• No results found

The Expected Discounted Tax Payments on Dual Risk Model under a Dividend Threshold

N/A
N/A
Protected

Academic year: 2020

Share "The Expected Discounted Tax Payments on Dual Risk Model under a Dividend Threshold"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

The Expected Discounted Tax Payments on Dual Risk

Model under a Dividend Threshold

*

Zhang Liu1, Aili Zhang2#, Canhua Li1

1College of Sciences, Jiangxi Agricultural University, Nanchang, China 2School of Mathematics and Statistics, Nanjing Audit University, Nanjing, China

Email: liuzhang1006@163.com, #zhangailiwh@126.com

Received November 19, 2012; revised December 20, 2012; accepted January 3, 2013

Copyright © 2013 Zhang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, we consider the dual risk model in which periodic taxation are paid according to a loss-carry-forward sys- tem and dividends are paid under a threshold strategy. We give an analytical approach to derive the expression of (u) (i.e. the Laplace transform of the first upper exit time). We discuss the expected discounted tax payments for this model and obtain its corresponding integro-differential equations. Finally, for Erlang (2) inter-innovation distribution, closed- form expressions for the expected discounted tax payments are given.

Keywords: Dual Risk Model; Expected Discounted Tax Payments; Dividend; Threshold Strategy

1. Introduction

Consider the surplus process of an insurance portfolio

 

 

R t   u ct S t

t

0

uc0

 

1

: i

i S t

(1.1)

which is dual to the classical Cramér-Lundberg model in risk theory that describes the surplus at time , where is the initial capital, the constant is the

rate of expenses, and

  Y N t

is aggregate profits process with the innovation number process N t

 

1, 2,

T i

being a renewal process whose inter-innovation times

i Λ have common distribution F. We also

assume that the innovation sizes , independent of i , forms a sequence of i.i.d. exponentially

distributed random variables with exponential parameter . There are many possible interpretations for this model. For example, we can treat the surplus as the amount of capital of a business engaged in research and development. The company pays expenses for research, and occasional profit of random amounts arises accord- ing to a Poisson process.

Y ii, 1

T i, 1

 

0

 

Due to its practical importance, the issue of dividend strategies has received remarkable attention in the lite- rature. De Finetti [1] considered the surplus of the com-

pany that is a discrete process and showed that the opti- mal strategy to maximize the expectation of the dis- counted dividends must be a barrier strategy. Since then, researches on dividend strategies has been carried out extensively. For some related results, the reader may consult the following publications therein: Bühlmann [2], Gerber [3], Gerber and Shiu [4,5], Lin et al. [6], Lin and pavlova [7], Dickson and Waters [8], Albrecher et al. [9], Dong et al. [10] and Ng [11]. Recently, quite a few inter- esting papers have been discussing risk models with tax payments of loss carry forward type. Albrecher et al. [12] investigated how the loss-carry forward tax payments affect the behavior of the dual process (1.1) with general inter-innovation times and exponential innovation sizes. More results can be seen in Albrecher and Hipp [13], Albrecher et al. [14], Ming et al. [15], Wang and Hu [16] and Liu et al. [17,18].

Now, we consider the model (1.1) under the additional assumption that tax payments are deducted according to a loss-carry forward system and dividends are paid under a threshold strategy. We rewrite the objective process as

R,b

 

t t, 0

. that is, the insurance company pays tax at rate  

0,1

on the excess of each new record high of the surplus over the previous one; at the same time, dividends are paid at a constant rate  whenever the surplus of an insurance portfolio is more than b and otherwise no dividends are paid. Then the surplus pro- cess of our model

*Supposed by the Jiangxi Agricultural University Youth Science

Foun-dation (No. 09003326).

#Corresponding author.

 

,b , 0

(2)

 

 

 

   

 

 

 

 

 

, ,

,

, ,

0

,

max

, ( )

b b

b

b b

s t

b

R s

R t b

R s

R t

 

 

  

 

 b

0

tR,b

 

0 u  A

 

   

 

 

   

 

 

 

   

, ,

0

, ,

0

, ,

0

, ,

0

0

d max

d max

,

d max

d max

d d 1 d max

, d

d d 1 d

b b

s t

b b

s t

b b

s t

b b

s t

s t

R t S t R s

R t S t R s

b

R t S t R s

R t S t R s

c t S t R t S t

R t

c t S t R t S t

 

 

 

 

 

 

 

 

 

   

 

  

 

     

     

1

1

1

1

          

(1.2)

 

g

for , with . where 1 is the indi-

cator function of event A and R,b

 

t is the surplus

   

immediately before time . t

For practical consideration, we assume that the posi- tive safety loading condition

1 1 ,

c E YE T

 

,b inf 0 : ,b 0

TtR tT,b 

t

 

,

0

e d

b T

t

D D t

  

0 (1.3)

holds all through this paper. The time of ruin is defined

as with if

 

,b 0

R t  for all 0.

For initial surplus u0, let  be the present value of all dividends until ruin, and  

b D

 

is the discount factor. Denote by the expec-

tation of , that is,

,

V u

 

u

,

, b 0 .

V u b E D R   (1.4)

It needs to be mentioned that we shall drop the sub- script  whenever  is zero.

The rest of this paper is organized as follows. In Sec-

tion 2, We derive the expression of u

,0,0

0

, : e u u

u

g u u E 

 (i.e. the Laplace transform of the first upper exit time). We also discuss the expected discounted tax payments for this model and obtain its satisfied integro-differential equa- tions. Finally, for Erlang (2) inter-innovation distribu- tion, closed-form expressions for the the expected dis- counted tax payments are given.

2. Main Results and Proofs

 

Let

u,0,u

denote the Laplace trans-

form of the upper exit time 0 , which is the time

until the risk process

R t tb

 

, > 0

starting with initial capital u

u0

up-crosses the level u0

 

b for the

first time without leading to ruin before that event. In

0 , 0 : lim ,0 0

g u u u u



 is the probability that particular,

R t tb

 

, > 0

up-crosses the level

the process u0 b

, 0

before ruin.

For general innovation waiting times distribution, one can derive the integral equations for g u u

u b

. When

 ,

 

 

 

  0

1

0

0 0

0 0

, e d , e d e d .

u c u u c t

t y y

T

u u c t

g u u f t t g u c t y u y y

 

  

  

    

  

  

 

 

      

 

 

0 b u u 

 

 

(2.1)

When ,

 

 

 

   

     

    

0

0

1 1

0

0 0

0

0 0

0 0

,

e d , e d e e d

, e d e .

u b c u u ct u b c b c

u u ct

t y t

T T

u b c

u b c t u b c

u b c t u b c y

g u u

f t t g u ct y u y f t t

g u ct y u y

 

  

 

     

  

  

    

      

 

 

     

 

 

 

 

    

 

 

(2.2)

It follows from Equation (2.1) and from Equation (2.2) that g u u, 0

is continuous on

as a function of

and that 0

0,u u

, 0

.

0 , 0

0,

, 0

gu g bu g b u

1 T

(2.3)

For certain distributions F , one can derive integro- differential equations for g u u

, 0

and V u

 

,b . Let us

assume that the i.i.d innovation waiting times have a common generalized Erlang n

T

1 2

:

S

distribution, i.e. the

i’s are distributed as the sum of n independent and exponentially distributed r.v.’s n    Λ n

with

i having exponential parameters

  i 0.

The following theorem 2.1 gives the integro-differ- ential equations for g u u

, 0

when Ti’s have a gene- ralized Erlang

 

n

I

distribution.

Theorem 2.1 Let and D denote the identity ope-

rator and differentiation operator respectively. Then

u u, 0

satisfies the following equation for 0 u b

(3)

0  0

1 ,

d e u u,

g u u

y  

 

0 1

0 0

, e

n

k k k

u u

y c

g u y u

 

 

 

     

      

 

I D

(2.4)

and

0  0

1 ,

d e u u,

g u u

y  



u b

, 0

0 1

0 0

, e

n

k k k

u u

y c

g u y u

  

 

         

 

I D

(2.5)

for .

u u as k

, 0

Proof First, we rewrite g g u u

1 d

i n k

T S S

when

  with S00 in the surplus process (1.2)

1 , 0 , 0

g

with  0. Thus, we have u ug u u

0 u b

. When

 ,

 

  0

1 0

0

,

e k , d ,

k u c

t

k k

g u u

g u c t u t

 

 

  

 

1, 2, , 1

k n

(2.6)

for  Λ 

   

, and

 

  0

0

0 0

0 0

d , e d e d .

n

u c u u c t

t y y

u u c t

, e

n n

g u u t g u c t y u y y

 

   

   

    

   

  

 

 

      

 

 

b

(2.7)

By changing variables in from Equation (2.6) and from Equation (2.7), we have for 0 u ,

0

  k 1

, 0

d ,

0

, u k e k cu x

k g u u

c

  

 

 

 

g x u x

1, 2, , 1

k Λn

(2.8)

for , and

 

0

0 0

0

, e d e d .

u x

y y

u x 0

0

, e n d

u x u

n c

n

g u u x

c

g x y u   y   y

 

 

 

   

 

  

 

  

 

u

(2.9)

Then, differentiating both sides of from Equation (2.8) and from Equation (2.9) with respect to , one gets

0

1

0

1 k , k , ,

k k

c

g u u g u u

 

  

   

  

  

  

I D

1, 2, , 1

k n

(2.10)

Λ , and

for 

 

0

0 0

0 0

1 ,

, e d e .

n

n n

u u

u u y

c

g u u

g u y uy

 

 

  

  

  

  

 

 

I D

(2.11)

Using from Equation (2.10) and from Equation (2.11), we can derive from Equation (2.4) for g u u

, 0

on

 

0,b .

Similar to from Equation (2.6) and Equation (2.7), we have for u b

 

   

 

   

0 1

0

k , ke k , 0 d e k 1 , 0 d ,

u b c u b c b c

t t

k k k

u b c

u u g u ct u t g b c t u b c u t

   

  

   

   

 

 

   

g (2.12)

for k1, 2, ,Λn1, and

 

 

   

 

   

   

 

    

 

0

0

0 0

0

0 0

0

,

, e d e e d

, e d e .

n n

u b c b c u u ct

t y u u ct t

n u b c

c

u b c t u b c y

g u u

t g u ct y u y t

g b c t u b c y u y

  

 

  

 

    

    

      

 

 

     

 

 



      



0

0

e n d

u b c

n

u b c t u b

 

 

 

    

 



(2.13)

Again, by changing variables in Equation (2.12) and Equation (2.13) and then differentiating them with re- spect to , we obtain for

 

0

0 0

0 0

1 ,

, e d e .

n

n n

u u

u u y

c

g u u

g u y uy

  

  

  

 

  

  

 

 

I D

u u b

, 0

k 1

, 0

,

1 k

k k

c g u u

 

 

  

  

I Dg u u

  

1, 2, , 1

k Λn

(2.14)

for , and

(2.15)

(4)

It needs to be mentioned that from the proof of Lemma 2.1, we know that

0 , 0

0,

, 0

,

k k k 0

, 2,3, , .

gug b u g bu k Λn

Therefore, Equations (2.10), (2.11), (2.14) and (2.15) yield

0

0

1 ,

1 , ,

g b u

1

1 1, 2, , .

k

i i i

k

i i i

c

c g b u

 

 

 

k n

  

 

 

  

 

  

  

 

  

   

 

I D

I D

Λ

(2.16)

Remark 2.1 Using a similar argument to the one used

in Lemma 2.1, one can get that when the innovation waiting times follow a common generalized Erlang

 

n

 

,

V u b

distribution, the expected discounted dividend payments satisfies the following integro-differential equa- tion (see Liu et al. [17]).

 

,

d ,0

y

V u b

y u b

 

 

 

  

I D

1

0 1

, e

n

k k k

c

V u y b

 

 

 

 

 

(2.17)

and

 

1 ,

d n,

V u b

y B u b



 

1

0

, e

n

k k k

y c

V u y b

  

 

  

 

  

 

 

I D

(2.18)

with

1 1

1 ,

k k

k

i i j i j

 

  

  

 

   

1, 2, , .

B k Λn (2.19)

In addition, the boundary conditions for V u b

 

, are as follows:

 

 

1 ,

, k,

V b b

V b b B

1

1 1

1, 2, , ,

k

i i i

k

i i i

c

c

k n

 

    

  

  

  

 

  



  

 

I D

I D

Λ

(2.20)

with Equation (2.19).

 

1 V 0 , b 0,



n

1

1, 2, , 1, k

i i i

c

k n

 

 

     

    

 

I D

Λ

(2.21)

With the preparations made above, we can now derive analytic expressions of the expected -th moment of the accumulated discounted tax payments for the surplus

R,b

 

t t, 0

. We claim that the process

process

R,b

 

t t, 0

shall up-cross the initial surplus level u

at least once to avoid ruin. Now, let

 

: e u

u g u E 

 

u

(2.22)

denote the Laplace transform of the first upper exit time

 , which is the time until the risk process

R t t

 

, 0

u

 

b starting with initial capital reaches a new record high for the first time without leading to ruin

 

0 : lim0

g

before that event. In particular, u g u

 

R t t, 0

 

is the probability that the process b reaches a new record high before ruin. Then the closed-form expression of the quantity g u can be calculated as follows.

 

When u b g u , g u u,

0 u b

 

 

0

, e y , d ,

V u u g u   V u y u y

 

 

 . When , using

a simple sample path argument, we immediately have,

or, equivalently

0

,

.

e y , d

V u u g u

V u y u y

 

0 0

(2.23)

Let   and define

1 ,

 

0 ,

 

inf : max ,

n t n Rb t s tRb s

 

 

  

n

 

 

(2.24)

to be the -th taxation time point. Thus,

 

,

,

, , 1

1

, :

: e

1

n

n b

n

n u

n

u b n b n T

n

M u b E D

E R R

  



  

 

 

    

 



1  

n

(2.25) denotes the -th moment of the accumulated discounted tax payments over the life time of the surplus process

R,b

 

t t, 0

We will consider a recursive formula of .

 

,

n M u b

0 u b

in the following theorem 2.2.

Theorem 2.2 When  

 

, we have

 

 

 

 

 

 

 

 

 

 

 

1 1 d 1 1 1 d 1 1 1  d

1 1

, e e d e d ,

b s b

n n n

u b s

b

g t t g t t g t t

n n

n n

b n u n

M s M s

n

1

u b g u s s

g s g s

  

  

  

 

 

    

    

 

    

  

 

(5)

 

n

M    and

and when u b , we have

 

 

 

 

 

 

1 d

e d .

s n u

g t t 1 1 1 , 1 n n n u n

M u b

M s

n

g u     s

g s           

(2.27)

Proof Given that the after-tax excess of the surplus

level over u at time u is exponentially distributed with mean

1 

0

u

due to the memoryless property of the exponential distribution. By a probabilistic argument, one easily shows that for

 

 

 

 

 

e d d 1 n n x x 1 , 0 1 , , 1 1 e 1 n x n x u n u M u b

g u E D u x

g u E D

                         

xx u x

                 u (2.28) Differentiating with respect to yields

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 , 1 1 , 1 , 1 1 e 1 1 1 , 1 , . 1 n n n n n n x u u n n n n n n n

M u b

g u

g u M u

g u

n

g u

E D x

g u

g u M u

g u

g u

n

M u b

g u                                                              

1 d n b

x u x

b         

0 u b (2.29)

When , we have

 

 

  

 

 

 

    1 d 1 d

e d .

n

n

g t t

g t t

C s           

u b

1 1 1 1 , e 1 b u b s n n b n u n

M u b g u

M s n g s                    

(2.30)

When , the general solution of Equation (3.20) can be expressed as

 

 

 

 

  

 

 

 

    1 d 1 d e d s n u t

g t t

1 1 1 1 , e 1 n u g t n n n n n u n M

M u b g u

g M s n s g s                                 

(2.31)

Due to the facts that

 

n g

0   , we have for u b

 

 

 

 

 

 

1 d 1

1 1

,

e d .

1

s n u n

g t t n

n

u n

M u b

M s

n

g u s

g s                

(2.32)

Now, it remains to determine the unknown constant C

in Equation (3.20). The continuity of M u b

 

, on b

and Equation (3.22) lead to

 

 

 

 

1 d 1

1

1

e d .

1

s n b

g t t

n b n M s n C s g s             

(2.33)

Plugging Equation (2.33) into Equation (2.30), we ar

rive at Equation (2.26). □

The special case n1 leads to an expression for the

ex total

 

pected discounted sum of tax payments over the life time of the risk process

 

1 1  d

1 , e d .

1

s

u g t t

u

M u b g us

          

(2.34)

for all u0.

3. Explicit Results for Erlang(2) Innovation

In ume that Wi’s are Erlang(2) dis-

Waiting Times

this section, we ass

tributed with parameters 1 and 2. We also assume

that 12 (without loss f genera ty). Exam 3.1 Note that

o li ple

 

0 0 0 0

, e d e

, .

u u y

g u y u y

g u u

                

I D (3.1)

Applying the operator

0

uu

ID

to Equations (2.4)

an

d (2.5) gives

0

0

1

1 , , ,

0 ,

k k k

c

n

g u u g u u

u b                   

I D I D

(3.2) and



0

0

1

1 , , ,

,

n

k k k

c g u u g u u

u b                      

I D I D

(3.3) The characteristic equation for Equation (3.2) is

2  c

1 1

k k k

r r

             

(3.4)

(6)

without loss of generality, we assume that 12. We

know that Equation (3.4) ha and r3 which satisfies

s three real roots, say r r1, 2

1 2

1 2

3 .

r

c c

1 2

0

r r

c c

  

 

 

 

           

 

     

 

With c replace c in Equation (3.4), e get the charact equation of Equation (3.3), whose roots are

4, 5

r r and r6 with

w eristic

ted by deno

1 2

4 0 5 6

r r r

c c

    

 

 

         

1 2

c c

    

Thus, we have

3

3e ,0 ,

r u

1 2

0 1 2

, er u er u

g u uccc  u b (3.5)

an

5 6

6 r u, ,

d

4

0 4 5

, er u er u e

g u uccc u b

2 3 4 5 6

, , , , ,c c c c are arbitrary constants. To de- e arbitrary constants, we insert Equatio

and (3.6) into Equation (2.3) and obtain

c

3

1 2 4

5 6

1 2 3 4

5 6

e e e

e e 0.

r b

r b r b r b

r b r b

e c c c c

c c

     

1

k

(3.6)

where c c1

termine th ns (3.5)

1 c2c30, (3.7)

and

(3.8)

Apply Equation (2.10) together with Equations (2.3) and (3.5) when  , we get

1 1 2 2 3 3 0.

r cr cr c  (3.9) Insert Equation (3.5) into Equation (2.4), we have

1 0 2 0 3 0

1 2 3

1 2 3

er u er u er u 1.

c c c

r r r

  

    (3.10)

In addition, plugging Equations (3.5) and (3.6) into Equation (2.16) yields

1

2

3

5 6

4

1 1 2 2 3 3

4 4 5 5 6 6

e e e

e e e 0,

r b

r b r b

r b r b

r b

c r c c r c c r c

cr c cr c cr c

  

    

    (3.11)

and

3

1 2 4

5 6

1 2 3 4

1 2 3 4

5 6

5 6

e e e e

e e 0.

r b

r b r b r b

r b r b

c c c c

r r r r

c c

r r

   

   

 

 

  

   

  

 

(3.12)

Some calculations give

 

1 0 2 0 3 0

1 0 2 0 3 0

1 0 2 0 3 0

3 2

1

3 2 1 3 2 1

1 2 3

1 3

2

3 2 1 3 2 1

1 2 3

2 1

3

3 2 1 3 2 1

1 2 3

1 2 1 3 5 6 3 1 1 2

4

,

e e e

,

e e e

,

e e e

e , , e ,

r u r u r u

r u r u r u

r u r u r u

r b r b

c

r r

r r r

r r

c r r r r

r r

r r r

r r

c

r r r r r r

r r r

r r r r r r r r r

c

  

  

  

 

 

 

  

 

  

 

  

 

  

 

  

  

 

3 2

r r

r r r r

 

 

 

 

1

1 0 2 0 3 0

3 2 1

5 1 0

5 6 2 3 1 1 5 6

3 2 1 3 2 1 6 5 4 6 5 4

1 2 3 4 5 6

1 3 4 6 1 3 1 2 4 6 3 2 1 1 4 6

5

3 2

1

, e , ,

,

e e e e

e , , e , , e , ,

e e

r b

r u r u r u

r b

r b r b r b

r b r u

r r r r r r

r r r r r r r r r r r r

r r r r r r

r r r r r r r r r r r r r

r r

c

r

     

  

 

 

        

    

     

  

    

 

4

2 1

c

r r

c

 

 

2 0 3 0

3 2 1

6 1 0 2 0 3 0

1 3 2 1 6 5 4 6 5 4

2 3 4 5 6

1 3 4 5 3 1 1 2 4 5 2 3 1 1 4 5

3 2 1 3 2 1 6 5

1 2 3 4

,

e e

e , , e , , e , ,

e e e e

r u r u

r b r b r b

r u r u r u

r r r r r r r r r r

r r r r r

r r r r r r r r r r r r r

r r r r r r r r

r r r r

    

  

   

    



  

    

     

 

   

 

1 2

6

r b

r r

c c

4 6 5 4

5 6

,

r r r r

r r

 

   

 

 

(7)

with g u

 

. By Equations (3.6) and (3.13), we have for

u b

 

1 , ,

k j

i j k

k

c r r

r r r

cr c r

r

 

 

  

i k

i j

j i

c r cr

r r

 

 

 

(3.14)

Remark 3.1 Now, we give the explicit results for

 

 

 

4

 

5

 

6

3

1 2

4 5 6

3 2 1 3 2 1

1 2 3

,

e e e

,

e e e

r u r u

r u

r u

r u r u

g u g u u

l b l b l b

r r r r r r

r r r

  

 

  

(3.15)

with

 

 

 

  

 

 

3 2 1

4

3 2 1

5

1 2 1 3 5 6 3 1 1 2 5 6 2 3 1 1 5 6

6 5 4 6 5 4

4 5 6

1 1 3 4 6 1 3 1 2 4 6 3 2 1 1 4 6

6 5 4 6 5

4 5

e , , e , , e , ,

, e

e , , e , , e , ,

e

r b r b r b

r b

r b r b r b

r b

r r r r r r r r r r r r r r r

l b

r r r r r r

c

r r r

r r r r r r r r r r r r r r r

r r r r r r

c

r r

  

  

  

 

    

    

 

  

 

    

  

  

 

4

2 5

l b

  

3

 

2

 

1

6

1 2 1 3 4 5 3 1 1 2 4 5 2 3

6

6 5 4 6 5 4

4 5 6

e , , e , ,

e

r b r b r

r b

r r r r r r r r r r r r

l b

r r r r r r

c

r r r

 

  

   

    

 

  

 

u b

  , using the explicit expressions of

4 6

1 1 4 5 ,

e , , .

b r

r r r

 

 

(3.16)

For 0 V b b

 

, in Liu et al. [17], we obtain

 

 

3

3

2 1

3 2 1 3 3 2 1

,

e , d

e e e

e e e

y

r u

r u r u

r u

r u r u

V u u g u

V u y u y

cr r

r r r r r r

r r

r r r l r r

 

 

   

     

 

    

(3.17)

h

1 2

1 2

0

5 6 6 5

3 2 1 3

6 5

1

l r l2

r cr

 

wit

 

 

3 3

2

6 5

,5 ,6

,5,6 , 1, 2,3,

i

i i

l i i

r r

 

 

   

 

 

(3.18)

where

2 , ,

1 6,

k j i i k j j i

i j k

i j

c r r r c r cr r cr c r r

r r r

r r r

i j k

 

  

   

  

  

   

,

k

k

and

  

3

j i

i j

i j

cr r c r

r r

r r

 

 

  

 

 

,  irj,1  i j 6.

oint out expone llow the same steps to get the

explicit ex

We p that when the innovation times are ntially distributed, one can fo pressions of g u

 

, which coincide with the results in Albrecher et al

e 3.2 (The expected discounted tax payments.) Following from Equat

ve for 0 u b,

. (2008).

Exampl ion (2.34) of Theorem 2.2 and Remark

(8)

 

3

1 2

3

1 2

1 2

1 2

5 6 6 5

3 2 1 3 2 1

6 5

1

1 3 2 2 1 3 3 2 1

5 6 6 5

3 2 1 3 2

6 5

1 3 2 2 1 3 3 2

e e e

,

1 e e e

e e

exp 1

1 e e

r u

r u r u

r u

r u r u

r t r t

r t r t

cr r cr r

r r r r r r

r r

M u b

l r r l r r l r r

cr r cr r

r r r r r

r r

l r r l r r l r

 

 

 

 

 

 

   

     

 

 

 

     

   

   

 

  

    

3

1 e

r t r

 

3

3

1 2

3

1 2

1

1

5 6 6 5

3 2 1 3 2 1

6 5

1 3 2 2 1 3 3 2 1

5 6 6 5

3 2 1 3

6 5

d d e

e e e

1 e e e

e e

exp 1

1

b s

r t

u u

r u

r u r u

r u

r u r u

r t r

t s

r

cr r cr r

r r r r r r

r r

l r r l r r l r r

cr r cr r

r r r r

r r

 

 

 

 

 

 

  

   

   

 

 

   

     

 

     

   

   

 

  

(3.19)

 

 

 

3 2

3

1 2

5 6

4

3

1 2

2 1

1 3 2 2 1 3 3 2 1

4 5 6

3 2 1 3 2 1

1 2 3

e

d d

e e e

e e e

exp 1 d .

1 e e e

r t t

b

r t

r t r t

b u

r t r t

r t

r t

r t r t

b

r r

t s

l r r l r r l r r

l b l b l b

t

r r r r r r

r r r

 

  

   

 

   

   

   

 

 

   

   

  

  

  

 

And, for u b , we have

 

4

 

4 5

 

5 6

 

6 4

 

4 5

 

5 6

 

6

1

e e e e e e

, exp 1 d d .

1

r u r u r t r t

r u s r t

r u

l b l b l b l b l b l b

   

3 3

1 2 1 2

3 2 1 3 2 1 3 2 1 3 2 1

1 2 3 1 2 3

1

e er u er u u u er t er t er t

M u b   t s

r r r r r r r r r r r r

r r r r r r

 

     

   

    

 

   

 

     

Then we can get that when Wi’s are Erlang (2) dis-

tributed with pa 1

(3.20)

rameters  and 2, the expresses of

 

g u can Equations (3.15) and (3.17) and the expecte tax payments can be given by Equation (3.20).

4. Acknowledgements

The author would like to thank Professor Ruixing Ming and Professor Guiying Fang for their useful discussions and valuable suggestions.

REFERENCES

[1] B. De Finetti, “Su un’Impostazione Alternativa Della Teoria Collettiva del Rischio,” Proceedings of the Trans- actions of the XV International Congress of Actuaries, New York, 1957, pp. 433-443.

[2] H. Bühlmann, “Mathematical Methods in Risk Theory,” Springer-Verlag, New York, Heidelberg. 1970.

[3] H. Gerber, “An Introduction to Mathematical Risk The- ory. S. S. Huebner Foundation,” University of Pennsyl- vania, Philadelphia. 1979.

[4] er an On the Time Value of Ruin,”

North American Actuarial Journal, Vol. 2, No. 1, 1998, pp. 48-78. doi:10.1080/10920277.1998.10595671

be gi d di

ve scount

n by ed

[5] H. Gerber and E. Shiu, “On Optimal Dividend Strategies in the Compound Poisson Model,” Preprint, 2006. [6] X. S. Lin, G. E. Willmot and S. Drekic, “The Classical

Risk Model with a Constant Dividend Barrier: Analysis of the Gerber-Shiu Discounted Penalty Function,” In- surance: Mathematics and Economics, Vol. 33, No. 3, 2003, pp. 551-566. doi:10.1016/j.insmatheco.2003.08.004 [7] X. S. Lin and K. P. Pavlova, “The Compou

Risk Model with a Threshold Dividend Strate

ance: Mathematics and Economics, Vol. 38, No. 1, 2005, pp. 57-80. doi:10.1016/j.insmatheco.2005.08.001

H. Gerb d E. Shiu, “

nd Poisson gy,” Insur-

[8] D. C. M. Dickson and H. R. Waters, “Some Optimal Di- vidend Problems,” ASTIN Bulletin, Vol. 34 No. 1, 2004, pp. 49-74. doi:10.2143/AST.34.1.504954

[9] H. Albrecher, J. Hartinger and R. Tichy, “On the Distri- bution of Dividend Payments and the Discounted Penalty Function in a Risk Model with Linear Dividend Barrier,” Scandinavian Actuarial Journal, Vol. 2005, No. 2, 2005, pp. 103-126. doi:10.1080/03461230510006946

[10] Y. H. Dong, G. J. Wang and K. C. Yuen, “On the Re-newal Risk Model under a Threshold Strategy,” Journa of Computational and Applied Mathematics, Vol. 230, No. 1, 2009, pp. 22-33.

(9)

matics and Economics, Vol. 46, No. 1, 2010, pp. 67-84. doi:10.1016/j.insmatheco.2009.09.004

[11] C. Y. Ng Andrew, “On a Dual Model with a Dividend Threshold,” Insurance: Mathematics and Economics, Vol. 44, No. 2, 2009, pp. 315-324.

doi:10.1016/j.insmatheco.2008.11.011 [16] W. Y. Wang and Y. J. Hu, “Optimal Loss-CarrTaxation for the Levy Risk Model,” Insurance: Mathe- matics and Economics, Vol. 50, No. 1, 2012, pp. 121-130. doi:10.1016/j.insmatheco.2011.10.011

[12] H. Albrecher, A. Badescu and D. Landriault, “On the Dual Risk Model with Taxation,” Insurance: Mathemat-

3, 2008

ics and Economics, Vol. 42, No. , pp. 1086-1094. doi:10.1016/j.insmatheco.2008.02.001

[13] H. Albrecher and C. Hipp, “Lundberg’s Risk Process with Tax,” Blätter der DGVFM, Vol. 28, No. 1, 2007, pp. 13- 28. doi:10.1007/s11857-007-0004-4

[14] H. Albrecher, J. Renaud and X. W. Zhou, “A Lé Tax,” Journal of Applied Prob- 8, pp. 363-375.

vy In- surance Risk Process with

ability, Vol. 45, No. 2, 200 doi:10.1239/jap/1214950353

[15] R. X. Ming, W. Y. Wang and L. Q. Xiao, “On the Time Value of Absolute Ruin with Tax,” Insurance: Mathe-

y-Forward

ng, “The [17] Z. Liu, W. Y. Wang and R. X. Ming, “The Threshold Dividend Strategy on a Class of Dual Model with Tax Payments,” Journal of University of Sience and Technol- ogy of China, 2013, in Press.

[18] Z. Liu, R. X. Ming, W. Y. Wang and X. Y. So

References

Related documents

Danuta Hübner – Member of the European Parliament, Chairman of the Committee on Regional Development in the European Parliament; Jadranka Kosor – Member of the Croatian

INSPIRATIONS IN RETAIL TRADE AND FMCG PURCHASE, SALES, AND PRIVATE LABEL LOGISTICS AND SUPPLY CHAIN SHOPPER MARKETING & CATEGORY MANAGEMENT. COFFEE BREAK AND DIVISION INTO

FINANCIAL SERVICES, INSURANCE, BANKING OUTSOURCING Takeover of selected business processes connected with employment enabling you to reduce the costs and increase the effectiveness

The participants of discussion included: Stanis³aw Biernat (Head of the Euro- pean Law Department at Jagiellonian University), Enrico Boaretto (Head of the Secretariat of the

Seeds – Very small seeds (achenes) about 1/16 inch long; flattened, narrow at the base and rounded at the tip; seed coat smooth or finely streaked and light

Hairy, notched leaves opposite on upper parts of plant Corn speedwell page 21 Small leaves Plant forms a mat Mouseear chickweed page 16 Leaves clasp around stem Fleabanes page 5

Important economic impacts readily perceived by Basin communities have included reduced fish catches, increase in transportation costs, difficulties in electricity generation and

Huskie Herbicide is a very broad spectrum broadleaf herbicide. In certain weed control situations it may be advantageous to tank mix Huskie Herbicide with the herbicides listed