaO 1.51. MgO 3.98. FeO 3.9. K2O 2.04. Na2O 0.66. MnO 0.05. +Ms+Qtz+H20. MnNCKFMASH. Bt Pl Grt. 9 Chl Bt Pl Zo Grt 8 Chl Bt Pl Zo Chl Bt Pl Grt. 7. Pressure (Kbars). Bt Pl Grt St Ky 6. Bt Pl Grt Ky. Chl Bt Pl Grt St Bt Pl Grt St. nd. 5. rt. lG. Chl Bt Pl Grt And. P Bt. A St. t. l tP. Gr. ill. S St. B. Bt Pl Grt Sill l P t d Bt Pl Sill l B An d Chrt St l Grt An G Bt P Bt Pl And Bt Pl Sill Cd. 4. 3. Chl Bt Pl And Chl Bt Pl. Chl Bt Pl And Cd. Bt Pl And Cd. 2 Bt Pl Cd. Chl Bt Pl Cd 1 450. 480. 510. 540 570 o Temperature ( C). 600. 630. 650. Fig. 10: A PT pseudosection modelled for sample K17 in MnNCKFMASH system on Thermocalc with quartz, muscovite and water in excess. Effective bulk composition (mol %) used in the calculation is given above.. 33.
(43) Section B. J. Sapkota. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 65.48 11.11 5.47 6.45 6.43 2.35 1.80 0.09. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 67.17 12.19 2.59 4.59 6.65 3.44 2.39 0.14. 6. C F. 7. 400. 450. Chl Bt Pl Zo. 4. 500 550 600 Temperature (oC). F. Ch l. Bt Pl Grt. 650. 3. 700. (a). 400. 450. Bt Pl Grt. M. 500 550 600 o Temperature ( C). 650. 700. (b) SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 81.06 6.03 2.48 2.97 3.65 1.20 1.78 0.08. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 70.56 0.41 3.67 4.74 5.47 2.41 1.91 0.12. Pressure (kbar). 7 M C Chl Bt Pl Grt. 6. 4. Chl Bt Pl Zo. F Bt Pl Grt. 7. Zo Pl Bt. Chl Bt Pl Zo. M Bt Pl Grt. 6. C. 5. Chl Bt Pl. 5. Chl Bt Pl Zo Grt. 8. 4. F. Chl Bt Pl Grt. 8. Chl Bt Pl. Chl Bt Pl Zo Grt. Grt. 9. Bt Pl Zo Grt. 9. Pressure (kbar). C. Bt Pl. Chl Bt Pl Grt. Chl Bt Pl. 3. Bt Pl. 6. 5. 4. Zo G. rt. M. 5. 3. 3. 3 400. (c). Chl Bt Pl Zo Grt. 8. Pressure (kbar). Chl Bt Pl Zo Grt. Chl Bt Pl Zo. Pressure (kbar). 8. 7. 9. Bt Pl Zo Grt. MnNCKFMASH +Ms+Qtz+H20. Chl Bt Pl Grt. 9. 450. 500 550 600 Temperature (oC). 650. 400. 700. 450. 500 550 600 Temperature (oC). 650. 700. (d). Fig.11: P-T pseudosections and garnet core compositional isopleths for samples representing each FIA sets in the succession. Effective bulk compositions (mol%) used in the calculations are given above each pseudosection. F=Fe/(Fe+Mg+Ca+Mn), C=Ca/(Fe+Mg+Ca+Mn), M=Mn/(Fe+Mg+Ca+Mn). (a) Sample M1 (FIA 1). (b) Sample S26 (FIA 2). (c) Sample T14 (FIA 2) (d) Sample S16 (FIA 3). . 34.
(44) Section B. J. Sapkota. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 76.29 10.16 1.18 2.679 4.95 2.75 1.19 0.09. 6. C Chl Bt Pl Grt. Chl Bt Pl Zo 5. 4. Pressure (kbar). 7. 8. F Bt Pl Grt. M. 7. C. 6 F. 5 Chl Bt Pl Zo 4. Chl Bt Pl Grt. Chl Bt Pl Zo Grt. 8. Pressure (kbar). 9. MnNCKFMASH +Ms+Qtz+H20. Chl Bt Pl Zo Grt. 9. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 80.02 7.23 1.51 3.98 3.9 2.04 0.66 0.05. Bt Pl Grt. M. Chl Bt Pl Chl Bt Pl 3 400. 450. 500 550 600 Temperature (oC). 650. 3. 700. 400. (a) MgO FeO K2O Na2O MnO 3.27 3.54 1.80 1.67 0.07. 650. 700. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 76.31 9.73 1.21 2.15 4.92 2.35 2.48 0.10. 9. M. Chl Bt Pl. Bt Pl Grt. 2. 6. 4. 3 400. 450. 500 550 600 Temperature (oC). 650. C. 5. 4. 700. 3. Chl Bt Pl Grt. 5. F. 7 Chl Bt Pl Zo. C Chl Bt Pl Grt. 6. 8. Pressure (kbar). Chl Bt Pl Zo. 7. Chl Bt Pl Zo Grt. Chl Bt Pl Zo Grt. 9. 8. Pressure (kbar). 500 550 600 Temperature (oC). (b) SiO2 Al2O3 CaO 80.48 7.16 1.45. (c). 450. F M. Bt Pl Grt. Chl Bt Pl. 3 400. 450. 500 550 600 o Temperature ( C). 650. 700. (d). Fig.12: P-T pseudosections and garnet core compositional isopleths for samples representing each FIA sets in the succession. Effective bulk compositions (mol%) used in the calculations are given above each pseudosection. F=Fe/(Fe+Mg+Ca+Mn), C=Ca/(Fe+Mg+Ca+Mn), M=Mn/(Fe+Mg+Ca+Mn). (a) Sample K22 (FIA4). (b) Sample K17 (FIA 4). (c) Sample S30 (FIA 5). (d) Sample S13 (FIA 5). 35.
(45) Section B. J. Sapkota. Thermocalc FIA set. 1. Sample. Garnet core. Conventional geothermobarometry Average. Hoisch (1990). Ghent & Stout (1981). P (kbar). T (oC). P (kbar). T (oC). P (kbar). T (oC). P (kbar). T (oC). M1. 6.2. 515. 11.8. 700. 12.5. 750. 8. 625. S26. 6. 545. 12.6. 717. 11. 625. 7.6. 520. T14. 6.7. 550. -. -. -. -. M16. -. -. 10. 728. 14. 750. 8.6. 610. S16. 6.6. 530. 11.6. 659. 12. 730. 8. 630. K22. 6.2. 525. 11.3. 678. 7.7. 470. 6.5. 390. K17. 5.6. 550. 12. 717. 11. 670. 7.2. 585. H1. -. -. 7.4. 534. -. -. -. -. S30. 6.9. 560. 10.4. 663. 10.5. 650. 6.8. 600. S13. 6.8. 520. -. -. -. -. -. -. 2. 3. 4. 5. Table 6: Summary of PT calculations. 36.
(46) 37 Section B. J. Sapkota o. 0. o. 30 o. o. 90. 60. N=287. Fig. 13: A vertical rose diagram of the pitches of internal foliations preserved as inclusion trails in garnet porphyroblasts measured in vertical thin sections cut at high angle to the related FIA trends.. 37.
(47) 38 Section B. J. Sapkota. 40oN. 60oE. 80oE. 100oE. 5 FIA 5 6 FIA 4 8. o. 20 N. FIA 3. FIA 213 1 20 8. FIA 1. 21. 22. 23 24. Eq. 25 26 27 28. 29 o. 20 S. 32. 40oS. Anomaly Age (Ma) 5 6 8 13 18 20 21 22 23 24 25 26 27 28 29 32. 10 21 29 36 42 44 48 50 52 53 55 57 59 61 62 70. Fig. 14: India’s motion relative to Asia between 70 and 10 Ma. (after patriat and Achache, 1984) and possible correlation of FIA sets with the relative plate motions. Converging arrows indicate shortening direction that should lie perpendicular to the related FIA trend.. 38.
(48) SECTION C MULTIPLE ALTERNATIONS OF BULK HORIZONTAL SHORTENING AND GRAVITATIONAL COLLAPSE DURING HIMALAYAN OROGENESIS.
(49) Section C. J. Sapkota. 85o30’E. 85oE. China. an. Y. st ki Pa Nepal. India Kathmandu Sediments. Thrust Antiform Synform. Nawakot Complex. Dhunche Tris hu. River. S11. Phulchauki K19 Sample location Group MBT: Main Boundary Bhimphedi Thrust Group MCT: Main Central Thrust Gneiss MT: Mahabharat Thrust Granite. 28oN. S13S. 14. K13. S10b. hi G d ak an. T17. iR .. T14 T4 T11T12 T8 T5. M M12 11 M14 M8 M10 Melamchi M M20 7 M6 M M M 5 3 2 M M18 17 M M M19 16 1 M15. T21 T20. T3. 28oN. a. Likhu Khola. R. Bud. Kh ol Ta di. Tr i shuli T T13 16 T15 T22 T23. Dhading. K17 K22 K K 23 20 K19K18 K14 K21. K S19,20 K5K6 K7 8 K K3,4 K 10 S23 S25,269 S21a,b S24a,b S16 S S18. K11 K12. .. S15 17 S S30 S1S4 3 S27 S7 S8. Trishuli. Kuringhat. li R. Kakani. M alekhu Kho la. Galchhi Ind. M ahesh Kho la. raw ati R. .. S un. K. os. hi. KATHMANDU. R.. Siwaliks. Ro. Bhimphedi. s. Dolalghat. T. Dhulikhel. iK ho la. h. Ra p ti. MC. T). 27o30’N. Palung. (M. BT. B agmati R .. CT. M. M. R.. H1. MB. T. 27o30’N. Narayan Than. Hetauda. 0. 10 km ti R.. X Bag m. a. 85oE. 4 km. 85o30’E. Kathmandu Synform. X. 4 km. Gorkha Antiform M. CT. CT. M. 0. CT. M. BT M. 0. Kok hajor Khol a. Y. Fig. 1: Map and cross-section showing geology of region and sample sites and numbers. Inset shows location relative to India and China. A portion of the map is zoomed in to show more sample locations.. 40.
(50) Section C. J. Sapkota. a. N. b S15. M18 K17 H1 K19 K23. M18 n = 85. c. S30. S15 H1 K19 K23 S30. FIA 5 FIA 2. K17 K5. FIA 4. K5. FIA 3 FIA 1. Fig. 2a. Rose diagram showing FIA distribution. b. Vertical arrows show core to rim changes in FIA trend (Fig. 2a, horizontal arrows show which FIA changes) found in 8 samples (sample numbers same as in Fig. 1a). c. Shows the FIA succession that explains the core to rim and inclusion trail asymmetry changes (see text).. 41.
(51) Section C. J. Sapkota. 14 12 10. C steep flat steep. flat. C. ~=. C C. A. C C. C. =. 8 6 4 2 0. S-F F-S 165° FI A Looking NNW. S-F F-S S-F F-S 65° FI A 135° FI A Looking WSW Looking NW. S-F F-S 90° FI A Looking W. S-F F-S 25° FI A Looking SSW. Fig. 3: Shows inclusion trail asymmetries recorded out from the core in sections at a high angle to each of the FIAs on the rose diagram with data separated into changes from sub-vertical to subhorizontal and vice versa. Overall asymmetry looking west shown by C (clockwise), A (anticlockwise) or coaxial ~= or =.. 42.
(52) Section C. J. Sapkota. 30°. 30°. N=287. 60° 90°. b. 30°. N=199. 60° 90°. c. N=88. 60° 90°. d. Fig. 4a: Photo shows how pitches of foliations defined by inclusion trails were measured for plotting on the following rose diagrams. b. all foliations. c. first foliations. d. foliations excluding the first ones. Rim inclusion trails truncated top left and bottom right.. 43.
(53) Section C. Sample S8 (FIA4). S11 (FIA4). S14 (FIA4). S16 (FIA3) S18 (FIA5). S19 (FIA3). S20 (FIA2). S21 (FIA2). J. Sapkota. S1. S2 76 70 70 70 77 72 70 84 82 80 77 72 68 60 51 50 47 2 63 7 60 76 8 84 68 88 82 73 72 70 87 73 74 73 70 77 74 70 83. S3. Pitch S4. S5. S6. Sample. S21b (FIA4). S23 (FIA4). 81 70 9 85 6 82. 7 13 S24a (FIA5) 9. 83. 85. 6. S24b (FIA5). S25 (FIA2). S26 (FIA2). S1. S2 83 53 84 88 80 80 3 90 86 71 76 74 70 60 78 80 70 71 65 61 52 77 75 75 2 90 61 34 25 82 70 85 71 77 83 88 9 88. S3. Pitch S4. S5. S6. 18. 85. 1 8 6 3 80. 6 50 5. 5. 73. 9 12 15. 83. 8. 81 1. 9 84. 8. 8. 86. 62. Table 1 contd... 44.
(54) Section C. Sample. S26 (FIA2). S29 (FIA4). S30 (FIA1, 5). K3 (FIA1) K4 (FIA4) K5 (FIA3, 4). K6 (FIA4). K7 (FIA4) K8 (FIA5) K12 (FIA2) K13 (FIA5) K14 (FIA2) K17 (FIA2, 4). J. Sapkota. S1. S2 53 67 81 9 83 85 86 70 74 82 66 56 7 64 65 66 71 70 50 29 15 55 75 3 82 80 85 85 80 76 58 8 6 61 68 81 63 62 61 75 82 89 50 55. S3. Pitch S4. 8 9 12 82 1. 27 80. S5. S6. Sample. K17 (FIA2, 4). 72. K19 (FIA1, 4). K20 (FIA1). 85 87 86 18 8 81. K21 (FIA2). 83. K22 (FIA4). 0 82 T13 (FIA4) 6 6. 9. T14 (FIA2). T15 (FIA4). S1. Pitch S3 S4. S2 57 57 50 55 57 57 82 62 4 75 71 85 26 75 60 5 60 60 83 12 77 51 78 80 4 3 75 72 1 3 89 86 73 73 8 73 4 82 3 51 1 78 7. S5. S6. 83 7. 83 7. 3 5. 84. 0 85. 7. 5 88. 8. 9 1 86 86 0 5. 9. 3 5 83 5 83 8 85. Table 1 contd... 45.
(55) Section C. Sample. T16 (FIA4). T23 (FIA1). M1 (FIA1). M16 (FIA3). M18 (FIA2, 3) M19 (FIA2). J. Sapkota. S1. S2 71 61 57 73 65 77 66 77 84 89 3 8 9 16 9 14 12 9 7 4 7 5 6 11 12 1 5 12 72 64. S3. 86. Pitch S4. S5. S6. Statistical summary The first foliations preserved in cores No of steep foliations: 153 Average pitch: 71.79 degrees No of gentle foliations: 46 Average pitch: 8.65 degrees Steep to gentle ratio: 3.33:1 The rim foliations No of steep foliations: 37 Average pitch: 81.64 degrees No of gentle foliations: 51 Average pitch: 7.27 degrees Steep to gentle ratio: 1:1.38. 84. 87. FIA 1 core No of steeps: 14 No of gentles: 10 Steep to gentle ratio: 1:4:10 Core for rest of the FIAs No of steeps: 139 No of flats: 36 Steep to gentle ratio: 3.86:1. 8 72. Table 1: Measurement of pitches of internal foliations preserved in garnet porphyroblasts. S1, S2, etc. are for individual porphyroblasts only.. 46.
(56) Section C. J. Sapkota. MnNCKFMASH +Ms+Qtz+H20. Bt Pl Zo Grt. 9. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 67.17 12.19 2.59 4.59 6.65 3.44 2.39 0.14. Chl Bt Pl Zo. Pressure (kbar). 7. Chl Bt Pl Zo Grt. 8. 6. M C F. 3. Chl Bt Pl. 4. 400. 450. Chl Bt Pl Grt. 5 Bt Pl Grt. 500 550 600 Temperature (oC). 650. 700. (a). Pressure (kbar). 7. Bt Pl. 8. Zo. Chl Bt Pl Zo Grt. Grt. 9. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 65.48 11.11 5.47 6.45 6.43 2.35 1.80 0.09. 6. C Chl Bt Pl Zo. F. M. Bt Pl Grt. 4. 3. 400. 450. Chl Bt Pl Grt. Ch. lB. tP. l. 5. 500 550 600 Temperature (oC). 650. 700. (b) Fig. 5 contd.. 47.
(57) Section C. J. Sapkota. Bt Pl Zo Grt. 9. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 70.56 0.41 3.67 4.74 5.47 2.41 1.91 0.12. Chl Bt Pl Zo Grt. 7 M C. 6. Chl Bt Pl Grt. Pressure (kbar). 8. 5. 3. Chl Bt Pl Zo. 400. Bt Pl Grt. Chl Bt Pl. 4. F. 450. 500 550 600 Temperature (oC). 650. 700. (c). 7. Grt Pl M Bt Pl Grt. 6. C. Chl Bt Pl. 5. 4. 3. Bt. Chl Bt Pl Zo. 400. 450. F. Chl Bt Pl Grt. Pressure (kbar). 8. Zo. Chl Bt Pl Zo Grt. 9. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 81.06 6.03 2.48 2.97 3.65 1.20 1.78 0.08. 3. 500 550 600 o Temperature ( C). 650. 700. (d) Fig. 5 contd.. 48.
(58) Section C. J. Sapkota SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 76.29 10.16 1.18 2.679 4.95 2.75 1.19 0.09. Chl Bt Pl Zo Grt. 9. Pressure (kbar). 8. 7. 6. C. F. Chl Bt Pl Grt. Chl Bt Pl Zo 5. 4. Bt Pl Grt. M. Chl Bt Pl 3. 400. 450. 500 550 600 o Temperature ( C). 650. 700. (e) SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 80.02 7.23 1.51 3.98 3.9 2.04 0.66 0.05. Chl Bt Pl Zo Grt. 9. 7. C. 6 F. 5 Chl Bt Pl Zo 4. Chl Bt Pl Grt. Pressure (kbar). 8. Bt Pl Grt. M Chl Bt Pl 3. 400. 450. 500 550 600 o Temperature ( C). 650. 700. (f) Fig. 5 contd.. 49.
(59) Section C. J. Sapkota. SiO2 Al2O3 CaO 80.48 7.16 1.45. MgO FeO K2O Na2O MnO 3.27 3.54 1.80 1.67 0.07. Chl Bt Pl Zo Grt. 9. 6. M. C Chl Bt Pl Grt. 7. Chl Bt Pl Zo. Pressure (kbar). 8. 5 Chl Bt Pl. F Bt Pl Grt. 4. 3. 400. 450. 500 550 600 o Temperature ( C). 650. 700. (g). Chl Bt Pl Zo Grt. 7. 6. C. 5. 4. 3. 3. 2. Chl Bt Pl Zo. Pressure (kbar). 8. Chl Bt Pl Grt. 9. SiO2 Al2O3 CaO MgO FeO K2O Na2O MnO 76.31 9.73 1.21 2.15 4.92 2.35 2.48 0.10. F M. Bt Pl Grt. Chl Bt Pl. 400. 450. 500 550 600 Temperature (oC). 650. 700. (h) Fig. 5 contd.. 50.
(60) Section C. J. Sapkota. Fig. 5: Pseudosections (MnNCKFMASH, Ms, SiO2, H2O) with Mn, Ca and Fe isopleths for garnet cores for 8 samples. The intersection of the isopleths gives PT of garnet core. Effective bulk composition in mol % used in psedusection calculations are given above each section. F=Fe/(Fe+Mg+Ca=Mn), C=Ca/(Fe+Mg+Ca=Mn), M=Mn/(Fe+Mg+Ca=Mn) (a) Sample M1 (FIA 1). F=0.537, C=0.227, M=0.155. (b) Sample S26 (FIA 2). F=0.568, C=0.223, M=0.123. (c) Sample T14 (FIA 2). F= 0.610, C=0.269, M=0.052. (d) Sample S16 (FIA 3). F=0.567, C=0.252, M=0.100. (e) Sample K22 (FIA 4). F=0.647, C=0.194, M=0.1057. (f) Sample K17 (FIA 4). F=0.599, C=0.168, M=0.133. (g) Sample S30 (FIA 5). F=0.635, C=0.118, M=0.084. (h) Sample S13 (FIA 5). F=0.649, C=0.157, M=0.151.. 51.
(61) SECTION D EPISODIC GRAVITATIONAL COLLAPSE AND MIGRATION OF THE MOUNTAIN CHAIN DURING OROGENIC ROLL-ON IN THE HIMALAYAS.
(62) Section D. J. Sapkota. Fig. 1a: Geological map of the region showing sample and cross-section X-Y locations. (b) Crosssection XY onto which the samples have been projected.. 53.
(63) Section D. J. Sapkota. S19. (a). (b) K17. (c). (d). 0o. 0.5 mm 30o. 1 mm. Fig. 2a: Spiral-shaped inclusion trails in garnet porphyroblast truncated by the matrix foliation. (b) Line diagram of the inclusion trails and matrix foliation in (a) drawn at very high magnification. (c) Spiral-shaped inclusion trails about FIA 4 showing flip in asymmetry to CW looking overall west near the rim. (d) Line diagram of the inclusion trails and matrix foliation in (c) drawn at very high magnification. Plane polarized light. Single barbed arrows show strike and way up of vertical thin sections.. 54.
(64) Section D. J. Sapkota. Fig. 3a. Shows S1 and S2 relationships adjacent to a garnet porphyroblast in the hinge of the Gorkha antiform. S1 is steeply pitching and S2 is sub-horizontal. Shear sense is top to the south. (b, c) Show S1 and S2 relationships on and the central and southern limbs of the Gorkha-Kathmandu fold couplet. Shear sense is top to the south for both. (d) Shows S2 and S3 relationships on the central south dipping limb of the Gorkha-Kathmandu fold couplet. S3 has an ACW differentiation asymmetry looking west and is sub-vertical. (e) Shows a sub-horizontal foliation Sh that crenulates S2 with a top-to-the-north shear sense. Sample number in upper left, crossed polars (a,b,e) and plane polarized light (c,d). Single barbed arrow shows strike and way up of vertical thin section.. 55.
(65) Section D. (a). J. Sapkota. N. (b) S15. M18 K17 H1 K19 K23. M18 n = 85. (c). S30. S15 H1 K19 K23 S30. FIA 5 FIA 2. K17 K5. FIA 4. K5. FIA 3 FIA 1. Fig. 4a: FIA trends from 78 samples plotted on a rose diagram. (b) Shows those samples that preserve changes in FIA trend from the core to rim. (c) Shows the succession of FIA trends suggested by core to rim changes and a switch in asymmetry (see text).. 56.
(66) Section D. J. Sapkota. 0o CW steep to gentle gentle to steep S21b 24. CW. CW. gentle to ACW steep to gentle steep. CW. CW. ACW. 22 20 18 16 14. (a). 12 10 8 6. 30°. 30°. N=88. N=287. 90°. 60° (b). 90°. 60° (c). 4 2 0. 165° FIA 65° FIA 135° FIA 90° FIA 25° FIA. Looking Looking Looking Looking Looking WSW NW W SSW. (d) NNW. Fig. 5a: Photo of a garnet porphyroblast showing how the inclusion trail pitches were measured in sections near orthogonal to the FIA trend. The trails on the left are continuous with those in the core whereas those on the right truncate those in the core. (b) Rose diagram of pitch measurements of all foliations. (c) Rose diagram of pitches of foliations that formed against an earlier formed phase of garnet growth. (d) Histogram of the asymmetry of inclusion trails as they change (moving out towards the porphyroblast extremities) from steep to gentle pitches or gentle to steep pitches for each sample separated according to FIA trend.. 57.
(67) J. Sapkota. 3. b. Ca. 6. Mn. 5. 450 500 550 600 Temperature °C. 3. 3. a b c d e f g h. Pl Gr t. o tP lZ. Grt. Mn. f 450 500 550 600 Temperature °C. SiO2 67.17 65.48 70.56 81.06 76.29 80.02 80.48 76.31. Al2O3 12.19 11.11 0.41 6.03 10.16 7.23 7.16 9.73. Cao 2.59 5.47 3.67 2.48 1.18 1.51 1.45 1.21. MgO 4.59 6.45 4.74 2.97 2.68 3.98 3.27 2.15. FeO 6.69 6.43 5.47 3.65 4.95 3.9 3.54 4.92. K20 3.44 2.35 2.41 1.2 2.75 2.04 1.8 2.15. Na2O 2.39 1.8 1.91 1.78 1.19 0.66 1.67 2.48. MnO 0.14 0.09 0.12 0.08 0.09 0.05 0.07 0.1. Fe. tP l. t. g. 4. Bt. Fe. Ch lB. Bt P l Gr. t t Pl. Ch lB. S13 FIA 5. 5. Ca. 4. Fe. Ca. tP l. 5. e. 3. Chl Bt Pl Zo Grt. Bt Pl. Chl Bt Pl Grt. K17 FIA 4. 6. 450 500 550 600 Temperature °C Chl Bt Pl Zo Grt. Bt. tP l Chl B t Pl G rt. 450 500 550 600 Temperature °C. Mn. lB Ch. c. 3. Fe. l tP. Bt Pl Gr t. tP lZ o Ch lB. Fe. 7. Pl Gr t. 7. Bt P l Gr. l Ch. 3. 8. Chl Bt Pl Zo Mn Grt. Pl Bt. Mn. Ca. Ch lB. tP l Gr t o Pl Z. d. Grt. 5 4. Bt. tP l Chl Bt Pl Grt. Ch lB tP lZ o. 6. 4. 8. Ca. 4. Ch lB. 7. 6. 5. 450 500 550 600 Temperature °C. FIA 5. 6. Ch lB. o tP lZ Ch lB. Fe. FIA 2. 5. K22 FIA 3. Pl Bt rt l Ch o G Z. Pl Bt rt l Ch o G Z. 7. 450 500 550 600 Temperature °C. 7. Ca. 8 S30. Ca. 3. 8. Bt Pl Grt. 6. 3. a. l tP l B rt h C oG Z Mn. 7. 4. 4. 450 500 550 600 Temperature °C. FIA 3. Chl Bt Pl Zo. Ch lB. Pl Bt. 8 S16. 5. Chl Bt P l Grt. 4. 5. 8 T14. Ch lB. Ca Fe. Mn. Chl Bt Pl Grt. Zo. Bt Pl Grt t Pl. 5. 3. Pressure kbar. Fe. 6. Chl Bt Pl Grt. 6. Chl. Pressure kbar. FIA 2. 7. Mn. Ch lB. Pressure kbar. 7. l tP l B rt h C oG Z. 8 S26. M1 FIA 1. Pl Bt rt l Ch o G Z. Chl B t Pl Z o. 8. Bt Bt Pl Zo Pl Gr Grt t. Section D. h 450 500 550 600 Temperature °C. Fig. 6: Shows garnet core isopleths for Mn, Fe and Ca plotted on PT pseudosections determined for 8 samples whose bulk rock analyses are presented on the bottom right.. 58.
(68) Section D. J. Sapkota. S. N India. Eurasia. (a) Staircase trails form above. (b). Spiral trails form below. (c). (d) ROLLON. Fig. 7: Series of S-N schematic cross-sections showing the progressive rollon of India into Eurasia and the style of bulk shortening followed by gravitational collapse cycles that the successions of subvertical/sub-horizontal foliation successions suggest must occur.. 59.
(69) 60 Section D. J. Sapkota. (a). (c). X. S. S. N. 50-36 Ma ~30km. N. Eurasia. India. Y. Y. UNDEFORMED. Z. samples (d). samples (e). (b). X. X. orogen core. 25 Ma. India. DEFORMED. Y Z Y. 36-29 Ma. India. X. S. basal decolement. samples. N (f). basal decolement. 21 Ma. India shifting centre of uplift. 60.
(70) 61 Section D. J. Sapkota. Fig. 8a: Schematic S-N cross-section through the centre of an orogen containing a portion of crust prior to being affected by gravitational collapse. (b) Schematic S-N cross-section after vertical, heterogeneous, coaxial bulk shortening of crust in (a). It is drawn without showing the volume problem resolution effects of curvature of the extremeties towards the earth’s surface. This was done to illustrate the spectacular increase in displacement of the outer most extremities of the most bulk shortened portion (Z) that explain the synchronous thrust and extensional geometries of orogens that result from extrusion to the surface. In nature, the anastomosing strain field geometries of progressive bulk inhomogeneous shortening allow the curvature towards the earth’s surface shown in Fig. 7. The sharp boundaries between X, Y and Z equate with zones of progressive but intense heterogeneous shearing, cleavage formation and volume loss in the orogen (e.g., Fig. 7). Some heterogeneous deformation would be partitioned into the coaxially shortened zones as well. Bearing that in mind, this sketch illustrates the type of deformation suggested by the coaxial geometries of inclusion trails in most porphyroblasts from orogen cores (Bell & Newman, 2006). Evidence of this coaxial character also occurs in these rocks. Figure 5d shows not only that both asymmetries of inclusion trails can be found from sample to sample for all FIAs, but steep to gentle and gentle to steep changes in curvature for FIAs 2 and 5 respectively are quite coaxial. (c) Schematic S-N cross-section across the core of the orogen early in a collapse phase showing the location of all samples after FIAs 1 through 4 have formed between 50 and 36 Ma but before FIA 5. The heavy vertical line through the orogen core is used as a schematic marker from around 37 Ma for comparison with (d), (e) and (f). (d) Shows orogen in a collapse phase during FIA 5 between 36 and 29 Ma but after several phases of horizontal bulk shortening and vertical gravitational collapse along from that in (c). The zone of most bulk shortening below ~30kms has moved north relative to (c) due to roll-on. (e) Shows orogen in a collapse phase after FIA 5 at ~25 Ma and several phases of horizontal bulk shortening and vertical gravitational collapse along from that in (d). It shows relationships after mylonitization has begun to carry samples towards the surface. The zone of most bulk shortening below ~30kms has moved north relative to (d) due to roll-on. (f) Shows orogen in a collapse phase at ~ 21 Ma, several phases of horizontal bulk shortening and vertical gravitational collapse along from that in (d) and just prior to extrusion of the samples at the Earth’s surface. The speed of extrusion increases the further the samples get from the zone of most of bulk shortening as shown in (b). The zone of most bulk shortening below ~30kms has moved north relative to (e) due to roll-on.. 61.
(71) Section D. J. Sapkota. 2 different possible movement directions on a sub-horizontal foliation. Sub-vertical foliation. The FIA trend is controlled by the intersection of the sub-vertical and sub-horizontal foliations and is totally independent of the movemement direction on the sub-hoizontal foliation. Fig. 9: Sketch showing the intersection of a sub-vertical and sub-horizontal foliation, which defines the FIA trend. The trend of the latter is totally independent of the direction of movement (e.g., stretching lineation etc) on the sub-horizontal foliation.. 62.
(72) Section D. (a). J. Sapkota. 29 Ma. (b). 36 Ma 42 Ma 44 Ma. FIA 5 FIA 4. 50 Ma. 48 Ma. FIA 3. (c). FIA 2. FIA 1. 36. 5. -2. F IA 4. F IA. (d). 9M FI. A. 3. a. F IA 1 5 0 -4 8 M a. -4 44. 2M. 42 a. -3. 6M. a. Fig. 10a: Map showing the motion of India relative to a constant Eurasia modified from Patriat and Achache (1984). The motion from magnetic anomaly 22 to anomaly 8, that is, from 48 to 29 Ma, is highlighted with a thick black line. (b) Shows an enlarged portion from (a) of the relative plate motion of between India and a constant Eurasia for the period from 50 to 29 Ma. (c) Shows FIA sets 1 through 5 and the direction of bulk shortening that each reflects. The succession of changes of the latter direction is similar to the 50 to 29 Ma period of relative plate motion of between India and a constant Eurasia and could accord with the possible extent of garnet porphyroblast growth. Consequently, the length of the lines drawn is the same as for the similar portion of plate motion in (b). (d) Shows 4 plots containing the vector of relative plate motion between India and Eurasia calculated by Patriat and Achache (1984) for the 50-48, 44-42, 42-36 and 36-29 Ma periods, the direction of relative plate motion between 48 and 44 Ma, and the direction of motion indicated by FIAs, 1, 3, 4 and 5. This approach provides a vector (marked with an singly barbed arrow head) and thus a rate of motion for a constant direction of movement of Eurasia that explains the shifts in trend in FIAs 1, 3, 4 and 5 in (c) relative to the motion of India where Eurasia is assumed not to move in (b). Note that for FIA 5 the direction of motion of Eurasia switches so the SSE. 63.
(73) APPENDIX 1 SAMPLE LOCATIONS.
(74) Appendix 1. J. Sapkota. Sample. Easting. Northing. Sample. Easting. Northing. S1. 85.00194. 27.79667. K2. 85.02167. 27.81389. S3. 85.00639. 27.79806. K3. 85.02222. 27.81472. S4. 85.00653. 27.79778. K4. 85.02333. 27.81472. S7. 85.01417. 27.78861. K5. 85.02389. 27.81472. S8. 85.01472. 27.78694. K6. 85.02444. 27.81361. S13. 84.96861. 27.80583. K7. 85.025. 27.81361. S10b. 84.97056. 27.80667. K8. 85.02472. 27.81361. S11. 84.97. 27.80722. K9. 85.02528. 27.81417. S14. 84.96639. 27.80583. K10. 85.02528. 27.81389. S15. 85.00361. 27.80028. K11. 84.94972. 27.80722. S16. 85.00611. 27.80139. K12. 84.95. 27.80611. S17. 85.01306. 27.805. K13. 84.94972. 27.80694. S18. 85.01583. 27.80639. K14. 84.93972. 27.80361. S19. 85.01833. 27.81. K17. 84.91861. 27.79917. S20. 85.01833. 27.81. K18. 84.915. 27.80111. S21b. 85.02056. 27.81111. K19. 84.91389. 27.80278. S23. 85.0225. 27.81306. K20. 84.86361. 27.80139. S24. 85.02306. 27.81389. K21. 84.835. 27.79778. S26. 85.02333. 27.81333. K22. 84.835. 27.7975. S29. 84.99167. 27.8. K23. 84.83306. 27.79694. S30. 84.99861. 27.79583. H1. 85.04278. 27.50306. T3. 85.22722. 27.8175. H2. 85.04056. 27.50389. T4. 85.20111. 27.83611. M1. 85.58056. 27.83556. T5. 85.18056. 27.82972. M2. 85.58167. 27.83833. T6. 85.17139. 27.83806. M3. 85.58222. 27.84194. T8. 85.17139. 27.83806. M4. 85.5875. 27.84694. T9. 85.16889. 27.83611. M5. 85.55389. 27.84778. 2.
(75) Appendix 1. J. Sapkota. T11. 85.15056. 27.84472. M6. 85.55167. 27.84972. T12. 85.15306. 27.84639. M7. 85.54806. 27.85139. T13. 85.15528. 27.85139. M8. 85.54333. 27.85889. T14. 85.15417. 27.85361. M9. 85.53861. 27.86833. T15. 85.15556. 27.85556. M10. 85.53778. 27.86833. T16. 85.15556. 27.85722. M11. 85.53417. 27.86833. T17. 85.15444. 27.85778. M12. 85.53306. 27.86833. T18. 85.23833. 27.835. M14. 85.54167. 27.86944. T19. 85.23778. 27.83694. M15. 85.57722. 27.82806. T20. 85.2375. 27.84056. M16. 85.5775. 27.82778. T21. 85.23556. 27.84278. M17. 85.57778. 27.82833. T23. 85.22. 27.86139. M18. 85.57889. 27.82889. M19. 85.57861. 27.83139. M20. 85.57833. 27.83333. 3.
(76) APPENDIX 2 APPARENT DIPS OF MATRIX FOLIATIONS MEASURED ON VARIOUSLY STRIKING VERTICAL THIN SECTIONS USED IN SECTION A.
(77) Appendix 2. J. Sapkota. Sample S1 Foliation 1 Apparent dips towards 180o: 57, 57, 59, 58, 57 Apparent dips towards 210o: 49, 47, 48, 49 Apparent dips towards 240o: 37, 37, 36, 37 Apparent dips towards 150o: 63, 62, 61, 63, 65 Foliation 2 Apparent dips towards 180o: 37, 37, 36, 38 Apparent dips towards 210o: 32, 33, 32, 32 Apparent dips towards 240o: 14, 15, 14 Apparent dips towards 150o: 41, 40, 41, 41. Sample S3 Foliation 1 Apparent dips towards 180o: 64, 64, 67 Apparent dips towards 210o: 52, 52, 55, 51, 53 Apparent dips towards 240o: 30, 33, 30, 34, 29 Apparent dips towards 150o: 70, 70, 68, 71 Foliation 2 Apparent dips towards 180o: 41, 40, 41, 35, 41 Apparent dips towards 210o: 34, 33, 34, 30, 35 Apparent dips towards 240o: 14, 16, 14, 18, 10, 13 Apparent dips towards 150o: 45, 45, 48, 43. Sample S7 Foliation 1 Apparent dips towards 180o: 51, 45, 43, 49 Apparent dips towards 210o: 33, 31, 33, 30, 32, 29, 33 Apparent dips towards 240o: 4, 6, 4, 4, 3. 2.
(78) Appendix 2. J. Sapkota. Apparent dips towards 150o: 50, 51, 50, 52, 49, 50 Foliation 2 Apparent dips towards 180o: 66, 66, 68, 67 Apparent dips towards 210o: 60, 65, 61, 60, 64 Apparent dips towards 240o: 34, 33, 35, 29, 38 Apparent dips towards 150o: 68, 67, 69, 68. Sample S10b Foliation 1 Apparent dips towards 180o: 80, 80, 82, 78, 85 Apparent dips towards 210o: 68, 70, 69, 71 Apparent dips towards 150o: 70, 72, 68 Foliation 2 Vertical in all thin sections; filed measurement: 89o→N3o Foliation 3 Apparent dips towards 0o: 66, 67, 68, 66 Apparent dips towards 30o: 60, 58, 62, 60, 61 Apparent dips towards 330o: 64, 64, 64, 65. Sample S13 Foliation 1 Apparent dips towards 180o: 40, 45, 33, 39, 41 Apparent dips towards 210o: 32, 34, 30, 33, 31 Apparent dips towards 150o: 20, 24, 15, 21, 19 Foliation 2 Apparent dips towards 180o: 24, 24, 23 Apparent dips towards 210o: 10, 11, 8, 12, 9 Apparent dips towards 150o: 27, 26, 24, 20. 3.
(79) Appendix 2. J. Sapkota. Foliation 3 Apparent dips towards 180o: 63, 65, 65, 61, 67 Apparent dips towards 210o: 52, 54, 48, 51 Apparent dips towards 150o: 75, 77, 74. Sample S14 Foliation 1 Apparent dips towards 180o: 69, 68, 67, 70 Apparent dips towards 210o: 61, 59, 62 Apparent dips towards 240o: 48, 52, 51, 47 Apparent dips towards 150o: 63, 65, 67, 66, 66 Foliation 2 Vertical in all thin sections; filed measurement: 87o→351o Foliation 3 Apparent dips towards 0o: 77, 79, 78 Apparent dips towards 30o: 73, 74, 75, 76 Apparent dips towards 60o: 68, 69, 68, 72, 67 Apparent dips towards 330o: 69, 69, 73, 67. Sample S15 Foliation 1 Apparent dips towards 180o: 19, 24, 17, 21, 19 Apparent dips towards 210o: 12, 11, 10, 8, 9 Apparent dips towards 150o: 10, 13, 9, 11 Foliation 2 Apparent dips towards 180o: 44, 43, 42, 38, 44, 39, 42 Apparent dips towards 210o: 38, 36, 34, 39, 38, 41 Apparent dips towards 240o: 32, 30, 28 Apparent dips towards 150o: 36, 40, 38. 4.
(80) Appendix 2. J. Sapkota. Sample S16 Foliation 1 Apparent dips towards 180o: 20, 22, 21, 21 Apparent dips towards 210o: 16, 14, 12 Apparent dips towards 240o: 8, 10, 8, 7 Apparent dips towards 150o: 20, 14, 16, 17, 18, 17 Foliation 2 Apparent dips towards 180o: 46, 50 Apparent dips towards 210o: 42, 40, 41, 44, 40 Apparent dips towards 240o: 28, 27, 26, 29, 28 Apparent dips towards 150o: 40, 43, 43, 40, 41. Sample S17 Foliation 1 Apparent dips towards 180o: 42, 43, 45, 40 Apparent dips towards 210o: 36, 32, 34, 31, 33, 32 Apparent dips towards 240o: 20, 24, 29, 23, 25 Apparent dips towards 150o: 35, 37, 42, 38 Foliation 2 Apparent dips towards 180o: 13, 18, 15, 14, 16, 15 Apparent dips towards 210o: 10, 9, 10, 11, 8, 10 Apparent dips towards 240o: 6, 4, 4, 5, 4 Apparent dips towards 150o: 11, 9, 10. Sample S18 Foliation 1 Apparent dips towards 180o: 12, 13, 15, 14, 15, 14 Apparent dips towards 210o: 9, 12, 6, 8, 10, 9, 7. 5.
(81) Appendix 2. J. Sapkota. Apparent dips towards 240o: 1, 2, 1 Apparent dips towards 150o: 22, 20, 19, 21 Foliation 2 Apparent dips towards 180o: 46, 48, 45, 46 Apparent dips towards 210o: 42, 38, 40, 39, 41, 40 Apparent dips towards 240o: 27, 25, 22, 24 Apparent dips towards 150o: 48, 44, 47, 46. Sample 20 Foliation 1 Apparent dips towards 180o: 51, 53, 52, 55, 53 Apparent dips towards 210o: 48, 46, 47, 45 Apparent dips towards 150o: 52, 49, 45, 48, 49 Foliation 2 Apparent dips towards 180o: 80, 80 Apparent dips towards 210o: 75, 77, 78, 74, 76 Apparent dips towards 150o: 77, 78, 78. Sample S21b Foliation 1 Apparent dips towards 180o: 75, 72, 73, 74 Apparent dips towards 210o: 69, 70, 71, 72, 70 Apparent dips towards 150o: 71, 68, 74, 72 Foliation 2 Apparent dips towards 0o: 80, 82, 78, 77 Apparent dips towards 30o: 73, 72, 77, 74, 69 Apparent dips towards 300o: 75, 76, 74, 75. 6.
(82) Appendix 2. J. Sapkota. Sample S23 Foliation 1 Apparent dips towards 180o: 72, 70, 71, 69, 71 Apparent dips towards 230o: 51, 53, 51, 49, 50 Apparent dips towards 120o: 59, 55, 57, 56 Apparent dips towards 150o: 69, 70, 71, 63, 68, 67, 69 Foliation 2 Vertical in all thin sections; filed measurement: 88o→169o Foliation 3 Apparent dips towards 0o: 65, 66, 67, 64, 66, 70 Apparent dips towards 300o: 53, 55, 51, 52, 57, 55, 53 Apparent dips towards 330o: 62, 63, 61, 63, 66, 60, 62. Sample S27 Foliation 1 Apparent dips towards 180o: 73, 73, 72, 71 Apparent dips towards 210o: 65, 68, 66, 69, 64 Apparent dips towards 240o: 57, 57, 56 Apparent dips towards 150o: 82, 78, 80, 79 Foliation 2 Apparent dips towards 180o: 54, 55, 53, 54 Apparent dips towards 210o: 45, 41, 42, 46, 44, 40 Apparent dips towards 240o: 33, 34, 38, 32, 21, 33 Apparent dips towards 150o: 44, 46, 45, 47, 40, 43, 44. Sample S29 Foliation 1 Apparent dips towards 180o: 45, 49, 55, 57, 51, 48 Apparent dips towards 210o: 37, 43, 41, 42, 38. 7.
(83) Appendix 2. J. Sapkota. Apparent dips towards 240o: 22, 21, 20, 16, 18 Apparent dips towards 150o: 35, 35, 39, 41, 45, 40, 45 Foliation 2 Apparent dips towards 180o: 57, 62, 73, 67, 67 Apparent dips towards 210o: 53, 55, 49, 56, 57, 62 Apparent dips towards 240o: 43, 39, 39, 43, 43 Apparent dips towards 150o: 63, 58, 64, 60, 65, 61, 62, 62. Sample S30 Foliation 1 Apparent dips towards 180o: 43, 41, 37, 39 Apparent dips towards 210o: 27, 30, 35, 32, 31 Apparent dips towards 240o: 23, 21, 21, 23 Apparent dips towards 150o: 34, 36, 38, 30, 33, 32, 39, 37 Foliation 2 Apparent dips towards 180o: 15, 9, 12, Apparent dips towards 210o: 7,. 10. 13, 8, 8. Apparent dips towards 240o: 1, 2, 3 Apparent dips towards 150o: 2, 0, 6, 7, 10. Sample T5 Foliation 1 Apparent dips towards 180o: 45, 45, 37, 46, 45 Apparent dips towards 210o: 38, 35, 37, 40, 37 Apparent dips towards 240o: 25, 24, 25 Apparent dips towards 150o: 35, 35, 34 Foliation 2 Apparent dips towards 180o: 13, 16, 16, 14, 14, 17 Apparent dips towards 210o: 8, 10, 9. 8.
(84) Appendix 2. J. Sapkota. Apparent dips towards 240o: 3, 4 Apparent dips towards 150o: 10, 9, 9. Sample T6 Foliation 1 Apparent dips towards 180o: 59, 49, 50, 54, 47 Apparent dips towards 210o: 41, 39 Apparent dips towards 240o: 21, 21, 17, 23 Apparent dips towards 150o: 40, 37, 44 Foliation 2 Apparent dips towards 180o: 85, 86, 87 Apparent dips towards 210o: 77, 74, 72 Apparent dips towards 240o: 52, 49, 48 Apparent dips towards 150o: 71, 71, 76, 77. Sample T8 Foliation 1 Apparent dips towards 180o: 37, 43, 41, 40, 40 Apparent dips towards 240o: 26, 22, 27, 27 Apparent dips towards 140o: 53, 55, 58 Foliation 2 Apparent dips towards 180o: 16, 22, 17, 12, 13 Apparent dips towards 240o: 0, 5, 8 Apparent dips towards 140o: 18, 14, 18. Sample T9 Foliation 1 Apparent dips towards 180o: 4, 9, 14, 12, 11 Apparent dips towards 210o: 5, 3, 3. 9.
(85) Appendix 2. J. Sapkota. Apparent dips towards 150o: 19, 18, 13, 18 Foliation 2 Apparent dips towards 180o: 51, 54, 48, 47 Apparent dips towards 210o: 40, 43, 37, 41 Apparent dips towards 150o: 55, 54, 58, 53, 57. Sample T11 Foliation 1 Apparent dips towards 180o: 50, 50, 47, 50 Apparent dips towards 210o: 46, 47, 45 Apparent dips towards 240o: 32, 36, 38, 37 Apparent dips towards 150o: 54, 53, 57, 50 Foliation 2 Apparent dips towards 180o: 83, 86, 81, 84, 76, 79 Apparent dips towards 210o: 69, 73, 74, 75, 78, 74 Apparent dips towards 240o: 66, 68 Apparent dips towards 150o: 84, 83, 85, 83. Sample T13 Foliation 1 Apparent dips towards 180o: 14, 16, 15 Apparent dips towards 210o: 14, 14, 13 Apparent dips towards 230o: 7, 9, 8, 7 Apparent dips towards 90o: 4, 4, 0 Apparent dips towards 120o: 8, 12, 12, 8, 10 Apparent dips towards 150o: 11, 14, 8, 11, 10 Foliation 2 Apparent dips towards 180o: 51, 48, 54, 50, 52 Apparent dips towards 210o: 42, 42, 43. 10.
(86) Appendix 2. J. Sapkota. Apparent dips towards 230o: 31, 35, 34, 33 Apparent dips towards 270o: 11, 13, 14, 12 Apparent dips towards 120o: 36, 38, 35, 39 Apparent dips towards 150o: 42, 45, 44, 41. Sample T14 Foliation 1 Apparent dips towards 180o: 50, 53, 59, 55, 54 Apparent dips towards 210o: 44, 45, 43, 41 Apparent dips towards 240o: 36, 26, 28, 29 Apparent dips towards 150o: 51, 53, 45, 45 Foliation 2 Apparent dips towards 180o: 83, 83, 82 Apparent dips towards 210o: 74, 76, 76 Apparent dips towards 240o: 69, 60, 62, 61 Apparent dips towards 150o: 72, 77, 79, 83. Sample T16 Foliation 1 Apparent dips towards 180o: 53, 52, 56, 58, 49 Apparent dips towards 210o: 44, 44, 41, 42 Apparent dips towards 240o: 26, 21, 24 Apparent dips towards 150o: 50, 49, 47, 53 Foliation 2 Apparent dips towards 180o: 86, 85, 86, 84, 86 Apparent dips towards 210o: 83, 80, 79, 82, 84 Apparent dips towards 240o: 66, 70, 67 Apparent dips towards 150o: 79, 84, 88, 88, 83, 85. 11.
(87) Appendix 2. J. Sapkota. Sample T17 Foliation 1 Apparent dips towards 180o: 29, 31, 24, 24, 32, 25 Apparent dips towards 210o: 14, 21, 22, 22 Apparent dips towards 240o: 10, 5, 12, 9 Apparent dips towards 150o: 20, 15, 23 Foliation 2 Apparent dips towards 180o: 58, 53, 49, 43, 57, 47 Apparent dips towards 210o: 44, 51, 49, 48 Apparent dips towards 240o: 39, 33, 40, 37 Apparent dips towards 150o: 45, 50, 40. Sample K2 Foliation 1 Apparent dips towards 180o: 65, 61, 64, 54 Apparent dips towards 210o: 61, 59, 57, 58 Apparent dips towards 150o: 60, 63, 64 Foliation 2 Vertical in all thin sections; filed measurement: 89o→147o Foliation 3 Apparent dips towards 0o: 61, 60 Apparent dips towards 30o: 73, 72, 71, 70 Apparent dips towards 330o: 54, 62, 66, 64, 58. Sample K5 Foliation 1 Apparent dips towards 180o: 44, 45, 42, 48, 49, 44 Apparent dips towards 210o: 44, 34, 32, 32, 32, 31 Apparent dips towards 120o: 28, 30, 29, 31, 33. 12.
(88) Appendix 2. J. Sapkota. Apparent dips towards 150o: 42, 45, 47 Foliation 2 Apparent dips towards 180o: 71, 69, 70, 66 Apparent dips towards 210o: 61, 50, 57 Apparent dips towards 120o: 58, 64, 59, 57 Apparent dips towards 150o: 68, 67, 68. Sample K6 Foliation 1 Apparent dips towards 180o: 65, 60, 64, 66, 65 Apparent dips towards 210o: 58, 57, 61, 57, 54 Apparent dips towards 150o: 45, 45, 51 Foliation 2 Apparent dips towards 180o: 80, 82, 81 Apparent dips towards 210o: 81, 74, 76, 76 Apparent dips towards 150o: 80, 80, 79 Foliation 3 Apparent dips towards 0o: 70, 67, 68, 65 Apparent dips towards 30o: 60, 58, 55 Apparent dips towards 330o: 59, 65, 63, 70, 65, 68. Sample K7 Foliation 1 Apparent dips towards 180o: 65, 62, 64 Apparent dips towards 210o: 56, 56, 59, 54 Apparent dips towards 240o: 31, 36, 28, 33 Apparent dips towards 150o:79, 71, 77, 79 Foliation 2 Vertical in all thin sections; filed measurement: 89o→169o. 13.
(89) Appendix 2. J. Sapkota. Foliation 3 Apparent dips towards 0o: 67, 67, 61, 65, 64 Apparent dips towards 30o: 65, 70, 69, 57 Apparent dips towards 300o: 33, 38, 36, 39 Apparent dips towards 330o: 43, 53, 54, 52, 51. Sample K8 Foliation 1 Apparent dips towards 180o: 79, 74, 70, 65, 67, 70, 66 Apparent dips towards 210o: 66, 66, 66 Apparent dips towards 120o: 59, 64 Apparent dips towards 150o: 73, 73, 73 Foliation 2 Vertical in all thin sections; filed measurement: 89o→164o Foliation 3 Apparent dips towards 0o: 72, 67 Apparent dips towards 30o: 55, 61, 64 Apparent dips towards 300o: 44, 57, 61, 57 Apparent dips towards 330o: 67, 63. Sample K9 Foliation 1 Apparent dips towards 180o: 42, 41 Apparent dips towards 210o: 25, 27, 20, 29 Apparent dips towards 120o: 26, 27, 28 Apparent dips towards 150o: 46, 50, 42, 45, 47 Foliation 2 Apparent dips towards 180o: 55, 57 Apparent dips towards 210o: 37, 39, 41, 36, 37. 14.
(90) Appendix 2. J. Sapkota. Apparent dips towards 120o: 48, 45, 46 Apparent dips towards 150o: 64, 66, 66, 62, 63 Foliation 3 Apparent dips towards 180o: 72, 71, 72, 69, 75 Apparent dips towards 210o: 67, 69, 72, 64 Apparent dips towards 120o: 73, 73 Apparent dips towards 150o: 80, 85, 76, 81, 82. Sample K14 Foliation 1 Apparent dips towards 180o: 61, 57, 56, 58, 59 Apparent dips towards 210o: 56, 55, 53, 49, 55 Apparent dips towards 240o: 49, 44, 48 Apparent dips towards 150o: 55, 59, 60 Foliation 2 Vertical in all thin sections Foliation 3 Apparent dips towards 0o: 61, 56 Apparent dips towards 30o: 51, 45, 47 Apparent dips towards 330o: 56, 49, 51, 56. Sample K19 Foliation 1 Apparent dips towards 180o: 62,59, 57, 54, 61, 60, 60 Apparent dips towards 210o: 53, 53 Apparent dips towards 150o: 73, 76, 70 Foliation 2 Vertical in all thin sections; filed measurement: 86o→158o. 15.
(91) Appendix 2. J. Sapkota. Foliation 3 Apparent dips towards 0o: 53, 64, 60, 52 Apparent dips towards 30o: 47, 53, 40 Apparent dips towards 330o: 49, 44, 44. Sample K20 Foliation 1 Apparent dips towards 180o: 56, 52, 54 Apparent dips towards 210o: 46, 46, 48 Apparent dips towards 240o: 23, 28, 31 Apparent dips towards 120o: 49, 44, 48 Apparent dips towards 150o: 55, 52, 53 Foliation 2 Apparent dips towards 180o: 78, 79, 81, 77 Apparent dips towards 210o: 74, 74, 76, 76, 77 Apparent dips towards 240o: 61, 66, 64 Apparent dips towards 120o: 76, 70 Apparent dips towards 150o: 81, 80, 75, 74. Sample M1 Foliation 1 Apparent dips towards 350o: 17, 18 Apparent dips towards 300o: 10, 10 Apparent dips towards 330o: 15, 15, 14, 16, 15 Foliation 2 Apparent dips towards 170o: 16, 16, 17, 16 Apparent dips towards 120o: 14, 13, 17, 14 Apparent dips towards 150o: 16, 16. 16.
(92) Appendix 2. J. Sapkota. Sample M10 Foliation 1 Apparent dips towards 0o: 33, 36, 37, 33 Apparent dips towards 30o: 36, 34 Apparent dips towards 60o: 22, 22, 25, 24 Apparent dips towards 90o: 12, 16, 16 Apparent dips towards 330o: 24, 24 Foliation 2 Apparent dips towards 180o: 15, 10, 16, 19, 13 Apparent dips towards 210o: 3, 6, 5, 4 Apparent dips towards 150o: 2, 2, 5. Sample M12 Foliation 1 Apparent dips towards 0o: 41, 40, 42, 39 Apparent dips towards 30o: 29, 29, 27, 31 Apparent dips towards 270o: 25, 27, 24 Apparent dips towards 330o: 45, 42, 41, 44 Foliation 2 Apparent dips towards 0o: 12, 11, 12 Apparent dips towards 30o: 4, 4, 5, 3 Apparent dips towards 270o: 5, 5, 7, 6 Apparent dips towards 330o: 14, 15, 15, 18, 12. Sample H1 Foliation 1 Apparent dips towards 0o: 66, 62 Apparent dips towards 30o: 57, 58 Apparent dips towards 60o: 46, 37. 17.
(93) Appendix 2. J. Sapkota. Apparent dips towards 330o: 52, 53 Foliation 2 Apparent dips towards 0o: 30, 30, 29 Apparent dips towards 30o: 27, 28, 29 Apparent dips towards 60o: 13, 15 Apparent dips towards 330o: 22, 27. Sample H2 Foliation 1 Apparent dips towards 0o: 45, 39, 40 Apparent dips towards 30o: 33, 30 Apparent dips towards 330o: 33, 33 Foliation 2 Apparent dips towards 0o: 15, 10, 7 Apparent dips towards 30o: 1, 4, 5 Apparent dips towards 330o: 3, 7, 6. 18.
(94) APPENDIX 3 XRF ANALYSIS OF BULK CHEMISTRY USED IN SECTION B.
(95) Appendix 3. J. Sapkota. SiO2. TiO2. Al2O3. Fe2O3T. MnO. MgO. CaO. Na2O. K2O. P2O5. SO3. LOI. Sum. (%). (%). (%). (%). (%). (%). (%). (%). (%). (%). (%). (%). (%). S13. 68.4. 0.81. 14.8. 5.86. 0.11. 1.29. 1.01. 2.29. 3.30. 0.17. bd. 1.66. 99.7. H1. 67.0. 0.72. 16.3. 5.62. 0.07. 1.37. 0.46. 1.84. 3.34. 0.10. bd. 2.56. 99.4. S16. 76.4. 0.84. 9.64. 4.57. 0.09. 1.88. 2.18. 1.73. 1.77. 0.16. 0.02. 0.56. 99.9. K17. 73.7. 0.65. 11.3. 4.77. 0.05. 2.46. 1.30. 0.63. 2.95. 0.14. 0.01. 1.33. 99.3. T14. 63.9. 0.77. 16.0. 6.58. 0.13. 2.88. 3.10. 1.78. 3.42. 0.15. 0.01. 1.24. 100.0. M16. 59.8. 0.88. 17.2. 7.74. 0.14. 2.75. 2.84. 3.03. 4.15. 0.13. 0.02. 0.77. 99.4. K22. 67.7. 0.78. 15.3. 5.84. 0.09. 1.59. 0.98. 1.09. 3.83. 0.12. bd. 2.26. 99.6. M1. 59.1. 0.90. 18.2. 7.78. 0.15. 2.71. 2.13. 2.17. 4.75. 0.12. bd. 1.52. 99.6. S26. 58.7. 0.90. 16.9. 7.66. 0.10. 3.88. 4.58. 1.66. 3.30. 0.14. bd. 1.92. 99.8. S30. 74.8. 0.61. 11.3. 4.37. 0.08. 2.04. 1.26. 1.60. 2.62. 0.13. bd. 1.24. 100.0. Sample. 2.
(96) APPENDIX 4 ELECTRON MICROPROBE ANALYSIS OF THE MINERALS USED IN SECTION B.
Figure
Related documents
data 0 data 1 QPSK modulator PRBS ADC Xilinx Virtex II FPGA Signal laser automatic power control SMF LiNbO 3 90º optical hybrid electronic sampling, carrier + data recovery I.
This was a retrospective analysis of data on new cancer cases diagnosed among the hospital patients and patients’ surgical tissues (from other hospitals) sent
Skalpel automatically achieves all of the above by first labelling all parts of the program generating constraints annotated with these labels, solving these constraints and if
After a literature review on the empirical results in individual euro area countries we review some theoretical arguments why real narrow money growth might be an important
As the performed research shows, confirming the approach, that choosing of certain strategies in the bank asset and liability management in different periods makes preconditions
They are (1) as the purpose of this study was to identify the reaction of African American students to a culturally relevant (Ladson-Billings, 1992, 1995a, 1995b, 2009) visual tool
We presented a new unsupervised classifier se- lection method based on the minimum energy framework to select a subset of reasonably accurate classifiers for the mul- tiple
sporeforming, highly mobile, rod-type, and facultative anaerobic bacterium species. There were two types of methods that could be used for isolating Listeria ,