City, University of London Institutional Repository
Citation
:
Rigoli, F., Ewbank, M., Dalgleish, T. & Calder, A. (2016). Threat visibility
modulates the defensive brain circuit underlying fear and anxiety. Neuroscience Letters, 612,
pp. 7-13. doi: 10.1016/j.neulet.2015.11.026
This is the published version of the paper.
This version of the publication may differ from the final published
version.
Permanent repository link:
http://openaccess.city.ac.uk/16673/
Link to published version
:
http://dx.doi.org/10.1016/j.neulet.2015.11.026
Copyright and reuse:
City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.
NeuroscienceLetters612(2016)7–13
ContentslistsavailableatScienceDirect
Neuroscience
Letters
j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / n e u l e t
Research
paper
Threat
visibility
modulates
the
defensive
brain
circuit
underlying
fear
and
anxiety
Francesco
Rigoli
a,b,∗,
Michael
Ewbank
b,
Tim
Dalgleish
b,
Andrew
Calder
baWellcomeTrustCentreforNeuroimagingatUCL,London,UK bMRCCognitionandBrainSciencesUnit,Cambridge,UK
h
i
g
h
l
i
g
h
t
s
•WeusedhumanfMRIandanovelcomputer-basedtasktostudytheeffectsofvisualthreatuncertaintyonbrainactivity.
•Lackofvisualthreatinformationincreasedactivityinhippocampus,ventromedialprefrontalcortexandamygdala(regionsinvolvedinanxiety). •Presenceofvisualthreatinformationincreasedactivityinperiaqueductalgray(involvedinfear).
•Hightrait-anxietyparticipantsanticipatedhippocampalactivationwhenvisualthreatinformationwasnotprovided.
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received25August2015
Receivedinrevisedform24October2015 Accepted16November2015
Availableonline2December2015
Keywords: Fear Anxiety Uncertainty Hippocampus PAG Amygdala
a
b
s
t
r
a
c
t
Recenttheoriesdistinguishanxietyfromfearinthebrain.Anxietyisassociatedwithactivationin ven-tromedialprefrontalcortexandhippocampus,whilefearisassociatedwithactivationinperiaqueductal gray,withamygdalainvolvedinprocessingaspectsofbothemotionalresponses.Thesetheoriespropose thattheamountofinformationavailableaboutthreatdetermineswhichofthetwodefensiveresponsesis elicited,withfearandanxietyassociatedwithwell-definedanduncertainthreatsrespectively.However, adirecttestofthishypothesisislacking.HereweprovidesuchatestusingfMRItorecordparticipants’ brainactivitywhiletheyperformedacomputer-basedtaskwhichrequiredtopressabuttontomove anartificialagenttoatargetpositionwhileanartificialpredatorchasedtheagent.Inonecondition (associatedwithfear)thepredatorwasvisible,whileinanothercondition(associatedwithanxiety)the predatorwasinvisible.Ventromedialprefrontalcortex,hippocampus,andamygdalashowedincreased activitywhenthepredatorwasinvisiblecomparedtovisible,whiletheoppositeeffectwasobservedin periaqueductalgray.Wealsoobservedthatparticipantswithhighbutnotlowtrait-anxietyshowedan hippocampalactivationwithinvisiblethreatatanearliertimestageduringthetrial.Thesefindingshelp clarifytheneuralmechanismsthatunderliedifferentdefensiveemotionsandshedlightonhowthese mechanismsmaycontributetoexaggeratedanxiety.
©2015TheAuthors.PublishedbyElsevierIrelandLtd.ThisisanopenaccessarticleundertheCCBY license(http://creativecommons.org/licenses/by/4.0/).
1. Introduction
Complex organisms are equipped with a vast repertoire of defensiveresponsesthathaveevolvedtoadapttoaconsiderable varietyofaversiveconditions.Research investigatingtheneural substrates underlying defensive behavior suggests that defen-siveresponsesare supportedbya braincircuitextendingfrom ventromedialprefrontalcortex(vmPFC),hippocampusand amyg-dalatoperiaqueductal gray(PAG;[11,23]).Centraltothisbrain
∗ Correspondingauthorat:WellcomeTrustCentreforNeuroimagingatUCL, QueenSquare,LondonWC1N3BG,UK.
E-mailaddress:[email protected](F.Rigoli).
systemistheamygdala,aregioninvolvedinlearningand coordi-natingconditionedresponses[8,10]andregulatedbybidirectional connections withvmPFC [31].The key role of hippocampusin defensivebehaviorissupportedbyseveralfindings[1,2,17,33]such astheevidencethatanxiolyticeffectsofbenzodiazepinesare medi-atedbyanimpactonhippocampus[2].Anotherimportantregionof thedefensivenetworkisPAGwhichplaysacentralroleinguiding freezingandfight/flightreactions[12,15,26,27].
Althoughtheareascomprisingthebrain’s defensivenetwork appearwell-established,itremainsunclearhowactivationinthese areasismodulatedbydifferentaversivecontexts.Contemporary theoriesproposethatevolutionhasfavoredthedifferentiationof twokindsofdefensiveresponsesthatcanbetracedbacktofear andanxiety,eachrecruitingdistinctneuralregions.Fearhasbeen
http://dx.doi.org/10.1016/j.neulet.2015.11.026
8 F.Rigolietal./NeuroscienceLetters612(2016)7–13
Fig.1. (A)Taskdescription.ParticipantsstartedeachtrialbyindicatingonaVASscaletheirexpectancyofbeingcapturedbytheartificialpredatorinthenexttrial.Atthe sametime,participantswereinformedaboutthecondition(HIDorVIS)ofthenexttrialbyapaneldisplayedonthebottomofthescreenreproducingthecondition.After, arectangularpathwasdisplayedtogetherwithablueballrepresentingtheagentpositionedinthemiddleofthepathplus,inVIStrialsonly(presentedintheexample showninthisfigure),aredballrepresentingapredatorappearingontheleftextremesideofthepath.After1–3s,theblueballturnedgreenandparticipantshadtopressa buttonandkeepitpressedtomovethegreenball/agenttowardthetargetpositionrepresentedbyagraysquareatthefarrightsideofthepath.Atthesametime,thered ball/predatormovedclosertotheagent.On50%oftrialscaptureoccurred(50%ofthetimeattargetposition,asintheexample,50%alongthepath),whileon50%oftrials theagentreachedthetargetwithoutbeingcaughtandasafetysignal(twoyellowhorizontalarrows)wasdisplayeduponthetarget.(B)Relationshipbetweentrait-anxiety andaverageVASscoreindicatingthesubjectiveprobabilityofbeingcapturedbythepredator(r(22)=0.498,p=0.018).(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)
associatedwithactivationinPAG,andanxietywithactivationin hippocampusandvmPFC,withtheamygdalainvolvedin process-ingaspectsofbothemotionalresponses[9,11,23,28,29].Thelevel ofuncertaintyregardingdangeristhoughttobeoneofthekey dimensionsthateliciteitherofthetwodefensiveresponses,with fearandanxietybeingevokedbywell-definedandundetermined threatsrespectively[9,17,19,25,32].Threatuncertaintyisaffected bytheamountofvisualinformation,anaspectimportantinseveral ecologicalcircumstances.Forinstance,thenightpreventsviewing apredator,inducingaresponsedifferentfromthatexhibitedinthe daylight[18].Howeveradirectinvestigationoftheimpactofthreat uncertainty,andmorespecificallyofthreatvisibility,onactivityin thedefensivebrainsystemislacking.
Inordertostudytheimpactofuncertaintyonthedefensive brain network, we used a paradigm which manipulated visual informationaboutthreat.Weusedfunctionalmagneticresonance imaging(fMRI)torecordtheneuralresponseofhealthy individu-alswhiletheyperformedacomputer-basedtask(Fig.1A)inwhich theyhadtopressabuttontomoveanartificialagent,displayed onthe screen, toa targetposition, while an artificialpredator waschasingtheagent.Inaconditionassociatedwithlowthreat uncertainty, visualfeedback onthe predatorposition was pro-videdthroughoutthetrial(visiblethreat:VIS),whileinanother condition,associatedwithhighthreatuncertainty,visualfeedback onthepredator’spositionwasnotprovided(hiddenthreat:HID). Onhalfofthetrialstheagentreachedthetargetwithoutbeing caughtandontheotherhalfthepredatorcapturedtheagentand aloudscreamnoisewasdeliveredaspunishment.Consistentwith recentproposals[9,11,23],wepredictedthatVIScomparedtoHID wouldactivatePAG,whichguidesfight/flightreactionsassociated withfear, whereasHID comparedtoVISwould activatevmPFC andhippocampuswhicharethoughttounderliethecognitive pro-cessescharacterizinganxiety.Wealsopredictedtheinvolvement
[image:3.646.117.473.55.296.2]oftheamygdala,althoughgivenitsroleinbothfearandanxiety responses,wedidnothaveapriorihypothesesregardingthisregion
[11,23].
We were also interested in investigating the relationship betweenindividualdifferencesinemotionalrespondingandthe functionofthedefensivebraincircuit.Toaddressthis,westudied theimpactoftrait-anxiety[36]onneuralresponsetoHID com-paredtoVIS.Ithasbeensuggestedthatakeydifferencebetween anxiousandnon-anxious individualsis thattheformer tendto anticipateintimeananxietyresponsetodanger[22].Basedonthis, wepredictedthat,inhightrait-anxietybutnotinlowtrait-anxiety individuals,theneuralresponseinhippocampusandvmPFCforHID comparedtoVISwouldemergeatanearliertimepointduringthe trial,reflectingananticipatedanxietyreactioninhightrait-anxiety participants.
2. Methods
2.1. Participants
Cam-F.Rigolietal./NeuroscienceLetters612(2016)7–13 9
bridgeLocalResearchEthicsCommittee.Allparticipantsprovided informedwrittenconsentandwerepaidforparticipating.
2.2. Experimentalparadigm
Attrialstart,arectangularpathmadeof23squareswas pre-sented on the screen together with a blue ball representing a virtualagent(participantswereinstructedthatthevirtualagent representedthemselves)thatappearedinthemiddleofthepath (Fig.1A).After1–3stheballturnedgreenandparticipantshadto pressabuttontomovetheball/agenttoatargetposition(agray squarelocatedattherightendofthepath).Participantshadto keepthebuttonpressedtomaketheagentadvanceonesquareper secondresultingin12storeachthetarget.Overall56trialswere playedsplitacrosstwoconditions(VISandHID)orderedrandomly. InVIStrials,aredballrepresentinganartificialpredatorwas pre-sentedontheleftsideofthepathandonceparticipantspressedthe buttonthepredatorstartedmovingrandomly1–3squaresper sec-ondtowardtheagent(thepredatorneverpassedtheagent).On50% ofVIStrials,theagentreachedthetargetwithoutbeingcaptured andontheother50%thepredatorcapturedtheagent,50%ofthe timealongthepath(thepositionwasrandomlyselected)and50% ofthetimeattargetposition(i.e.,atthefarrightend).InHIDtrials, theredball/predatorwasinvisiblebutparticipantswereinstructed thatthepredatorwaspresentandbehavedasintheVIScondition. AspertheVIScondition,on50%ofHIDtrialstheagentwascaptured, 50%ofthetimealongthepathand50%ofthetimeattargetposition. ForbothVISandHID,whencaptureoccurred,theredball/predator appearedupontheagentandaloudscream(103dB)wasdelivered for1sviaheadphonesaspunishment.Whenthetargetwasreached withoutcapture,asafetysymbol(twoyellowhorizontalarrows) appearedonthetargetpositionfor2s.Trialswereseparatedby 6–12s.Oneachtrial,ifthebuttonwasnotpressedwithin2s,or wasreleasedbeforereachingthetarget,theagentwascaptured andthetrialimmediatelyrepeated.
Beforeeachtrial,participantswereaskedtoestimatethe proba-bilityofbeingcapturedonavisualanalogscale(VAS).Participants wereinformedofthenexttrialconditionduringtheVAS presen-tationbyareproductionoftheconditiondisplayedatthebottom ofthescreen.TrialsstartedimmediatelyafterVASchoiceswere finalized.
2.3. fMRIdataacquisitionandanalysis
MRIscanningwasconductedattheMedicalResearchCouncil CognitionandBrainSciencesUnit.Visualstimuliwerepresented with E-prime 2. Echo-planar T2*-weighted (EPI) images were acquiredwithSiemensTimTrio3TMRsystemwitha12 chan-nelheadcoilandeachimagevolumeconsistedof32interleaved sliceswith3×3×3resolution and2srepetitiontime. Thefirst five volumes acquired were discarded to allow for equilibra-tion effects. T1-weighted structural images were acquired at a 1×1×1mmresolution.Imagingdatawereanalyzedusing Statisti-calParametricMapping(SPM)version8(WellcomeTrustCentrefor Neuroimaging).Preprocessingincludedspatialrealignmenttothe meanvolume,slicetimecorrection,co-registration,normalization tothestandard MontrealNeurologicalInstitute(MNI)template witha3×3×3voxelsize,andsmoothingusing8mmGaussian kernel.High-passtemporalfilterwithacutoffof128sandAR-1 modelwereapplied.
Neuralactivationwasmodeledwithacanonicalhemodynamic responsefunctionandaGeneralLinearModel(GLM)including6 movementregressorsofnointerestplusboxcarfunctionregressors atVASpresentation(oneforHIDandoneforVIS),attrialstart(i.e., whenparticipantspressedthebuttonaftertheblueball/agentturns green;oneforHIDandoneforVIS),attrialend(i.e.,athalfofthe
Table1
Brainareassignificantlyactivatedacrossallparticipantsattrialendforeachofthe differentcontrasts(nosignificantactivationwasobservedattrialstart).Areaswith asterisksindicateROIsinwhichstatisticsweresmall-volumecorrected,whereas forotherareasawhole-braincorrectionwasused.Inbothcases,p<0.05FWEwas appliedassignificancecriterion.(A)HIDminusVIS;(B)VISminusHID.
(a)HIDminusVIS
Area Peakcoordinates Z p
Lefthippocampus* −28,−22,−16 2.64 0.042
Righthippocampus* 28,−22,−16 3.06 0.020
Leftamygdala* −26,−8,−20 2.82 0.016
Rightamygdala* 24,−4,−22 2.78 0.030
vmPFC* −6,58,4 4.33 0.006
Posteriorcingulate(BA29) −14,−44,10 5.09 0.001
Cuneus(BA18) 12,−86,20 4.99 0.016
Lingualgyrus(BA18) 14,−72,−2 4.74 0.044
(B)VISminusHID
Area Peakcoordinates Z p
PAG* −3,−27,−6 2.81 0.020
Leftinferiortemporalgyrus −50,−68,4 5.94 0.000
Rightprecuneus(BA31) 28,−74,30 5.79 0.000
Rightmiddlefrontalgyrus(BA6) 36,−2,44 4.88 0.020
Fusiformgyrus(BA19) 40,−80,−8 6.63 0.000
Inferiorfrontalgyrus(BA44) 54,12,16 5.56 0.001
Precuneus(BA7) 22,−56,54 5.07 0.012
Middlefrontalgyrus(BA6) 24,2,64 4.98 0.016
Leftcerebellum −6,−76,−30 4.75 0.042
pathcorrespondingto6saftertrialstart;oneforHIDandonefor VIS)andtwostickfunctionregressorsatoutcomedelivery(onefor captureandoneforsafety).Trialsinwhichthepredatorcaptured theagentalongthepathweremodeledwithseparatedregressors attrialstart(oneforHIDandoneforVIS).
Wepredictedthattheparticipants’emotionalresponseelicited bytheexperimentalconditionswasevidenttoalargerdegreeat trialend,whenthepredatorwascloserintimeandspacetothe agent.Therefore,toincreasethestatisticalpower,wefocusedon thistimepointanalyzingthecontrastbetweenHIDandVISforall subjects(withoutconsideringthiscontrastattrialstart).In addi-tion,wealsopredictedthatparticipantswithhighlevelsoftrait anxiety(accordingtoamediansplit)wouldexhibitanemotional responseearlierduringthetrial,henceforthissubgroupof par-ticipantsweanalyzedthecontrastbetweenHIDand VISattrial start.
Analyses focused onthefollowing regions ofinterest (ROIs) extractedfrompreviousstudiesthatusedasimilarparadigmto investigateactivityintheseregions[26,27]:bilateralhippocampus (inMontrealNeurologicalInstitute(MNI)coordinates,left:−28,
−10,−22;right:28,−10,−22),bilateralamygdala(left:−28,−6,
−27;right:28,−6,−27),vmPFC(−1,51,−1)andPAG(−2,−28,−8). ROIsweredefinedas6mmspherescenteredonpriorcoordinates
[26,27].Forhypothesistesting,statisticsweresmall-volume cor-rected(SVC)foreachROIseparatelyandwhole-braincorrectedfor otherbrainareas.Inbothcases,ap<0.05familywiseerror(FWE) wasusedassignificancecriterion.Areaswithsignificantactivation accordingtothesecriteriaarereportedinTable1.
[image:4.646.311.565.110.323.2]10 F.Rigolietal./NeuroscienceLetters612(2016)7–13
Fig.2.(A)ActivityattrialendforHIDminusVIS(red/orangeactivation)andVISminusHID(green/blueactivation)inROIsindicatedbyyellowcircles:bilateralhippocampus, bilateralamygdala,vmPFC,andPAG(thresholdforactivationmapsisp=0.005).(B)Top,contrastcoefficientattrialstart(graybars)andtrialend(whitebars)forHIDminus VIS(inpeak-activationvoxelinlefthippocampus,leftamygdalaandleftvmPFC)andbottom,forVISminusHID(relativetothepeak-activationvoxelinPAG).Significant effectsaremarkedwithasterisks.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)
3. Results
3.1. Behavior
In a post-scan questionnaire, participantsshowedno differ-enceinratings(ona0-10VAS)ofemotionalintensityforHIDand VISconditions(HD:mean4.59,SD1.89;VIS:mean4.45,SD1.90;
t(21)=0.603,p=0.55;twotailedp<0.05isusedassignificance cri-terionforbehavioralanalyses)indicatingthatthesetwoconditions werematched.Howeverreactiontimesforbuttonpressingafter theblueball/agentturns greenwerefasterintheVIScondition comparedtoHIDcondition(t(21)=3.860,p=0.001),indicatingthat VISwasassociatedwithincreasedmotorreactivity,consistentwith theideathatthisconditioninducedafight/flightreaction charac-teristicoffear.
Acrossparticipants,averageVASscoresoftheestimateof cap-tureprobabilitydidnotdiffersignificantlyfrom0.5(i.e.,thetrue captureprobability),thoughatrendtowardpessimisticestimates wasevidentt(21)=1.764,p=0.09;withnodifferencebetweenHID and VIS,(t(21)=0.860,p=0.4). Thismight suggest that partici-pantswereslightlypessimistic,thoughcautionshouldbetaken becauseofthenostatisticallysignificantdata.Trait-anxiety[36]
correlatedwithaverageVASscore(r(22)=0.498,p=0.018)bothfor HID(Fig.1B;r(22)=0.425,p=0.048)andVIS(Fig1B;r(22)=0.518,
p=0.012)indicatingthathightrait-anxietyindividualsweremore pessimistic(Fig.1B).
3.2. Brainimaging
ToinvestigatetheneuralactivationinresponsetoVIScompared toHID,werestrictedouranalysistotrialend(i.e.,thesecondhalf
ofthetrialstarting6safterbuttonpressingandlastinguntiltrial end)becauseweexpectedtheneuraleffecttoemergeespeciallyat thistimepointwhenthepredatorwascloserintimeandspaceto theagentthusenhancingparticipants’emotionalresponse.Across allparticipants(Fig.2),attrialendHIDminusVISwasassociated withincreasedactivationinbilateralhippocampus(left:,−28,−20,
−16;Z=2.64,p=0.042SVC;right:28,−22,−16;Z=3.06,p=0.02 SVC),bilateralamygdala(left:−26,−8,−20;Z=2.82,p=0.016SVC; right:24,−4,−22;Z(21)=2.78,p=0.03SVC),andvmPFC(−6,58,4;
Z=4.33,p=0.006SVC),butnotPAG(p>0.05SVC).ThecontrastVIS minusHIDwasassociatedwithincreasedactivationinPAG(−3,
−27,−6;Z=2.81,p=0.02SVC)butnothippocampus,vmPFC,or amygdala(p>0.05SVC).
Consistentwithpreviousmodelsofanxiety[22],wepredicted that highbut not low trait-anxiety individuals would showan increasedresponseinhippocampusandvmPFCforHIDminusVIS alsoatanearlier timepoint duringthetrial.Based onthis, we investigatedthebrainresponseattrialstart(i.e.,buttonpressing) and,acrossallparticipants,wefoundnodifferenceinactivation betweenHIDandVISinanyregion(p>0.05SVC).However,attrial start,wefoundthatthecoefficientofthecontrastHIDminusVIS (relativetothepeak-activationvoxelintheROIs)showeda pos-itivecorrelationwithtrait-anxietyinlefthippocampus(Fig.3A;
[image:5.646.79.508.57.356.2]F.Rigolietal./NeuroscienceLetters612(2016)7–13 11
Fig.3.Top,relationshipbetweentrait-anxietyandlefthippocampalactivationforHIDminusVIS(inarbitraryunits)attrialstart(A)andtrialend(B).(C)Contrastcoefficient attrialstart(graybars)andtrialend(whitebars)forHIDminusVISinpeak-activationvoxelinlefthippocampus,forhighandlowtrait-anxietyparticipantsaccordingto amediansplit.(D)RelationshipbetweenVASscoreandlefthippocampalactivationforHIDminusVIS(inarbitraryunits)attrialstart.Significanteffectsaremarkedwith asterisks.
Finally,wedeterminedwhethertherelationshipbetween trait-anxietyand hippocampalactivityforHIDminusVISwaslinked to participants’VAS scores relating tocapture expectancy. We observedthattheaverageVASscorecorrelatedwithactivityinleft hippocampusforHIDminusVISattrialstart(Fig.3D;r(22)=0.507;
p=0.016)butnottrialend(p>0.05).Giventhattrait-anxiety,VAS scoresand hippocampalresponse forHID minusVISare corre-latedwitheach other,weinvestigated amediationmodel with the hypothesis that the anticipatory hippocampal response for HID minus VIS influences theVAS score which in turn affects trait-anxiety.Thismediationanalysiscanbeperformedwith hier-archicalregressionwhichshowedanon-significantresultforthe hippocampalresponse(t(22)=1.22,p=0.237)butalsofortheVAS score(t(22)=1.62, p=0.122),thusnotsupportingthemediation model.
4. Discussion
Influential theories propose that evolution has shaped two differentkinds of defensiveemotions,namely fear and anxiety
[9,11,32,23],andthateachisassociatedwithspecificcognitiveand neuralmechanisms.Theamountofinformation availableabout dangeristhoughttounderlietheelicitationofeitherofthetwo emotions,with fear elicited bywell-defined dangers and anxi-etyelicitedbyundeterminedthreats[9,19,16,25].Herewetested aspectsofthismodelbymanipulatingtheamountofvisual infor-mation about danger and investigating its impact on behavior andactivationinthedefensivesystemofthebrain.Importantly, punishmentwasmatchedinquantity, location,andtime across conditions,andparticipantsevaluatedHIDandVISasequally neg-ative,indicating that emotionalintensitywasequivalent across conditions.However,RTswerefasterinVIScomparetoHID, sug-gestingthatVISwasassociatedwithincreasedmotorreactivity. Althoughalternativeexplanationscannotberuledoutcompletely, thisobservationisconsistentwiththepossibilitythatthetwo con-ditionseliciteddifferentkindsofemotionalresponses,withVIS beingassociatedwithagreaterfight/flightreactioncharacteristic offear.
Inlinewithourpredictions,attrialend(whendanger, repre-sentedbytheartificialpredator,wascloserintimeandspace)HID wasassociatedwithgreateractivationinvmPFCandhippocampus, regionsimplicatedinthecognitiveprocessesunderlyinganxiety.A similareffectwasobservedintheamygdala.Bycontrast,VISwas associatedwithincreasedactivationofPAG,whichislinkedwith thecontroloffight/flightreactionsconnectedtofear.
Thekeyroleofamygdalainlearningandcoordinatingdefensive responsesiswellestablished[8,10].Despiteevidenceindicating thatamygdalaisinvolvedinprocessingaspectsofbothfearand anxiety[11,23],we observedincreasedactivationinthis region duringHIDcomparedtoVIS.Thisresultcanbeexplainedbythe factthatamygdalaisparticularlyrecruitedduringtheprocessing of threateninginformation underconditions ofuncertainty and ambiguity[39],characteristicofHID.
Amygdala is widely connected with regions of the vmPFC thatprocesshigh-ordercontextualinformationsuchasthevalue ofexpectedoutcomes,andareimportantinemotionregulation
[30,31].Extensiveevidencefromstudiesofhumanandnon-human animals has shown that activation in hippocampus, and espe-ciallyinitsventralportion,elicitsabehavioralinhibitionresponse thatcharacterizesanxiety[1,2,17,33,35].Inaddition,recentdata indicatesthatthebehavioral inhibitionelicited byhippocampal activationisaccompaniedbysuppressionofconditionedresponses whicharesignaturesoffear,suchasfight/flightreactions[35].PAG isthoughttoplayacentralroleinregulatingfearresponsesbased onsubstantialevidencethatactivityinthisareaaffectsthe per-formanceof freezingand fight/flight reaction[12,15,26,27].Our findings buildonpreviousworkonthedefensivebrain system byprovidingevidencethatdifferentamountsofvisual informa-tionaboutthreatareassociatedwithactivityinspecializedbrain regions.
[image:6.646.151.460.55.291.2]12 F.Rigolietal./NeuroscienceLetters612(2016)7–13
intermsoffearoranxietyandinfluenceactivationofthedefensive brainnetwork.
OfnoteisthattheregionsactivatedforHIDcomparedtoVIS correspondtothedefaultmodenetwork,asetofbrainstructures recruitedduringrestingstatecomparedtotaskperformance[5,21]. Thoughatfirstthismightappeartosuggestareducedengagement inourtaskduringHIDcomparedtoVIS,thisisunlikelygiventhat participantsattributedequalemotionalintensitytothetwo condi-tions.Onepossibilityisthatthedefaultmodenetworkisinvolved inthecognitiveprocessescharacteristicofanxietysuchasworry, whichmightbeinhibitedduringfearfulfight/flightresponses.This isalsosupportedbydatainanxietypatientsshowing,during rest-ingstate,anenhancedactivityinvmPFC,akeyregionofthedefault modenetwork[40].
Participants’estimateofcaptureprobabilitywashigherthan 50%(i.e.,thetrueunderlyingprobability),indicatingapessimistic bias.Though thisemergedasa significancetrendand therefore shouldbetakenwithcaution,itreplicatesapreviousstudy[16]. Theseresultsindicateapessimisticbiasinaversivecontexts, espe-ciallyunderambiguityanduncertainty.Givensubstantialevidence indicatinganoptimismbiasinappetitivecontexts[34],ingeneral theseresultsmightsuggestthathumansoverestimatethe occur-renceofsalientoutcomescomparedtonullevents,independentof whetherthepredictedoutcomeisrewardorpunishment.
Enhanced pessimistic biases have been reported in normal subjectswithhightraitanxiety[7,24,37]andinpatientswith gen-eralizedanxiety[4,6],socialanxiety[13,14],andposttraumatic stressdisorder[38].Thisfitswiththeideathatexaggeratedanxiety ischaracterizedbypessimisticbiasesthatmightunderlieenhanced worryandrelentlessthinkingaboutpossibledangers[3,17].We replicatethese findings showing a correlationbetween partici-pants’trait-anxietyandsubjectiveestimatesoftheprobabilityof beingcaptured bythe predatorin thetask. To ourknowledge, thisisfirstvalidatedparadigmwherearelationshipbetween pes-simismandtraitanxietyemergeswhichalsoallowssimultaneous brainrecording,andthereforerepresentsapromisingoptionfor thestudyofbrainprocessesunderlyingpessimisticjudgementsin psychopathology.
Animalstudieshaverevealedarelationshipbetweenenhanced hippocampalactivityand anxiety[2,17,35]which haverecently beensupportedbyhumanfMRI studies[1,20,33].Aninfluential modelproposesthatthecentralcharacteristicofexaggerated anx-ietyisananticipatedresponsetodangerbasedonthepossibility thatanxiousindividualsworrymorethannon-anxiousindividuals withregardtodistalthreats,butequallyinthecontextofproximal threats[22].Inaccordancewiththismodelandliteraturelinking anxietywithhippocampalactivity,wepredictedthathigh com-paredtolowtrait-anxietyindividualswouldshowgreateractivity inhippocampusforHIDcomparedtoVISattrialstart,whenthe threatwasdistantintimeandspace.Theresultssupportedour prediction,andappearconsistentwiththehypothesisthathigh trait-anxietyindividualsanticipateananxietyreaction[22]which isassociatedwithanticipatoryhippocampalactivation.However,it isimportanttostressthatthecurrentstudyonlyincludedhealthy individuals,andthereforefurtherinvestigationisrequiredto estab-lishwhetherourresultsgeneralizetoclinicalpopulations.
Insummary,weshowthattheamountofvisualinformation aboutthreatmodulatesactivityinthedefensivebraincircuit,with lackofinformation activatingareasunderlyinganxiety,suchas hippocampusand vmPFC but also amygdala, a regioninvolved inprocessing aspectsof bothfear and anxiety.By contrast,the presence of visual information activates areas underlying fear suchasPAG.Hightrait-anxietyindividualsshowedan anticipa-toryhippocampalresponsewhenvisualinformationwasabsent. Altogether,thesefindingshelpclarifyingtheneuralandcognitive
mechanismsunderlyingdefensivebehaviorandexaggerated anx-iety.
Acknowledgment
Thisworkwasfunded bytheU.K.Medical ResearchCouncil (GrantMC US A0605PQ50).
References
[1]R.P.Alvarez,G.Chen,J.Bodurka,R.Kaplan,C.Grillon,Phasicandsustained fearinhumanselicitsdistinctpatternsofbrainactivity,Neuroimage55(1) (2011)389–400.
[2]D.M.Bannerman,J.N.P.Rawlins,S.B.McHugh,R.M.J.Deacon,B.K.Yee,T.Bast, J.Feldon,Regionaldissociationswithinthehippocampus—memoryand anxiety,Neurosci.Biobehav.Rev.28(3)(2004)273–283.
[3]T.D.Borkovec,J.Inz,Thenatureofworryingeneralizedanxietydisorder:a predominanceofthoughtactivity,Behav.Res.Ther.28(2)(1990)153–158. [4]T.D.Borkovec,H.Hazlett-Stevens,M.L.Diaz,Theroleofpositivebeliefsabout
worryingeneralizedanxietydisorderanditstreatment,Clin.Psychol. Psychother.6(2)(1999)126–138.
[5]R.L.Buckner,J.R.Andrews-Hanna,D.L.Schacter,Thebrain’sdefaultnetwork, Ann.N.Y.Acad.Sci.1124(1)(2008)1–38.
[6]G.Butler,A.Mathews,Cognitiveprocessesinanxiety,Adv.Behav.Res.Ther.5 (1)(1983)51–62.
[7]G.Butler,A.Mathews,Anticipatoryanxietyandriskperception,Cogn.Ther. Res.11(5)(1987)551–565.
[8]M.Davis,Theroleoftheamygdalainfearandanxiety,Annu.Rev.Neurosci. 15(1)(1992)353–375.
[9]M.Davis,D.L.Walker,L.Miles,C.Grillon,Phasicvssustainedfearinratsand humans:roleoftheextendedamygdalainfearvsanxiety,
Neuropsychopharmacology35(1)(2010)105–135.
[10]M.S.Fanselow,G.D.Gale,Theamygdala,fear,andmemory,Ann.N.Y.Acad. Sci.985(1)(2003)125–134.
[11]L.S.Fanselow,A.Lester,Afunctionalbehavioristicapproachtoaversively motivatedbehavior:Predatoryimminenceasadeterminantofthe topographyofdefensivebehavior,in:RobertC.Bolles,MichaelD.Beecher (Eds.),EvolutionandLearning,LawrenceErlbaumAssociates,Hillsdale,NJ, England,1988,pp.185–212.
[12]M.Fendt,M.S.Fanselow,Theneuroanatomicalandneurochemicalbasisof conditionedfear,Neurosci.Biobehav.Rev.23(5)(1999)743–760. [13]E.B.Foa,M.E.Franklin,K.J.Perry,J.D.Herbert,Cognitivebiasesingeneralized
socialphobia,J.Abnorm.Psychol.105(3)(1996)433.
[14]E.Gilboa-Schechtman,M.E.Franklin,E.B.Foa,Anticipatedreactionstosocial events:differencesamongindividualswithgeneralizedsocialphobia, obsessivecompulsivedisorder,andnonanxiouscontrols,Cogn.Ther.Res.24 (6)(2000)731–746.
[15]F.G.Graeff,Serotonin,theperiaqueductalgrayandpanic,Neurosci.Biobehav. Rev.28(3)(2004)239–259.
[16]D.W.Grupe,J.B.Nitschke,Uncertaintyisassociatedwithbiasedexpectancies andheightenedresponsestoaversion,Emotion11(2)(2011)413. [17]D.W.Grupe,J.B.Nitschke,Uncertaintyandanticipationinanxiety:an
integratedneurobiologicalandpsychologicalperspective,Nat.Rev.Neurosci. 14(7)(2013)488–501.
[18]S.Halle,N.C.Stenseth(Eds.),ActivityPatternsinSmallMammals:An EcologicalApproach,vol.141,Springer,2012.
[19]J.B.Hirsh,R.A.Mar,J.B.Peterson,Psychologicalentropy:aframeworkfor understandinguncertainty-relatedanxiety,Psychol.Rev.119(2)(2012)304. [20]I.Indovina,T.W.Robbins,A.O.Nú ˜nez-Elizalde,B.D.Dunn,S.J.Bishop,Fear
conditioningmechanismsassociatedwithtraitvulnerabilitytoanxietyin humans,Neuron69(3)(2011)563–571.
[21]M.F.Mason,M.I.Norton,J.D.VanHorn,D.M.Wegner,S.T.Grafton,C.N. Macrae,Wanderingminds:thedefaultnetworkandstimulus-independent thought,Science315(5810)(2007)393–395.
[22]A.Mathews,B.Mackintosh,Acognitivemodelofselectiveprocessingin anxiety,Cogn.Ther.Res.22(6)(1998)539–560.
[23]N.McNaughton,P.J.Corr,Atwo-dimensionalneuropsychologyofdefense: fear/anxietyanddefensivedistance,Neurosci.Biobehav.Rev.28(3)(2004) 285–305.
[24]K.Mitte,Anxietyandriskydecision-making:theroleofsubjectiveprobability andsubjectivecostsofnegativeevents,Personal.Individ.Differ.43(2)(2007) 243–253.
[25]D.Mobbs,J.J.Kim,Neuroethologicalstudiesoffear,anxiety,andrisky decision-makinginrodentsandhumans,Curr.Opin.Behav.Sci.5(2015)8–15. [26]D.Mobbs,P.Petrovic,J.Marchant,D.Hassabis,N.Weiskopf,B.Seymour,R.
Dolan,C.Frith,Whenfearisnear:threatimminenceelicits
prefrontal-periaqueductalgrayshiftsinhumans,Science317(5841)(2007) 1079.
F.Rigolietal./NeuroscienceLetters612(2016)7–13 13
[28]A.M.Perkins,S.E.Kemp,P.J.Corr,Fearandanxietyasseparableemotions:an investigationoftherevisedreinforcementsensitivitytheoryofpersonality, Emotion7(2)(2007)252.
[29]A.M.Perkins,A.Cooper,M.Abdelall,L.D.Smillie,P.J.Corr,Personalityand defensivereactions:fear,traitanxiety,andthreatmagnification,J.Personal. 78(3)(2010)1071–1090.
[30]H.Plassmann,J.O’Doherty,A.Rangel,Appetitiveandaversivegoalvaluesare encodedinthemedialorbitofrontalcortexatthetimeofdecisionmaking,J. Neurosci.30(32)(2010)10799.
[31]G.J.Quirk,J.S.Beer,Prefrontalinvolvementintheregulationofemotion: convergenceofratandhumanstudies,Curr.Opin.Neurobiol.16(6)(2006) 723–727.
[32]F.Rigoli,G.Pezzulo,R.J.Dolan,ProspectiveandPavlovianmechanismsin aversivebehaviour,Cognition146(2016)415–425.
[33]A.B.Satpute,J.A.Mumford,B.D.Naliboff,R.A.Poldrack,Humananteriorand posteriorhippocampusresponddistinctlytostateandtraitanxiety,Emotion 12(1)(2012)58–68.
[34]T.Sharot,A.M.Riccardi,C.M.Raio,E.A.Phelps,Neuralmechanismsmediating optimismbias,Nature450(7166)(2007)102–105.
[35]F.Sotres-Bayon,D.Sierra-Mercado,E.Pardilla-Delgado,G.J.Quirk,Gatingof fearinprelimbiccortexbyhippocampalandamygdalainputs,Neuron76(4) (2012)804–812.
[36]C.D.Spielberger,ManualfortheState-TraitAnxietyInventory,Consulting PsychologistsPress,PaloAlto,CA,1983.
[37]J.Stöber,Traitanxietyandpessimisticappraisalofriskandchance,Personal. Individ.Differ.22(4)(1997)465–476.
[38]G.Warda,R.A.Bryant,Cognitivebiasinacutestressdisorder,Behav.Res.Ther. 36(12)(1998)1177–1183.
[39]P.J.Whalen,Fear,vigilance,andambiguity:initialneuroimagingstudiesofthe humanamygdala,Curr.Dir.Psychol.Sci.38(1998)177–188.