• No results found

Threat visibility modulates the defensive brain circuit underlying fear and anxiety

N/A
N/A
Protected

Academic year: 2019

Share "Threat visibility modulates the defensive brain circuit underlying fear and anxiety"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

      

City, University of London Institutional Repository

Citation

:

Rigoli, F., Ewbank, M., Dalgleish, T. & Calder, A. (2016). Threat visibility

modulates the defensive brain circuit underlying fear and anxiety. Neuroscience Letters, 612,

pp. 7-13. doi: 10.1016/j.neulet.2015.11.026

This is the published version of the paper.

This version of the publication may differ from the final published

version.

Permanent repository link:

http://openaccess.city.ac.uk/16673/

Link to published version

:

http://dx.doi.org/10.1016/j.neulet.2015.11.026

Copyright and reuse:

City Research Online aims to make research

outputs of City, University of London available to a wider audience.

Copyright and Moral Rights remain with the author(s) and/or copyright

holders. URLs from City Research Online may be freely distributed and

linked to.

(2)

NeuroscienceLetters612(2016)7–13

ContentslistsavailableatScienceDirect

Neuroscience

Letters

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / n e u l e t

Research

paper

Threat

visibility

modulates

the

defensive

brain

circuit

underlying

fear

and

anxiety

Francesco

Rigoli

a,b,∗

,

Michael

Ewbank

b

,

Tim

Dalgleish

b

,

Andrew

Calder

b

aWellcomeTrustCentreforNeuroimagingatUCL,London,UK bMRCCognitionandBrainSciencesUnit,Cambridge,UK

h

i

g

h

l

i

g

h

t

s

•WeusedhumanfMRIandanovelcomputer-basedtasktostudytheeffectsofvisualthreatuncertaintyonbrainactivity.

•Lackofvisualthreatinformationincreasedactivityinhippocampus,ventromedialprefrontalcortexandamygdala(regionsinvolvedinanxiety). •Presenceofvisualthreatinformationincreasedactivityinperiaqueductalgray(involvedinfear).

•Hightrait-anxietyparticipantsanticipatedhippocampalactivationwhenvisualthreatinformationwasnotprovided.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25August2015

Receivedinrevisedform24October2015 Accepted16November2015

Availableonline2December2015

Keywords: Fear Anxiety Uncertainty Hippocampus PAG Amygdala

a

b

s

t

r

a

c

t

Recenttheoriesdistinguishanxietyfromfearinthebrain.Anxietyisassociatedwithactivationin ven-tromedialprefrontalcortexandhippocampus,whilefearisassociatedwithactivationinperiaqueductal gray,withamygdalainvolvedinprocessingaspectsofbothemotionalresponses.Thesetheoriespropose thattheamountofinformationavailableaboutthreatdetermineswhichofthetwodefensiveresponsesis elicited,withfearandanxietyassociatedwithwell-definedanduncertainthreatsrespectively.However, adirecttestofthishypothesisislacking.HereweprovidesuchatestusingfMRItorecordparticipants’ brainactivitywhiletheyperformedacomputer-basedtaskwhichrequiredtopressabuttontomove anartificialagenttoatargetpositionwhileanartificialpredatorchasedtheagent.Inonecondition (associatedwithfear)thepredatorwasvisible,whileinanothercondition(associatedwithanxiety)the predatorwasinvisible.Ventromedialprefrontalcortex,hippocampus,andamygdalashowedincreased activitywhenthepredatorwasinvisiblecomparedtovisible,whiletheoppositeeffectwasobservedin periaqueductalgray.Wealsoobservedthatparticipantswithhighbutnotlowtrait-anxietyshowedan hippocampalactivationwithinvisiblethreatatanearliertimestageduringthetrial.Thesefindingshelp clarifytheneuralmechanismsthatunderliedifferentdefensiveemotionsandshedlightonhowthese mechanismsmaycontributetoexaggeratedanxiety.

©2015TheAuthors.PublishedbyElsevierIrelandLtd.ThisisanopenaccessarticleundertheCCBY license(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Complex organisms are equipped with a vast repertoire of defensiveresponsesthathaveevolvedtoadapttoaconsiderable varietyofaversiveconditions.Research investigatingtheneural substrates underlying defensive behavior suggests that defen-siveresponsesare supportedbya braincircuitextendingfrom ventromedialprefrontalcortex(vmPFC),hippocampusand amyg-dalatoperiaqueductal gray(PAG;[11,23]).Centraltothisbrain

∗ Correspondingauthorat:WellcomeTrustCentreforNeuroimagingatUCL, QueenSquare,LondonWC1N3BG,UK.

E-mailaddress:[email protected](F.Rigoli).

systemistheamygdala,aregioninvolvedinlearningand coordi-natingconditionedresponses[8,10]andregulatedbybidirectional connections withvmPFC [31].The key role of hippocampusin defensivebehaviorissupportedbyseveralfindings[1,2,17,33]such astheevidencethatanxiolyticeffectsofbenzodiazepinesare medi-atedbyanimpactonhippocampus[2].Anotherimportantregionof thedefensivenetworkisPAGwhichplaysacentralroleinguiding freezingandfight/flightreactions[12,15,26,27].

Althoughtheareascomprisingthebrain’s defensivenetwork appearwell-established,itremainsunclearhowactivationinthese areasismodulatedbydifferentaversivecontexts.Contemporary theoriesproposethatevolutionhasfavoredthedifferentiationof twokindsofdefensiveresponsesthatcanbetracedbacktofear andanxiety,eachrecruitingdistinctneuralregions.Fearhasbeen

http://dx.doi.org/10.1016/j.neulet.2015.11.026

(3)

8 F.Rigolietal./NeuroscienceLetters612(2016)7–13

Fig.1. (A)Taskdescription.ParticipantsstartedeachtrialbyindicatingonaVASscaletheirexpectancyofbeingcapturedbytheartificialpredatorinthenexttrial.Atthe sametime,participantswereinformedaboutthecondition(HIDorVIS)ofthenexttrialbyapaneldisplayedonthebottomofthescreenreproducingthecondition.After, arectangularpathwasdisplayedtogetherwithablueballrepresentingtheagentpositionedinthemiddleofthepathplus,inVIStrialsonly(presentedintheexample showninthisfigure),aredballrepresentingapredatorappearingontheleftextremesideofthepath.After1–3s,theblueballturnedgreenandparticipantshadtopressa buttonandkeepitpressedtomovethegreenball/agenttowardthetargetpositionrepresentedbyagraysquareatthefarrightsideofthepath.Atthesametime,thered ball/predatormovedclosertotheagent.On50%oftrialscaptureoccurred(50%ofthetimeattargetposition,asintheexample,50%alongthepath),whileon50%oftrials theagentreachedthetargetwithoutbeingcaughtandasafetysignal(twoyellowhorizontalarrows)wasdisplayeduponthetarget.(B)Relationshipbetweentrait-anxiety andaverageVASscoreindicatingthesubjectiveprobabilityofbeingcapturedbythepredator(r(22)=0.498,p=0.018).(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

associatedwithactivationinPAG,andanxietywithactivationin hippocampusandvmPFC,withtheamygdalainvolvedin process-ingaspectsofbothemotionalresponses[9,11,23,28,29].Thelevel ofuncertaintyregardingdangeristhoughttobeoneofthekey dimensionsthateliciteitherofthetwodefensiveresponses,with fearandanxietybeingevokedbywell-definedandundetermined threatsrespectively[9,17,19,25,32].Threatuncertaintyisaffected bytheamountofvisualinformation,anaspectimportantinseveral ecologicalcircumstances.Forinstance,thenightpreventsviewing apredator,inducingaresponsedifferentfromthatexhibitedinthe daylight[18].Howeveradirectinvestigationoftheimpactofthreat uncertainty,andmorespecificallyofthreatvisibility,onactivityin thedefensivebrainsystemislacking.

Inordertostudytheimpactofuncertaintyonthedefensive brain network, we used a paradigm which manipulated visual informationaboutthreat.Weusedfunctionalmagneticresonance imaging(fMRI)torecordtheneuralresponseofhealthy individu-alswhiletheyperformedacomputer-basedtask(Fig.1A)inwhich theyhadtopressabuttontomoveanartificialagent,displayed onthe screen, toa targetposition, while an artificialpredator waschasingtheagent.Inaconditionassociatedwithlowthreat uncertainty, visualfeedback onthe predatorposition was pro-videdthroughoutthetrial(visiblethreat:VIS),whileinanother condition,associatedwithhighthreatuncertainty,visualfeedback onthepredator’spositionwasnotprovided(hiddenthreat:HID). Onhalfofthetrialstheagentreachedthetargetwithoutbeing caughtandontheotherhalfthepredatorcapturedtheagentand aloudscreamnoisewasdeliveredaspunishment.Consistentwith recentproposals[9,11,23],wepredictedthatVIScomparedtoHID wouldactivatePAG,whichguidesfight/flightreactionsassociated withfear, whereasHID comparedtoVISwould activatevmPFC andhippocampuswhicharethoughttounderliethecognitive pro-cessescharacterizinganxiety.Wealsopredictedtheinvolvement

[image:3.646.117.473.55.296.2]

oftheamygdala,althoughgivenitsroleinbothfearandanxiety responses,wedidnothaveapriorihypothesesregardingthisregion

[11,23].

We were also interested in investigating the relationship betweenindividualdifferencesinemotionalrespondingandthe functionofthedefensivebraincircuit.Toaddressthis,westudied theimpactoftrait-anxiety[36]onneuralresponsetoHID com-paredtoVIS.Ithasbeensuggestedthatakeydifferencebetween anxiousandnon-anxious individualsis thattheformer tendto anticipateintimeananxietyresponsetodanger[22].Basedonthis, wepredictedthat,inhightrait-anxietybutnotinlowtrait-anxiety individuals,theneuralresponseinhippocampusandvmPFCforHID comparedtoVISwouldemergeatanearliertimepointduringthe trial,reflectingananticipatedanxietyreactioninhightrait-anxiety participants.

2. Methods

2.1. Participants

(4)

Cam-F.Rigolietal./NeuroscienceLetters612(2016)7–13 9

bridgeLocalResearchEthicsCommittee.Allparticipantsprovided informedwrittenconsentandwerepaidforparticipating.

2.2. Experimentalparadigm

Attrialstart,arectangularpathmadeof23squareswas pre-sented on the screen together with a blue ball representing a virtualagent(participantswereinstructedthatthevirtualagent representedthemselves)thatappearedinthemiddleofthepath (Fig.1A).After1–3stheballturnedgreenandparticipantshadto pressabuttontomovetheball/agenttoatargetposition(agray squarelocatedattherightendofthepath).Participantshadto keepthebuttonpressedtomaketheagentadvanceonesquareper secondresultingin12storeachthetarget.Overall56trialswere playedsplitacrosstwoconditions(VISandHID)orderedrandomly. InVIStrials,aredballrepresentinganartificialpredatorwas pre-sentedontheleftsideofthepathandonceparticipantspressedthe buttonthepredatorstartedmovingrandomly1–3squaresper sec-ondtowardtheagent(thepredatorneverpassedtheagent).On50% ofVIStrials,theagentreachedthetargetwithoutbeingcaptured andontheother50%thepredatorcapturedtheagent,50%ofthe timealongthepath(thepositionwasrandomlyselected)and50% ofthetimeattargetposition(i.e.,atthefarrightend).InHIDtrials, theredball/predatorwasinvisiblebutparticipantswereinstructed thatthepredatorwaspresentandbehavedasintheVIScondition. AspertheVIScondition,on50%ofHIDtrialstheagentwascaptured, 50%ofthetimealongthepathand50%ofthetimeattargetposition. ForbothVISandHID,whencaptureoccurred,theredball/predator appearedupontheagentandaloudscream(103dB)wasdelivered for1sviaheadphonesaspunishment.Whenthetargetwasreached withoutcapture,asafetysymbol(twoyellowhorizontalarrows) appearedonthetargetpositionfor2s.Trialswereseparatedby 6–12s.Oneachtrial,ifthebuttonwasnotpressedwithin2s,or wasreleasedbeforereachingthetarget,theagentwascaptured andthetrialimmediatelyrepeated.

Beforeeachtrial,participantswereaskedtoestimatethe proba-bilityofbeingcapturedonavisualanalogscale(VAS).Participants wereinformedofthenexttrialconditionduringtheVAS presen-tationbyareproductionoftheconditiondisplayedatthebottom ofthescreen.TrialsstartedimmediatelyafterVASchoiceswere finalized.

2.3. fMRIdataacquisitionandanalysis

MRIscanningwasconductedattheMedicalResearchCouncil CognitionandBrainSciencesUnit.Visualstimuliwerepresented with E-prime 2. Echo-planar T2*-weighted (EPI) images were acquiredwithSiemensTimTrio3TMRsystemwitha12 chan-nelheadcoilandeachimagevolumeconsistedof32interleaved sliceswith3×3×3resolution and2srepetitiontime. Thefirst five volumes acquired were discarded to allow for equilibra-tion effects. T1-weighted structural images were acquired at a 1×1×1mmresolution.Imagingdatawereanalyzedusing Statisti-calParametricMapping(SPM)version8(WellcomeTrustCentrefor Neuroimaging).Preprocessingincludedspatialrealignmenttothe meanvolume,slicetimecorrection,co-registration,normalization tothestandard MontrealNeurologicalInstitute(MNI)template witha3×3×3voxelsize,andsmoothingusing8mmGaussian kernel.High-passtemporalfilterwithacutoffof128sandAR-1 modelwereapplied.

Neuralactivationwasmodeledwithacanonicalhemodynamic responsefunctionandaGeneralLinearModel(GLM)including6 movementregressorsofnointerestplusboxcarfunctionregressors atVASpresentation(oneforHIDandoneforVIS),attrialstart(i.e., whenparticipantspressedthebuttonaftertheblueball/agentturns green;oneforHIDandoneforVIS),attrialend(i.e.,athalfofthe

Table1

Brainareassignificantlyactivatedacrossallparticipantsattrialendforeachofthe differentcontrasts(nosignificantactivationwasobservedattrialstart).Areaswith asterisksindicateROIsinwhichstatisticsweresmall-volumecorrected,whereas forotherareasawhole-braincorrectionwasused.Inbothcases,p<0.05FWEwas appliedassignificancecriterion.(A)HIDminusVIS;(B)VISminusHID.

(a)HIDminusVIS

Area Peakcoordinates Z p

Lefthippocampus* −28,−22,−16 2.64 0.042

Righthippocampus* 28,−22,−16 3.06 0.020

Leftamygdala* −26,−8,−20 2.82 0.016

Rightamygdala* 24,−4,−22 2.78 0.030

vmPFC* −6,58,4 4.33 0.006

Posteriorcingulate(BA29) −14,−44,10 5.09 0.001

Cuneus(BA18) 12,−86,20 4.99 0.016

Lingualgyrus(BA18) 14,−72,−2 4.74 0.044

(B)VISminusHID

Area Peakcoordinates Z p

PAG* −3,−27,−6 2.81 0.020

Leftinferiortemporalgyrus −50,−68,4 5.94 0.000

Rightprecuneus(BA31) 28,−74,30 5.79 0.000

Rightmiddlefrontalgyrus(BA6) 36,−2,44 4.88 0.020

Fusiformgyrus(BA19) 40,−80,−8 6.63 0.000

Inferiorfrontalgyrus(BA44) 54,12,16 5.56 0.001

Precuneus(BA7) 22,−56,54 5.07 0.012

Middlefrontalgyrus(BA6) 24,2,64 4.98 0.016

Leftcerebellum −6,−76,−30 4.75 0.042

pathcorrespondingto6saftertrialstart;oneforHIDandonefor VIS)andtwostickfunctionregressorsatoutcomedelivery(onefor captureandoneforsafety).Trialsinwhichthepredatorcaptured theagentalongthepathweremodeledwithseparatedregressors attrialstart(oneforHIDandoneforVIS).

Wepredictedthattheparticipants’emotionalresponseelicited bytheexperimentalconditionswasevidenttoalargerdegreeat trialend,whenthepredatorwascloserintimeandspacetothe agent.Therefore,toincreasethestatisticalpower,wefocusedon thistimepointanalyzingthecontrastbetweenHIDandVISforall subjects(withoutconsideringthiscontrastattrialstart).In addi-tion,wealsopredictedthatparticipantswithhighlevelsoftrait anxiety(accordingtoamediansplit)wouldexhibitanemotional responseearlierduringthetrial,henceforthissubgroupof par-ticipantsweanalyzedthecontrastbetweenHIDand VISattrial start.

Analyses focused onthefollowing regions ofinterest (ROIs) extractedfrompreviousstudiesthatusedasimilarparadigmto investigateactivityintheseregions[26,27]:bilateralhippocampus (inMontrealNeurologicalInstitute(MNI)coordinates,left:−28,

−10,−22;right:28,−10,−22),bilateralamygdala(left:−28,−6,

−27;right:28,−6,−27),vmPFC(−1,51,−1)andPAG(−2,−28,−8). ROIsweredefinedas6mmspherescenteredonpriorcoordinates

[26,27].Forhypothesistesting,statisticsweresmall-volume cor-rected(SVC)foreachROIseparatelyandwhole-braincorrectedfor otherbrainareas.Inbothcases,ap<0.05familywiseerror(FWE) wasusedassignificancecriterion.Areaswithsignificantactivation accordingtothesecriteriaarereportedinTable1.

[image:4.646.311.565.110.323.2]
(5)

10 F.Rigolietal./NeuroscienceLetters612(2016)7–13

Fig.2.(A)ActivityattrialendforHIDminusVIS(red/orangeactivation)andVISminusHID(green/blueactivation)inROIsindicatedbyyellowcircles:bilateralhippocampus, bilateralamygdala,vmPFC,andPAG(thresholdforactivationmapsisp=0.005).(B)Top,contrastcoefficientattrialstart(graybars)andtrialend(whitebars)forHIDminus VIS(inpeak-activationvoxelinlefthippocampus,leftamygdalaandleftvmPFC)andbottom,forVISminusHID(relativetothepeak-activationvoxelinPAG).Significant effectsaremarkedwithasterisks.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

3. Results

3.1. Behavior

In a post-scan questionnaire, participantsshowedno differ-enceinratings(ona0-10VAS)ofemotionalintensityforHIDand VISconditions(HD:mean4.59,SD1.89;VIS:mean4.45,SD1.90;

t(21)=0.603,p=0.55;twotailedp<0.05isusedassignificance cri-terionforbehavioralanalyses)indicatingthatthesetwoconditions werematched.Howeverreactiontimesforbuttonpressingafter theblueball/agentturns greenwerefasterintheVIScondition comparedtoHIDcondition(t(21)=3.860,p=0.001),indicatingthat VISwasassociatedwithincreasedmotorreactivity,consistentwith theideathatthisconditioninducedafight/flightreaction charac-teristicoffear.

Acrossparticipants,averageVASscoresoftheestimateof cap-tureprobabilitydidnotdiffersignificantlyfrom0.5(i.e.,thetrue captureprobability),thoughatrendtowardpessimisticestimates wasevidentt(21)=1.764,p=0.09;withnodifferencebetweenHID and VIS,(t(21)=0.860,p=0.4). Thismight suggest that partici-pantswereslightlypessimistic,thoughcautionshouldbetaken becauseofthenostatisticallysignificantdata.Trait-anxiety[36]

correlatedwithaverageVASscore(r(22)=0.498,p=0.018)bothfor HID(Fig.1B;r(22)=0.425,p=0.048)andVIS(Fig1B;r(22)=0.518,

p=0.012)indicatingthathightrait-anxietyindividualsweremore pessimistic(Fig.1B).

3.2. Brainimaging

ToinvestigatetheneuralactivationinresponsetoVIScompared toHID,werestrictedouranalysistotrialend(i.e.,thesecondhalf

ofthetrialstarting6safterbuttonpressingandlastinguntiltrial end)becauseweexpectedtheneuraleffecttoemergeespeciallyat thistimepointwhenthepredatorwascloserintimeandspaceto theagentthusenhancingparticipants’emotionalresponse.Across allparticipants(Fig.2),attrialendHIDminusVISwasassociated withincreasedactivationinbilateralhippocampus(left:,−28,−20,

−16;Z=2.64,p=0.042SVC;right:28,−22,−16;Z=3.06,p=0.02 SVC),bilateralamygdala(left:−26,−8,−20;Z=2.82,p=0.016SVC; right:24,−4,−22;Z(21)=2.78,p=0.03SVC),andvmPFC(−6,58,4;

Z=4.33,p=0.006SVC),butnotPAG(p>0.05SVC).ThecontrastVIS minusHIDwasassociatedwithincreasedactivationinPAG(−3,

−27,−6;Z=2.81,p=0.02SVC)butnothippocampus,vmPFC,or amygdala(p>0.05SVC).

Consistentwithpreviousmodelsofanxiety[22],wepredicted that highbut not low trait-anxiety individuals would showan increasedresponseinhippocampusandvmPFCforHIDminusVIS alsoatanearlier timepoint duringthetrial.Based onthis, we investigatedthebrainresponseattrialstart(i.e.,buttonpressing) and,acrossallparticipants,wefoundnodifferenceinactivation betweenHIDandVISinanyregion(p>0.05SVC).However,attrial start,wefoundthatthecoefficientofthecontrastHIDminusVIS (relativetothepeak-activationvoxelintheROIs)showeda pos-itivecorrelationwithtrait-anxietyinlefthippocampus(Fig.3A;

[image:5.646.79.508.57.356.2]
(6)

F.Rigolietal./NeuroscienceLetters612(2016)7–13 11

Fig.3.Top,relationshipbetweentrait-anxietyandlefthippocampalactivationforHIDminusVIS(inarbitraryunits)attrialstart(A)andtrialend(B).(C)Contrastcoefficient attrialstart(graybars)andtrialend(whitebars)forHIDminusVISinpeak-activationvoxelinlefthippocampus,forhighandlowtrait-anxietyparticipantsaccordingto amediansplit.(D)RelationshipbetweenVASscoreandlefthippocampalactivationforHIDminusVIS(inarbitraryunits)attrialstart.Significanteffectsaremarkedwith asterisks.

Finally,wedeterminedwhethertherelationshipbetween trait-anxietyand hippocampalactivityforHIDminusVISwaslinked to participants’VAS scores relating tocapture expectancy. We observedthattheaverageVASscorecorrelatedwithactivityinleft hippocampusforHIDminusVISattrialstart(Fig.3D;r(22)=0.507;

p=0.016)butnottrialend(p>0.05).Giventhattrait-anxiety,VAS scoresand hippocampalresponse forHID minusVISare corre-latedwitheach other,weinvestigated amediationmodel with the hypothesis that the anticipatory hippocampal response for HID minus VIS influences theVAS score which in turn affects trait-anxiety.Thismediationanalysiscanbeperformedwith hier-archicalregressionwhichshowedanon-significantresultforthe hippocampalresponse(t(22)=1.22,p=0.237)butalsofortheVAS score(t(22)=1.62, p=0.122),thusnotsupportingthemediation model.

4. Discussion

Influential theories propose that evolution has shaped two differentkinds of defensiveemotions,namely fear and anxiety

[9,11,32,23],andthateachisassociatedwithspecificcognitiveand neuralmechanisms.Theamountofinformation availableabout dangeristhoughttounderlietheelicitationofeitherofthetwo emotions,with fear elicited bywell-defined dangers and anxi-etyelicitedbyundeterminedthreats[9,19,16,25].Herewetested aspectsofthismodelbymanipulatingtheamountofvisual infor-mation about danger and investigating its impact on behavior andactivationinthedefensivesystemofthebrain.Importantly, punishmentwasmatchedinquantity, location,andtime across conditions,andparticipantsevaluatedHIDandVISasequally neg-ative,indicating that emotionalintensitywasequivalent across conditions.However,RTswerefasterinVIScomparetoHID, sug-gestingthatVISwasassociatedwithincreasedmotorreactivity. Althoughalternativeexplanationscannotberuledoutcompletely, thisobservationisconsistentwiththepossibilitythatthetwo con-ditionseliciteddifferentkindsofemotionalresponses,withVIS beingassociatedwithagreaterfight/flightreactioncharacteristic offear.

Inlinewithourpredictions,attrialend(whendanger, repre-sentedbytheartificialpredator,wascloserintimeandspace)HID wasassociatedwithgreateractivationinvmPFCandhippocampus, regionsimplicatedinthecognitiveprocessesunderlyinganxiety.A similareffectwasobservedintheamygdala.Bycontrast,VISwas associatedwithincreasedactivationofPAG,whichislinkedwith thecontroloffight/flightreactionsconnectedtofear.

Thekeyroleofamygdalainlearningandcoordinatingdefensive responsesiswellestablished[8,10].Despiteevidenceindicating thatamygdalaisinvolvedinprocessingaspectsofbothfearand anxiety[11,23],we observedincreasedactivationinthis region duringHIDcomparedtoVIS.Thisresultcanbeexplainedbythe factthatamygdalaisparticularlyrecruitedduringtheprocessing of threateninginformation underconditions ofuncertainty and ambiguity[39],characteristicofHID.

Amygdala is widely connected with regions of the vmPFC thatprocesshigh-ordercontextualinformationsuchasthevalue ofexpectedoutcomes,andareimportantinemotionregulation

[30,31].Extensiveevidencefromstudiesofhumanandnon-human animals has shown that activation in hippocampus, and espe-ciallyinitsventralportion,elicitsabehavioralinhibitionresponse thatcharacterizesanxiety[1,2,17,33,35].Inaddition,recentdata indicatesthatthebehavioral inhibitionelicited byhippocampal activationisaccompaniedbysuppressionofconditionedresponses whicharesignaturesoffear,suchasfight/flightreactions[35].PAG isthoughttoplayacentralroleinregulatingfearresponsesbased onsubstantialevidencethatactivityinthisareaaffectsthe per-formanceof freezingand fight/flight reaction[12,15,26,27].Our findings buildonpreviousworkonthedefensivebrain system byprovidingevidencethatdifferentamountsofvisual informa-tionaboutthreatareassociatedwithactivityinspecializedbrain regions.

[image:6.646.151.460.55.291.2]
(7)

12 F.Rigolietal./NeuroscienceLetters612(2016)7–13

intermsoffearoranxietyandinfluenceactivationofthedefensive brainnetwork.

OfnoteisthattheregionsactivatedforHIDcomparedtoVIS correspondtothedefaultmodenetwork,asetofbrainstructures recruitedduringrestingstatecomparedtotaskperformance[5,21]. Thoughatfirstthismightappeartosuggestareducedengagement inourtaskduringHIDcomparedtoVIS,thisisunlikelygiventhat participantsattributedequalemotionalintensitytothetwo condi-tions.Onepossibilityisthatthedefaultmodenetworkisinvolved inthecognitiveprocessescharacteristicofanxietysuchasworry, whichmightbeinhibitedduringfearfulfight/flightresponses.This isalsosupportedbydatainanxietypatientsshowing,during rest-ingstate,anenhancedactivityinvmPFC,akeyregionofthedefault modenetwork[40].

Participants’estimateofcaptureprobabilitywashigherthan 50%(i.e.,thetrueunderlyingprobability),indicatingapessimistic bias.Though thisemergedasa significancetrendand therefore shouldbetakenwithcaution,itreplicatesapreviousstudy[16]. Theseresultsindicateapessimisticbiasinaversivecontexts, espe-ciallyunderambiguityanduncertainty.Givensubstantialevidence indicatinganoptimismbiasinappetitivecontexts[34],ingeneral theseresultsmightsuggestthathumansoverestimatethe occur-renceofsalientoutcomescomparedtonullevents,independentof whetherthepredictedoutcomeisrewardorpunishment.

Enhanced pessimistic biases have been reported in normal subjectswithhightraitanxiety[7,24,37]andinpatientswith gen-eralizedanxiety[4,6],socialanxiety[13,14],andposttraumatic stressdisorder[38].Thisfitswiththeideathatexaggeratedanxiety ischaracterizedbypessimisticbiasesthatmightunderlieenhanced worryandrelentlessthinkingaboutpossibledangers[3,17].We replicatethese findings showing a correlationbetween partici-pants’trait-anxietyandsubjectiveestimatesoftheprobabilityof beingcaptured bythe predatorin thetask. To ourknowledge, thisisfirstvalidatedparadigmwherearelationshipbetween pes-simismandtraitanxietyemergeswhichalsoallowssimultaneous brainrecording,andthereforerepresentsapromisingoptionfor thestudyofbrainprocessesunderlyingpessimisticjudgementsin psychopathology.

Animalstudieshaverevealedarelationshipbetweenenhanced hippocampalactivityand anxiety[2,17,35]which haverecently beensupportedbyhumanfMRI studies[1,20,33].Aninfluential modelproposesthatthecentralcharacteristicofexaggerated anx-ietyisananticipatedresponsetodangerbasedonthepossibility thatanxiousindividualsworrymorethannon-anxiousindividuals withregardtodistalthreats,butequallyinthecontextofproximal threats[22].Inaccordancewiththismodelandliteraturelinking anxietywithhippocampalactivity,wepredictedthathigh com-paredtolowtrait-anxietyindividualswouldshowgreateractivity inhippocampusforHIDcomparedtoVISattrialstart,whenthe threatwasdistantintimeandspace.Theresultssupportedour prediction,andappearconsistentwiththehypothesisthathigh trait-anxietyindividualsanticipateananxietyreaction[22]which isassociatedwithanticipatoryhippocampalactivation.However,it isimportanttostressthatthecurrentstudyonlyincludedhealthy individuals,andthereforefurtherinvestigationisrequiredto estab-lishwhetherourresultsgeneralizetoclinicalpopulations.

Insummary,weshowthattheamountofvisualinformation aboutthreatmodulatesactivityinthedefensivebraincircuit,with lackofinformation activatingareasunderlyinganxiety,suchas hippocampusand vmPFC but also amygdala, a regioninvolved inprocessing aspectsof bothfear and anxiety.By contrast,the presence of visual information activates areas underlying fear suchasPAG.Hightrait-anxietyindividualsshowedan anticipa-toryhippocampalresponsewhenvisualinformationwasabsent. Altogether,thesefindingshelpclarifyingtheneuralandcognitive

mechanismsunderlyingdefensivebehaviorandexaggerated anx-iety.

Acknowledgment

Thisworkwasfunded bytheU.K.Medical ResearchCouncil (GrantMC US A0605PQ50).

References

[1]R.P.Alvarez,G.Chen,J.Bodurka,R.Kaplan,C.Grillon,Phasicandsustained fearinhumanselicitsdistinctpatternsofbrainactivity,Neuroimage55(1) (2011)389–400.

[2]D.M.Bannerman,J.N.P.Rawlins,S.B.McHugh,R.M.J.Deacon,B.K.Yee,T.Bast, J.Feldon,Regionaldissociationswithinthehippocampus—memoryand anxiety,Neurosci.Biobehav.Rev.28(3)(2004)273–283.

[3]T.D.Borkovec,J.Inz,Thenatureofworryingeneralizedanxietydisorder:a predominanceofthoughtactivity,Behav.Res.Ther.28(2)(1990)153–158. [4]T.D.Borkovec,H.Hazlett-Stevens,M.L.Diaz,Theroleofpositivebeliefsabout

worryingeneralizedanxietydisorderanditstreatment,Clin.Psychol. Psychother.6(2)(1999)126–138.

[5]R.L.Buckner,J.R.Andrews-Hanna,D.L.Schacter,Thebrain’sdefaultnetwork, Ann.N.Y.Acad.Sci.1124(1)(2008)1–38.

[6]G.Butler,A.Mathews,Cognitiveprocessesinanxiety,Adv.Behav.Res.Ther.5 (1)(1983)51–62.

[7]G.Butler,A.Mathews,Anticipatoryanxietyandriskperception,Cogn.Ther. Res.11(5)(1987)551–565.

[8]M.Davis,Theroleoftheamygdalainfearandanxiety,Annu.Rev.Neurosci. 15(1)(1992)353–375.

[9]M.Davis,D.L.Walker,L.Miles,C.Grillon,Phasicvssustainedfearinratsand humans:roleoftheextendedamygdalainfearvsanxiety,

Neuropsychopharmacology35(1)(2010)105–135.

[10]M.S.Fanselow,G.D.Gale,Theamygdala,fear,andmemory,Ann.N.Y.Acad. Sci.985(1)(2003)125–134.

[11]L.S.Fanselow,A.Lester,Afunctionalbehavioristicapproachtoaversively motivatedbehavior:Predatoryimminenceasadeterminantofthe topographyofdefensivebehavior,in:RobertC.Bolles,MichaelD.Beecher (Eds.),EvolutionandLearning,LawrenceErlbaumAssociates,Hillsdale,NJ, England,1988,pp.185–212.

[12]M.Fendt,M.S.Fanselow,Theneuroanatomicalandneurochemicalbasisof conditionedfear,Neurosci.Biobehav.Rev.23(5)(1999)743–760. [13]E.B.Foa,M.E.Franklin,K.J.Perry,J.D.Herbert,Cognitivebiasesingeneralized

socialphobia,J.Abnorm.Psychol.105(3)(1996)433.

[14]E.Gilboa-Schechtman,M.E.Franklin,E.B.Foa,Anticipatedreactionstosocial events:differencesamongindividualswithgeneralizedsocialphobia, obsessivecompulsivedisorder,andnonanxiouscontrols,Cogn.Ther.Res.24 (6)(2000)731–746.

[15]F.G.Graeff,Serotonin,theperiaqueductalgrayandpanic,Neurosci.Biobehav. Rev.28(3)(2004)239–259.

[16]D.W.Grupe,J.B.Nitschke,Uncertaintyisassociatedwithbiasedexpectancies andheightenedresponsestoaversion,Emotion11(2)(2011)413. [17]D.W.Grupe,J.B.Nitschke,Uncertaintyandanticipationinanxiety:an

integratedneurobiologicalandpsychologicalperspective,Nat.Rev.Neurosci. 14(7)(2013)488–501.

[18]S.Halle,N.C.Stenseth(Eds.),ActivityPatternsinSmallMammals:An EcologicalApproach,vol.141,Springer,2012.

[19]J.B.Hirsh,R.A.Mar,J.B.Peterson,Psychologicalentropy:aframeworkfor understandinguncertainty-relatedanxiety,Psychol.Rev.119(2)(2012)304. [20]I.Indovina,T.W.Robbins,A.O.Nú ˜nez-Elizalde,B.D.Dunn,S.J.Bishop,Fear

conditioningmechanismsassociatedwithtraitvulnerabilitytoanxietyin humans,Neuron69(3)(2011)563–571.

[21]M.F.Mason,M.I.Norton,J.D.VanHorn,D.M.Wegner,S.T.Grafton,C.N. Macrae,Wanderingminds:thedefaultnetworkandstimulus-independent thought,Science315(5810)(2007)393–395.

[22]A.Mathews,B.Mackintosh,Acognitivemodelofselectiveprocessingin anxiety,Cogn.Ther.Res.22(6)(1998)539–560.

[23]N.McNaughton,P.J.Corr,Atwo-dimensionalneuropsychologyofdefense: fear/anxietyanddefensivedistance,Neurosci.Biobehav.Rev.28(3)(2004) 285–305.

[24]K.Mitte,Anxietyandriskydecision-making:theroleofsubjectiveprobability andsubjectivecostsofnegativeevents,Personal.Individ.Differ.43(2)(2007) 243–253.

[25]D.Mobbs,J.J.Kim,Neuroethologicalstudiesoffear,anxiety,andrisky decision-makinginrodentsandhumans,Curr.Opin.Behav.Sci.5(2015)8–15. [26]D.Mobbs,P.Petrovic,J.Marchant,D.Hassabis,N.Weiskopf,B.Seymour,R.

Dolan,C.Frith,Whenfearisnear:threatimminenceelicits

prefrontal-periaqueductalgrayshiftsinhumans,Science317(5841)(2007) 1079.

(8)

F.Rigolietal./NeuroscienceLetters612(2016)7–13 13

[28]A.M.Perkins,S.E.Kemp,P.J.Corr,Fearandanxietyasseparableemotions:an investigationoftherevisedreinforcementsensitivitytheoryofpersonality, Emotion7(2)(2007)252.

[29]A.M.Perkins,A.Cooper,M.Abdelall,L.D.Smillie,P.J.Corr,Personalityand defensivereactions:fear,traitanxiety,andthreatmagnification,J.Personal. 78(3)(2010)1071–1090.

[30]H.Plassmann,J.O’Doherty,A.Rangel,Appetitiveandaversivegoalvaluesare encodedinthemedialorbitofrontalcortexatthetimeofdecisionmaking,J. Neurosci.30(32)(2010)10799.

[31]G.J.Quirk,J.S.Beer,Prefrontalinvolvementintheregulationofemotion: convergenceofratandhumanstudies,Curr.Opin.Neurobiol.16(6)(2006) 723–727.

[32]F.Rigoli,G.Pezzulo,R.J.Dolan,ProspectiveandPavlovianmechanismsin aversivebehaviour,Cognition146(2016)415–425.

[33]A.B.Satpute,J.A.Mumford,B.D.Naliboff,R.A.Poldrack,Humananteriorand posteriorhippocampusresponddistinctlytostateandtraitanxiety,Emotion 12(1)(2012)58–68.

[34]T.Sharot,A.M.Riccardi,C.M.Raio,E.A.Phelps,Neuralmechanismsmediating optimismbias,Nature450(7166)(2007)102–105.

[35]F.Sotres-Bayon,D.Sierra-Mercado,E.Pardilla-Delgado,G.J.Quirk,Gatingof fearinprelimbiccortexbyhippocampalandamygdalainputs,Neuron76(4) (2012)804–812.

[36]C.D.Spielberger,ManualfortheState-TraitAnxietyInventory,Consulting PsychologistsPress,PaloAlto,CA,1983.

[37]J.Stöber,Traitanxietyandpessimisticappraisalofriskandchance,Personal. Individ.Differ.22(4)(1997)465–476.

[38]G.Warda,R.A.Bryant,Cognitivebiasinacutestressdisorder,Behav.Res.Ther. 36(12)(1998)1177–1183.

[39]P.J.Whalen,Fear,vigilance,andambiguity:initialneuroimagingstudiesofthe humanamygdala,Curr.Dir.Psychol.Sci.38(1998)177–188.

Figure

Fig. 1.
Table 1
Fig. Significantarein this figure legend, the reader is referred to the web version of this peak-activation  voxel inleftasterisks.hippocampus, left amygdalainterpretation (inandlefteffectsvmPFC)marked andofbottom, forVIStheminus HIDreferences (relativeto  t
Fig.  minus betweenleft VIS (in arbitrary units) at trial start. Significant effects are marked with                         hippocampal medianvoxelsplit.inleftVAShippocampus, activation forhighaand(D)lowRelationshiptrait-anxietyscoreparticipantsand foracco

References

Related documents

The ash-flow tuffs are younger than the Rock Springs Rhyolite based on stratigraphic relationships and are sourced from both the Twin Falls eruptive center as well as the

We compare consumer debt aggregates as well as moments—such as the mean and variance—of the household distributions of total debt, mortgage and home equity line of credit

p.27.. 4 Clearly, there are many kinds of visual printed media that can be used by the teacher in English teaching-learning process to the young learners such as book,

been determined, graft blood flow of less than 600 to However, they did not attempt to correlate the relation- ship between change of stenosis and the degree in reduc- 700 mL/min

Table – 4: Frequency distribution of practice of the respondents towards malaria prevention and control, AssosaWoreda, Benishangul Gumuz Region, 2014G.C.. regarded as

The algorithm takes both the signals as input and tries to separate each signal that is independent of each other and then channel 1 is replaced with zero and it is

THE BIGGEST EVENT FOR FINANCE &amp; IT Financial Systems is the biggest annual event for financial managers and specialists who want to know which IT partner can help them move

The breast portfolio remained the strongest area for recruitment in 2012-2013, representing 44% of recruitment at BCFH. Lung studies accounted for 15% of recruitment, having