ContentslistsavailableatScienceDirect
Mutation
Research/Genetic
Toxicology
and
Environmental
Mutagenesis
j ou rn a l h o m e pa ge :w w w . e l s e v i e r . c o m / l o c a t e / g e n t o x
C o m mun i ty a d dr e s s :w w w . e l s e v i e r . c o m / l o c a t e / m u t r e s
Epigenetic
memory
of
environmental
organisms:
A
reflection
of
lifetime
stressor
exposures
Leda
Mirbahai,
James
K.
Chipman
∗SchoolofBiosciences,UniversityofBirmingham,Edgbaston,BirminghamB152TT,UK
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received8October2013 Accepted9October2013 Availableonline17October2013
Keywords:
Epigenetic DNAmethylation Toxicity
Epigeneticmemory Environment Epigeneticfoot-printing
a
b
s
t
r
a
c
t
Both geneticand epigenetic responses of organisms toenvironmental factors, including chemical exposures,influenceadaptation,susceptibilitytotoxicityandbiodiversity.Inmodelorganisms,itis establishedthatepigeneticalterations,includingchangestothemethylome,cancreateamemoryof thereceivedsignal.Thisispartlyevidencedthroughtheanalysisofepigeneticdifferencesthatdevelop betweenidenticaltwinsthroughouttheir lifetime.Theepigenetic marks inducealterationstothe geneexpressionprofile,which,inadditiontomediatinghomeostaticresponses,havethepotentialto promoteanabnormalphysiologyeitherimmediatelyoratalaterstageofdevelopment,forexample leadingtoanadultonsetofdisease.Althoughthishasbeenwellestablished,epigeneticmechanisms arenot consideredinchemical riskassessmentorutilised inthe monitoringoftheexposure and effectsofchemicalsand environmentalchange. Inthis review,epigeneticfactors,specifically DNA methylation,arehighlightedasmechanismsofadaptationandresponsetoenvironmentalfactorsand which,ifpersistent,havethepotential,retrospectively,toreflectpreviousstressexposures.Thus,itis proposedthatepigenetic“foot-printing”oforganismscouldidentifyclassesofchemicalcontaminants towhichtheyhavebeenexposedthroughouttheirlifetime.Insomecases,thepotentialforpersistent transgenerationalmodificationoftheepigenomemayalsoinformonparentalgermcellexposures. Itisrecommendedthatepigeneticmechanisms,alongsidegeneticmechanisms,shouldeventuallybe consideredinenvironmentaltoxicitysafetyassessmentsandinbiomonitoringstudies.Thiswillassist indeterminingthemodeofactionoftoxicants,noobservedadverseeffectlevelandidentificationof biomarkersoftoxicityforearlydetectionandriskassessmentintoxicologybuttherearecriticalareas thatremaintobeexploredbeforethiscanbeachieved.
©2013TheAuthors.PublishedbyElsevierB.V.
1. Introduction
Organisms have the ability to respond to environmental
stressorssuchastoxic chemicalsand adaptbeneficiallytonew environments. This is accomplished, in part, by altering their epigenomesand subsequently theirtranscription profiles. Thus, overlaidonthegenomeareepigeneticmarks,particularly methyl-ationandhydroxymethylationofCpGsitesthatdetermine,inpart,
how the genome responds through regulation of transcription
[1–3].Itiswellestablishedthatvariousenvironmentalstressors, includingdietary deficiencies and exposuretoa wide range of
chemical pollutants, can modulate the epigenome [4–7]. The
changesinresponsetoenvironmentalstressorsmaycontributeto anadaptivesurvivaladvantageoflocalpopulationsoforganisms
∗Correspondingauthor.Tel.:+44(0)1214145422;fax:+44(0)1214145925.
E-mailaddress:[email protected](J.K.Chipman).
throughadvantageous geneexpression[8,9].However,in some
cases these changes are associated with marked phenotypic
endpoints that can be detrimental [10,11]. Such accumulated modificationsofDNA,andtheconsequentchangesingene expres-sion, have important implications in diseases, including cancer
[12]andmay,insomesituations,bepersistentthroughsubsequent generations.Furthermore,itisbecomingmoreevidentthat epige-neticmechanismsareinvolvednotonlyinadaptiveresponsesin individuals;theyalsohaveasignificantroleinhost-pathogen inter-actionsasreviewedbyGomez-Diazetal.[13].Thisdemonstrates theroleofepigeneticmechanismsinmultiplespeciesinteractions. Inthisreview,weexploretheepigeneticresponsesoforganisms toenvironmentalstressorswithaparticularfocusonthe persis-tenceor“memory”ofsuchmodificationsandthewaysinwhichthis memorycanusefullyreflectthestatusoftheenvironmentinwhich humansand other organismsreside. Epigeneticfactors, specifi-callyDNA methylation,are introducedas aninterface between
the genome and the environment, providing partial
mechanis-ticexplanationsforthesensitivityoforganismstoenvironmental factors.WearguethatepigeneticmechanismssuchasDNA meth-ylationare essential indetermining how organismsrespondto
1383-5718©2013TheAuthors.PublishedbyElsevierB.V.
http://dx.doi.org/10.1016/j.mrgentox.2013.10.003
Open access under CC BY license.
environmentalagents and wepresent examplesof studiesin a rangeofspeciesshowinghowexposuretochemicalscanpromote persistentchangesintheepigenomewithphenotypicoutcomes. Furthermore,thesestudiesleadtotheconceptof“epigenetic foot-printing”forretrospectiveassessmentofchemicalexposures.The relevanceandsignificanceofepigeneticmechanismsin environ-mental risk assessment and the potential for establishment of suitablebiomarkersisdiscussedinthisreview.Theseinsightsmay shapethefutureofregulatorytoxicologyandenvironmental mon-itoring,especiallywheretherearechronicexposurestopollutants.
2. Epigenetics
Epigenetics is defined as meiotically and mitotically
herita-ble changes in gene expression that cannot be explained by
changesinDNAsequence[14,15].SuchmodificationsincludeDNA methylation, post-transcriptional chemical modifications of the
N-tailof histones and amino acids within theglobular histone domains,binding ofnon-histonechromatinproteinstoDNA or histonemodifications(i.e.transcriptionfactors),non-codingRNA,
nucleosome positioning and higher order chromatin
organisa-tion[10,14,16–19].Moreover,thesemodificationsarenotisolated eventsandarecloselyinter-linkedbyinfluencingchromatin struc-tureatvariouslevelsandbyfurtherinteractionswiththegenome
[19].Undernormalconditions,cellsofanorganismdisplayafinely tunedepigeneticequilibrium[1].However,disruptionofthe activ-ityofenzymesregulatingtheepigenomeorchangesinthelevels ofthemetabolitesrequiredfortheactionoftheseenzymescan resultinalterationofepigeneticmarksandtheepigenomic equi-librium[10] leadingtoinappropriateregulationoftranscription andpotentialdisorders[14,19].MethylationofDNAatCpG dinu-cleotidesisthemoststudiedepigeneticmodification[1]anditisthe principalfocusofthisreview.DNAmethylationisthetransferofa methylgroup,byDNAmethyltransferases(DNMTs),fromthe uni-versalmethyldonorS-adenosylmethionine(SAM)tothe5thcarbon positionofacytosinepyridinering[20,21].Thecrosstalkbetween histonemodificationandDNAmethylationatthetranscriptionally activeandinactiveregionsispartlyaccomplishedbyacfp1(CXXC fingerprotein1)andmethyl-CpGbindingproteins(MeCPs), respec-tively[22].Theseproteinsselectivelybindtomethylation-freeand methylatedCpGdinucleotides,respectively[22–24],encouraging recruitmentofhistoneacetyltransferasesandde-acetyltransferase andotherepigeneticandnon-epigeneticfactorsleadingto regu-lationoftranscription[23,24].Althoughtheprecisemechanisms ofDNAde-methylationarenotknown,ithasbeensuggestedthat DNAcanalsoeitherpassivelyoractivelyundergode-methylation. Duringpassivede-methylation,5-methylcytosineisremovedin
a replication-dependent mannerby inhibition of DNMTs while
active de-methylation depends upon enzymatic removal of
5-methylcytosine.Recently,TET(ten-eleventranslocation)proteins havebeen foundtobeinvolved inregulation ofDNA methyla-tion.TET1-3proteinscatalysetheconversionof5-methylcytosine to5-hydroxymethylcytosine(5-hmC)whichispoorlyrecognised by DNMTs.This resultsin a passive replication-dependentloss ofDNA methylation.Alternatively,5-hmCcanberecognisedby therepair machineryand converted tocytosine [25–27]. Thus, althoughmethylationcan beremovedfromCpGislands,this is a highlyregulatedprocess and,as discussedbelow, many such modificationsarepersistentand“memorised”incells.
3. Environmentalsensitivityoftheepigenomethroughout lifetimeandretention(memory)of
environmentally-inducedchanges
Adaptiveresponsesandsensitivityofanorganismto environ-mentalstimuli (e.g.chemicalcontaminants, dietandstress)are
observedthroughoutthelifetimeofanorganism.However,akey questioniswhatarethemolecularmechanismsleadingtochanges intheexpressionofthegenome?Forexample,whydo homozy-goustwinshavedifferentdiseasesusceptibilitiesintheabsenceof geneticvariation?Asintroducedabove,itisbecomingmoreevident that,althoughepigeneticmarksarestableenoughtoregulategene expression,theyarealsosusceptibletochangebyenvironmental signals.Thismeansthattheepigenomecanchangeasaresponseto environmentalstimuli,whichthencanleadtoalterationinthe phe-notype[15].Inaway,theepigenomecanactasthelinkbetween environmentalcues(externalandinternal)totheorganismand phenotypebytranslatingtheenvironmentalsignalstophenotypic responsesthroughalteredgeneexpressionprofiles.Forexample, inresponsetotheirimmediateenvironment,afractionof pluripo-tentstemcellswilldifferentiateandformdistinctcelltypeswitha characteristicgeneexpressionprofile.Thetissue-specific expres-sion patternsare generally maintainedthroughout the lifetime oftheindividual.Thedifferencesintranscription profilesofthe differentiated cells arethen attributedtotheirdifferent herita-ble epigeneticprofiles. Hence,tissue-specific epigeneticprofiles provideamethodofsustainingthememoryofthedifferentiation processintheabsenceoftheinitiatingsignal[12,28–30].Oneofthe bestexamplesoftheinfluenceofenvironmentontheepigenome andsubsequentchangesingeneexpressionistheresponseof Ara-bidopsis to prolongedexposureto coldweather (vernalisation). Followingprolongedexposuretocoldweather(anenvironmental factor),floweringlocusC,arepressorofflowering,becomes epi-geneticallysilenced.Thisresultsincoordinationoffloweringtime (phenotype)withspringandsummer[31–33].
Although the epigenome is sensitive to the environmental
stimulithroughoutanindividual’slifetime,therearecritical
win-dows during development that the epigenome is at its most
sensitivewithlastingtranscriptionaleffects.For example,genes suchasoestrogenreceptor(ER)andglucocorticoidreceptor(GR) areregulated,inpart,throughDNAmethylationoftheirpromoter regions.Themethylationandsubsequentlythetranscription lev-elsofthesegenesaregender-andregion-specific.Furthermore, DNA methylation of these genes is substantially influenced by environmental factors, such as maternal care and exposure to chemicals,encounteredduringembryogenesisandearlypostnatal stages(reviewedin[34–36]).Anothergoodexampleof develop-mentalsensitivewindowsofalterationsintheepigenomecomes fromthestudiesconductedin fishspecieslookingat theeffect
of temperatureongender.Sex determinationin many fishand
reptilespeciesisinfluencedbymanyfactorsincludingthe tem-peratureofthewaterduringearlystagesoflarvaldevelopment. InEuropeanseabass,hightemperatures(21◦C)andlow tempera-tures(15–16◦C)increasethenumberofmalefishandfemalefish, respectively.Itwasdemonstratedthatexposuretohigh temper-atureatcriticalstagesoflarvaldevelopmentincreasedtheDNA methylationlevelofthearomatase(cyp19a1)promoterinfemale gonadspriortoformationofgonadalridgeanddifferentiationof thegonads.Aromataseconvertsandrogentooestrogen.Adecrease intheexpressionofthisgeneasaresultofhightemperaturesand subsequentmethylationandsuppressionofthepromoterregion ofthis gene resultsin increasedlevelsofandrogen, differentia-tionofthegonads,formationoftestisandamale-biasedsexratio
DNA Exposures can cause unique
and persistent change to the
epigenome
( , )
Epigenec changes act as a
“foot-print” of prior exposures
Regulatory agencies can use
these markers for
idenficaon of prior
exposure to hazards. This aids
risk assessment and can help
to priorise remediaon
Series of exposure to environmental
stressors (e.g. chemical exposures)
Some epigenec modificaons can lead
to an adverse outcome in life-me
Adapve response
Toxicity
Toxicity in subsequent generaons
Fig.1.“Epigeneticmemory”asanindicatorofpriorexposure.Epigeneticalterationsinducedbyenvironmentalstressors,includingchangestothenormalDNAmethylation pattern,cancreateapersistentmemoryofthereceivedsignal.Mostinterestingly,itisproposedthateachclassofchemicalscaninduceclass-specificalterationstothenormal patternofDNAmethylation(epigeneticfoot-print).Thesechangeswillfurtherinducealterationstothegeneexpressionprofile,whichcanpromotechangeinorganism’s traitseitherimmediatelyoratalaterstageofdevelopment.Suchpersistentmodulationsoftheepigenomeofferauniqueopportunitytoprovidealife-timehistoryofan organism’spriorexposuretofactorsinfluencingtheepigenome.Thereisalsopotentialforgerm-linemodificationstopersistintosubsequentgenerationsdependingonthe natureandcriticaltimingofexposure.
Furthermore,severalstudieshave shownphenotypic plastic-itydrivenbyepigeneticchanges.Thedifferencesinmorphology, behaviourandreproductiveabilityofgeneticallyidenticalfemale workerandqueenhoneybees(Apismellifera)havebeenexplained by distinct methylation profiles of theirbrain DNA and subse-quentimpactsontranscription.Thevariationintheirmethylation profiles has been linked, in part, to their different diets dur-inglarvaldevelopment.[40].Likewise,earlymaturationofmale Atlanticsalmon(Salmo salar)hasevolvedin response tolower
population densities. Moran and Perez-Figueroa [41]
demon-strated that transcription levels vary betweenbrain and testes ofmatureandimmaturesalmonintheabsenceofgenetic varia-tions.Furthermore,maturationstagecorrelatedwithdifferences
inDNA methylationprofilesof matureandimmaturefish,
pro-vidingevidenceofepigeneticallydrivenphenotypicdifferencesas aresponsetoanenvironmentalfactorintheabsenceofgenetic variations.
Of particular relevance to evidence of epigenetic “memory” areseveralstudiesingeneticallyidenticalhumantwinsthathave clearlydemonstratedalinkbetweenenvironmentalfactors,change intheepigenomeand differentsusceptibilitytodisease.Oneof thefirst studiesthat demonstrated this link wasconducted by Fragaetal.[42].Inthisstudy,itwasshownthatdifferencesinthe epigenomicprofilesofmonozygotic(MZ)twinsaccountsfortheir differentphenotype(i.e.disease)inresponsetoenvironmental fac-torsovertime.Indeed,theseepigeneticdifferencesappearedmore prevalentwithincreasedageoftwinswithdifferentlifestyles(i.e. diet,smokingandphysicalactivity).Thisdemonstratesastronglink betweenaccumulationofepigeneticchangesovertimeandaltered phenotype.
4. Examplesoftherangeofenvironmentalstressorsthat canaltertheepigenome
Direct exposure to chemicals, such as chronic exposure to persistent lipophilic compounds or metals in the environment, cancauseadverseeffects byinducingchangeintheepigenome ([7], reviewed in [43,44]). For example, the carcinogenicity of someenvironmentalcontaminantssuchasendocrinedisrupters,
nickel, cadmium, chromium and arsenic cannot entirely be
explainedthroughgeneticbasedmechanisms[45].Alterationsto
theepigenome through exposureto endocrine disruptors have
beenlinked,forexample,tonegativeimpactsonneuroendocrine systems[34,46],alteredbehaviouralneuroendocrinology[21,47]
andhigher ratesof tumourigenesisat environmentallyrelevant concentrationsinmice[48].Metalscaninterferewiththeactivity ofDNAmethyltransferaseseitherdirectlyorthroughproduction ofreactiveoxygenspecies. Thisleadstoanaltered DNA meth-ylation profile and subsequent alterations in gene expression. For instance, it hasbeen proposedthat cadmium (Cd)-induced globalDNAhypomethylationmaybeduetoCdinteractionwith
DNA methyltransferases (DNMTs) and subsequent interference
epigeneticallymodifyingandde-modifyingenzymesdependupon levelsofcofactorsandmetabolitespresentintheintra-and extra-cellularenvironment[10,44].Severalstudieshavedemonstrated thatalterationsin thelevelsofnutrientssuchasfolate,choline andmethionineindietoralterationstoothercomponentsofthe one-carboncyclesuchasthemethyl-donorSAMcanalsohave sig-nificanthealtheffectsbyinducingaberrantDNAmethylation.In thesestudies,alinkbetweendietsdeficientincholineorother
primarymethyldonors,DNAhypomethylationanddevelopment
of tumours in rodents, humans and fish has been established
[4–6,49–54].
5. Epigeneticmemoryanditslinkwithadult-onsetof disease
TherearetwoDNAmethylationre-programmingevents associ-atedwithdevelopmentinmammals.Duringembryogenesis,there issusceptibilitytomodificationsduetoenvironmentalstressors thatcaninfluencephenotypeandpotentialdiseaselater inlife. Asecondstagere-programmingin germcells oftheF1 genera-tion,atleastinmammals,isalsosusceptibletointerferencethat couldinfluencephenotypebutalsocaninvolvemodificationsto genes suchas those that are imprinted and that influence sex determination.Disruptionofepigeneticmechanismsduringthese twocriticalstagesofdevelopmenthasbeenrecognised,inpart, asafactoraffectingdevelopmentofcertainadulthoodphenotypes longafterthestimulatingfactorhasbeenremoved.Theseinclude linkageofvariouscancers,diabetes,obesityandbehaviouraland neurodegenerativedisorderswithenvironmentalfactors encoun-teredduringprenatalandearlypost-natalperiodsin mammals. Thisisknownas“foetalbasisorearly-lifeprogrammingof adult-onsetofdisease”[15,55–58].Theepigeneticmarksinflictedupon
the genome by environmentalfactors very earlyon during an
individual’slife actasan“epigeneticmemory”oftheexposure. Theseepigeneticmemoriescanmanifestinadultsasa pathologi-calphenotypeoftenfollowingasecondarytriggersuchasageingor changesinhormonelevels.Forexample,inthe1950s diethylstilbe-strol(DES)wasused duringpregnancytopreventspontaneous abortions.DNAmethylationchangesinducedbythisagent dur-ingembryogenesishavebeenidentified asthecauseofa range ofdisorderssuchasincreasedbreastandtesticularcancerinadult femaleandmaleoffspring[59].Exposuretooestrogensandarange ofendocrinedisruptorsinearlydevelopmenthasbeenshownto predisposetocancerinrodentsandhumans[60–62],alter hor-monalresponseslaterinlifeinthefrog(Xenopuslaevis)[63]and causearangeofreproductiveandbehaviouraleffectsinrodents (reviewedin [34–36]).Specifically,methylationchanges caused bydiethylstilbestroltoc-fosandlactoferringenesatthe neona-talstageinmicecontributetoanincreasedincidenceofuterine cancer[64].
Studiesusingtheagouti(Avy)mousemodelhaveclearly demon-stratedalinkbetweenadultonsetofdisease,DNA methylation-inducedchangesintheactivatorbindingprotein–intra-cisternalA particle(IAP)transposonlocatedintheAvyalleleduring embryo-genesisandenvironmentalexposureofthegestatingfemalemice
[56,65,66].For exampledietaryuptakeof genisteinin gestating agoutimice,atlevelscomparabletothedietofahumanwithhigh soyconsumption,resultsinhypermethylationoftheAvyalleleand generationofpseudo-agoutioffspringwithalowerriskof devel-opmentofobesityinadulthood[66].
Furthermoreinourrecentpublications[54,67]weestablished alinkbetweenexposuretomarinepollutants,alterationinDNA methylationpatternsandlivertumoursdissectedfromthe flat-fishdab(Limandalimanda)capturedfromwatersaroundtheUK. Basedonthefindingofsignificantepigeneticmodifications and
disruptionofmetabolitesofthe1-carbonpathwayinnon-tumour hepatictissueofadenoma-bearing fish,ourstudylendssupport totheepigeneticprogenitormodelofcancer. Disruptionof epi-geneticmechanismscancausestable,heritablechangesingene expressionthatareindependentfrommutations.Thesechanges canoccurpriortomutations[68].Therefore, inthismodel,itis proposedthatepigeneticchangesinflictedasaresultofchemical exposurescaninitiatecarcinogenesis.Thusepigenetic“memory” maypredisposetocancerhighlightingthesignificantimpactsthat disruptionofepigenetic mechanismscanhave onthehealthof an exposed individual.In the light ofthis, the valueof assess-mentofepigeneticchangesinenvironmentalbiomonitoringand intheearlydetectionofadversehealtheffectsbecomesevident. Importantly,evenminorepigeneticchangesasaresponseto envi-ronmentalfactorscanaccumulateover time,leadingtogradual alterationofthephenotype[7].However,itisimportanttobear inmindthatestablishingacause-andeffect-relationshipbetween exposuretoenvironmentalfactors,changesintheepigenomeand diseaseischallenging.
6. Transgenerationalepigenetic“memory”
Perhapsthemostconcerningaspectofepigeneticmodulation by environmental toxicants is the potential for modulation of theprogramming of thegermline, causing a transgenerational “memory”(Fig.1)[58,69].Transmissionofaphenotypetoa fol-lowinggenerationisaccomplishedthroughgermlines.Therefore environmentallyinduced-epigeneticchangesinimprintedgenes during the re-programming at thecritical germ cell stage can influence bothsex determination and canpotentially be inher-itedleadingtotransgenerationalmodifications.Duringthegerm
cellre-programmingeventinmammals,mostepigenetic marks
are removedand reset in a gender-dependentmanner.Certain
epigenetic marksthataresex-specific, suchas imprintedgenes establishedduringgermcellreprogramming,escape thesecond waveofDNAmethylationchangesthatoccurinpre-implantation embryos[2,70].Transgenerationalepigenetic inheritanceor the epigeneticbasisforinheritanceofatrait[56,71]providesafurther aspectof“epigeneticmemory”relevanttothisreview.
Importantly, it is necessary to distinguish between epige-netic transgenerational effect and epigenetic transgenerational inheritance.Theformerisabroadtermincorporatingall pheno-typesinfollowinggenerationsthatarenotgeneticallydetermined
[69]. For example, stressed femalerats have a reduced mater-nallicking/groomingandarchedbacknursing(LG-ABN)behaviour towardstheirneonates.AlowerlevelofLG-ABNbehaviourresults inepigenetic silencingoftheglucocorticoidreceptor(GR)gene, resulting in fearfulbehaviourin the F2generation,and persis-tenceand transferofthephenotypetosubsequentgenerations. Theacquiredphenotypeisepigeneticallymaintainedinmultiple generations.However,crossnurturingoftheF3generationborn fromthelowLG-ABNF2groupresultsinhypomethylationofthe
GR gene and normal LG-ABN behaviour in thesemice [72–74].
Therefore, transfer ofthe acquiredepigenetic phenotypeis not throughgametesanditisdependentuponconsistencyofthe envi-ronmentalcondition[70].Incontrast,transgenerationalepigenetic inheritancereliesoninheritanceoftheepigeneticallyacquired phe-notypethroughgametes.Thisrequirespersistenceofepigenetic marksthroughthereprogrammingevents. [75].Alsoimportant is the realisation that theDNA re-methylationof germ cells is influencedbythemicroenvironmentaffordedbythesurrounding somaticcellsandbysignalsreceiveddirectlyfrom environmen-tal factors. As a consequence, environmental factors can both directlyorindirectly influencethere-methylationofgermcells
Inviviparousspecies,forabiologicaltraittobecategorisedas inherited,thephenotypemustbemaintainedtoat leasttheF3 generation.Thisisbecauseexposureofthegestatingfemale(F0) tochemicalsthat modifytheepigenomecould resultin simul-taneousdirectexposureofthedeveloping embryo(F1)andthe developinggermlineoftheembryo(F2)[56,76].Severalstudies havedemonstratedthepossibilityofepigeneticinheritance ofa phenotypeinmultiplegenerationsinmammals,plantsandflies (forreviewssee[58,69]).Ofparticularinterestisthedemonstration that,followingintra-peritonealexposureofgestatingoutbred Har-lanSprague-Dawleyfemaleratstotheanti-androgenicendocrine disruptervinclozolin(100mg/kgbodyweight(bw)/day), epigene-ticallymalegermcelltransmittedphenotypiccharacteristicsare inducedduringcriticalstagesofsexdetermination(E12–E15),up toatleasttheF3generationinmaleratoffspring.The characteris-ticsinclude,forinstance,increasedspermatogeniccellapoptosis, decreased spermmotility and numbers,prostate abnormalities, tumoursandrenal lesions.Thereproducibilityand frequencyof the vinclozolin-induced phenotypes (i.e. rate of tumours) and identificationofgenes withaltered methylationin theaffected individuals compared to controls indicated that mutations are not the most likely cause of this abnormality [60,75–80]. Fur-thermore,usingaratmodelexposedtoseveralchemicals,ithas beendemonstratedthattheovariandiseasecanbeepigenetically inheritedacrossseveralgenerations [81]. However,it hasbeen demonstratedthattheeffectandepigeneticinheritanceofchanges inducedbyvinclozolin arehighly dependentondose[58], ani-malstrain[82] androuteof exposure[83].Oral administration ofvinclozolin(100mg/kgbw/day)inoutbredWistarrats[83]and intra-peritoneal(IP)injectionofvinclozolin(100mg/kgbw/day)in inbredCD-SpragueDawleyrats[82]duringthesexdetermination stagefailedtoinduceinheritedphenotypiceffects.However,there isagreat dealofcontroversysurroundingthis areaofresearch. Forexample,arecentpublicationfailedtodemonstrateany trans-generationalinheritanceafterIPadministrationofvinclozolin(0, 4,100mg/kgbw/d)ongestationdays6–15inoutbredWistarrats
[84].
In contrast to various studies in rodents, transgenerational epigenetics remains a fairly unexplored field in other species. Epigeneticchangeshavebeenstudiedintwogenerationsofthe water flea (Daphnia magna) following exposure to a range of environmentallyrelevantcompounds([85–88],reviewedin[89]).
5-Azacytidine, a demethylating drug, induced significant DNA
hypomethylationinnon-directlyexposedF1andF2D.magna off-springaswellastheexposedF0 generation[88].Althoughit is possiblethattheseeffectsareepigeneticallyinherited,D.magna
reproducesbothsexuallyandasexuallyandthereforeobservation ofsimilarchangesinthephenotypesinF3generationarerequired priortoconcludingthattheobservedeffectsastruly transgenera-tional[90].
Inthenon-eutherianfish,onlytheF0andthegamete/oocyte oftheF1generationaredirectlyexposed.Therefore, after elim-inationofthepotentialexposuredirectly totheeggsfollowing spawning,itwould bepossibletocategorise anyepigenetically inheritedphenotypeintheF2generationasatrue transgenera-tionalepigeneticeffect.Beingnon-eutherian,fishdonotrequire imprintingtopreventdirect“parentconflict”anditisnotknown ifthereprogrammingeventingermcells duringthesex deter-mination stage (a critical stage for transgenerational effects in mammals)occursinfish.Thisisnottosaythatmethylationdoes notplayaroleduringsexdeterminationinfishsincethe regula-tionofaromatase,involvedinsexdeterminationinfish,ispartly throughDNAmethylation[37,38].Furthermorethemethylation, andasaresulttheexpressionofthis gene,issensitiveto com-poundssuchas17␣-ethinylestradiol[38].Thus,theexistenceof theenvironmentally-sensitivedifferentiallymethylatedaromatase
geneinmaleandfemalefishfurtherjustifiestheinvestigationof transgenerationalepigenetic mechanismsandtheoccurrenceof
DNA methylationreprogrammingduringthesex determination
stageinnon-mammalianspecies.
7. Implicationsof“epigeneticmemory”forchemicalsafety assessmentandenvironmentalbiomonitoringandfuture directions
Inthecontextoftoxicitytesting,whetherinlaboratoryanimals toassesstherisktohumansorinspeciesrelevanttothenatural environment,epigeneticchangesarenotcurrentlyastandard fea-tureofsafetyassessment.Partofthereasonforthisistheinability tointerpretthefindingsinrelationtopotentialadverseoutcome withoutamorecompleteknowledgeofthefundamental relation-shipsbetweenspecificchangesanddisease.However,theevidence forchangesinDNAmethylationinearlydevelopmentinfluencing disease,includingcancer,inlaterlifeorbeyondintosubsequent generationsshouldbeborneinmind.
Currently, standard carcinogenicity testing doesnot usually
include exposure to the test compound during early
develop-ment. The evidence accruing for the contributionof change in DNAmethylationtocancersproducedbynumerousnon-genotoxic andgenotoxiccarcinogens[91–93]and theestablished carcino-geniceffectofDNAmethylationchangesfollowingdeficienciesin cholineandotherprimarymethyl-donors[49–52],indicatesthat suchpotentialmechanismsshouldnotbeignored.However,unlike theassumptionsmadeaboutgenotoxiccarcinogens,apragmatic thresholdlevelofexposuretonon-genotoxiccarcinogensordietary deficiencymayberequiredforaclearimpactoncancer develop-ment.
ThefactthatmethylationofCpGislandsincreasestherateof mutationsatthesesitesbyaround10-fold[94]raisesimplications notonlyforcancerbutalsoforreproductivedeficienciesthatcould impactonecosystems[95].Moreover,environmentally-induced alterationsinthemethylationofsexdetermininggenesmayhave asignificantimpactonthepopulationandhealthofspecies(e.g. impairedrateoffertilisation).Asnotedabove,althoughsofaronly demonstrated in laboratorymaintainedand infarmed fish,the ratiooffishembryosthatdevelopintofemaleormalefishcanbe influencedbythemethylationlevel ofthearomatasegene[37]. Thereforeitispossiblethatenvironmentally-inducedDNA meth-ylationchanges,aswellascontributingtowardsadaptiveresponses ofvariousspeciestotheireverchangingenvironmentandspecies biodiversity,canhaveasignificantcontributiontowardssomeof theadverseeffectsobservedinresponsetoenvironmental stress-ors immediately or at a later stage in life (a concept referred toas epigenetic predisposition and adult-onset of disease). For example,epigeneticmechanisms,aswellassinglenucleotide
poly-morphisms (SNPs), canprove tocontribute tothemechanisms
involvedinthesexdifferentiationandsexratioshiftsobservedin responsetochangesinthetemperatureofthewaterandthe plas-ticityofthisresponseinwildseabassfromdifferentgeographical locations.
Inadditiontotheconcernsaboutthepotentialof
pollutant-induced epigenetic modulation to impact on disease and
contaminantstowhichtheyhavebeenexposedthroughouttheir life-time. Such epigenetic variability has been shown to occur innaturalpopulationsoftheclonalfishChrosomuseos-neogaeus [39]. The adaptive changes observed can help identify popula-tionsvulnerabletoenvironmentalchange.Tostudythiseffectively, geneticallyidenticalorganismscanprovideastablebackground uponwhichaccumulationofepigeneticchangescanbemeasured andwearecurrentlyassessingthisinclonalvertebrateand inver-tebratespecies.
Theclassicalecologicalendpointsforecotoxicologymaynotbe sufficientinthat,asmentionedabove,earlylifestagechangesinthe epigenomefollowingacuteexposurehavethepotentialtocause diseaselaterinlifeandpotentiallythroughgenerations.Thisraises thepossibilityofbenefitsofinvestigatingepigeneticmarksinthe contextofenvironmentalmonitoringandecotoxicological assess-ments.Alimitationofthecurrent practicesfor ecotoxicological assessmentsandamajordifficultyforregulatorsinthecontextof waterqualityregulationssuchastheEUWaterFramework Direc-tive[96],istheinabilitytomake assessmentsofexposuresand theireffectsotherthanthrough“snap-shot”,expensiveanalysesof organismbiodiversity,individualorganismhealth,chemical mea-surementsandafewbiomarkersoflimiteddiagnosticvalue.We proposeanovelmechanismthatallowsresearchersto retrospec-tively interrogateexposurehistory and chemical effects onthe epigenome,thuspotentiallyhelpingtoprovideamechanism-based assessmentofthequalityandimpactoftheenvironment.The epi-genetic“memory”caninformonthelife-timeexposuretostressors thatmodifytheepigenome(Fig.1).Irrespectiveofwhethersuch changes maybeindicative of toxicity per se,thesignature has thepotentialtoactasasurrogateforassessmentoftoxic expo-suresand otherenvironmentalstressorsthat couldmanifestas diseasethroughalternativemechanismsforthesameagents.For example,oxidative stress is knowntobecaused by a range of organicchemicalsandmetalsandisfrequentlydetectedinanimals exposedtoaquaticpollutants[97].OxidativestresscanleadtoDNA hypomethylationthroughtheinhibitionofmethyltransferases[7]
andthismay,atleastinpart,explainthechangesinDNA methyl-ationintheliveroffish[98]andinDaphnia[85–88]treatedwith certainmetals.Agoodexampleofthepotentialuseofmethylation inenvironmentalmonitoringcomesfromtheeffectsofendocrine disruptors.The5flankingregionoftheun-transcribedvitellogenin (vtg1)gene inthebrainofthemale andfemaleadultzebrafish andtheliverofthemaleadultzebrafishishighlyhypermethylated comparedtothevtg1intheliveroffemalezebrafish,whereitis veryhighlyexpressedinresponsetoendogenousoestrogenduring oocytogenesis.[99].Vtg1isnotexpressednormallyintheliverof malefishbut,uponexposuretoexogenousestrogeniccompounds,
vtg1becomeshighlyexpressedandisassociatedwithfeminisation ofmalefish.Therefore,expressionofvitellogeninproteininmale fishisusedasastandardbiomarkerofexposuretooestrogens[100]. Ithasbeenshownthatthe5flankingregionofthevtg1genein malefishexposedtooestrogensissignificantlyhypomethylated, correspondingwithitsinduction[99].Therefore,itisreasonableto suggestthatDNAmethylationchangeshavebiomarkerpotential. Thereisalsothepossibilitythataspecificpatternofgene methyla-tionrepresentsanindicatorofthetypeofexposures.Althoughthe degreeandmechanismsofspecificityarenotestablished,thereis evidencetosuggestitsoccurrence.Forexample,phenobarbitalisa non-genotoxiccompoundthatcancausetumoursthroughthe con-stitutiveandrostanereceptorpathway(CAR)intheliveroftreated rodents.Lempiainenetal.,[101]demonstratedthattreatmentwith phenobarbitalcausesnon-randomandtissue-specificchangesin DNA methylationand transcription. While Cyp2b10,one ofthe
maingenesaffectedthroughtheCARpathway,was
hypomethy-latedandover-expressedintheliveroftreatedmice,itwasnot affectedinnon-tumour bearingkidney.Furthermore,therewas
nosignificantoverlapbetweenDNAmethylationor transcriptio-nalchangesobservedintheliverandkidneyofthetreatedmice. Severalotherstudies havealso indicatedthat atvarious stages
of phenobarbital-inducedtumourigenesis DNAmethylation and
transcription changes arenon-random (in theabsenceor pres-enceofmutageniccompounds)[102–104].Furtherevidenceonthe specificityoftheDNAmethylationprofileonthecausativeagent comesfroma studydemonstrating that hepatocellular carcino-masinducedbyhepatitisCvirus(HCV)orhepatitisBvirus(HBV) havedifferentmethylationprofiles[105].Thesestudiesallsupport theideathateachcategoryofcompoundscangiverisetoa spe-cificDNAmethylation“footprint”whichwillnotonlyinformon thepotentialforadverseeffectsduringlife-time,butmost impor-tantlywillalsoestablishandintroduceanovelretrospectiveand predictivemonitoringtooltoassessenvironmentalquality. There-fore,inthesamewaythatgeneticpolymorphismscaninfluence thesusceptibilityofindividualorganismstotoxicity,differences intheepigenomethatemergethroughoutthelife-timeofan indi-vidualmayalsohavethesameeffects[12].Indeed,modulationof methylationasaresultofenvironmentalstressessuchasmetals, could,throughselection,affordlocalpopulationsoforganismsa survivaladvantagethroughconsequentadvantageousgene expres-sionchanges[8].However,inidentificationofsuitableepigenetic biomarkers,itisimportanttodifferentiatebetweentheinitialDNA methylationchanges(referredtoasdrivermethylation)andthe DNAmethylationchangesthataretriggeredasaconsequenceof achange(e.g.formationoftumours).Thelatterisreferredtoas passenger methylation[25]and islessrelevant to environmen-talmonitoring.Furthermore,itisimportanttobearinmindthat someDNAmethylationchangesmaysimplybebiomarkers indica-tiveofexposureratherthannecessarilypredictiveofanadverse effect[91].
Furthermore,thefield ofpaleoecology(resurrectionecology) mayprovide a unique opportunityfor investigating therole of epigeneticmechanismsinpopulationdiversityandadaptationto environmentalchanges.Daphniaspeciescanproducediapausing eggsviablefordecades[8].Samplingoftheseeggsfromsediment coresfrompondsandlakes,alongsidesediment chemistrydata, provideauniqueopportunityforunveilingecologicaland evolu-tionarychangesasaresultofenvironmentalchangesthroughout severaldecades[106,107].InareviewbyEadsetal.[108],several studieshavebeenhighlightedlookingatphenotypicplasticityand geneticdifferenceasaresultofenvironmentalchanges(e.g. chem-icals,introductionofanewpredator)usingDaphniarestingeggs datingbackseveraldecades.However,thefocusofthemajority of such studies is genomic variation (e.g. copy number varia-tion)andtherelationshiptophenotypicplasticityandadaptation. Consideringthewell-establishedroleofepigeneticmechanismsin regulatingtheresponsesoforganismstoenvironmentalfactors, adaptationandevolution[9,109–112],itseemshighlypossiblethat epigeneticmechanismshaveasubstantialroleintheevolutionand adaptationthatareobservedthroughoutdecades,forexamplein therestingeggsofDaphnia.Certainly,therestingeggsprovidean exceptionalopportunityforstudyingtheconceptof epigenetically-drivenphenotypicevolutionandadaptation.
Inconclusion,theadvancesinknowledgeofepigenetic mech-anismsandthepotentialforsuchchangestopersistthroughout life-time, and even beyond into subsequent generations, give
concernastowhethersuchchangesimposedbyenvironmental
Conflictofinterest
Theauthorsdeclarethattherearenoconflictsofinterest.
Acknowledgements
The authors thank the UK Natural Environmental Research
Council(NERC)for fundingtheirworkinthis area.Theauthors wouldalsoliketothankDr.TimWilliams(Universityof Birming-ham,UK)forhisinputintotheresearchrelatedtothisreview.
References
[1]M.Esteller,J.G.Heman,Cancerasanepigeneticdisease:DNAmethylation andchromatinalterationsinhumantumours,J.Pathol.196(2002)1–7.
[2]E.Kriukiene,Z.Liutkeviciute,S.Klimasauskas, 5-Hydroxymethylcytosine-theelusiveepigeneticmarkinmammalianDNA,Chem.Soc.Rev.41(2012) 6916–6930.
[3]T.Y.Xing,W.Ding,RecentadvanceinDNAepigeneticmodifications-thesixth baseinthegenome,ShengLiKeXueJinZhan43(2012)164–1670.
[4]J.-L.Gueant,F.Namour,R.-M.Gueant-Rodriguez,J.-L.Daval,Floateandfetal programming:aplayinepigenomics?TrendsEndocrinol.Metab.(2013),
http://dx.doi.org/10.1016/j.tem.2013.01.010.
[5]P.Dominguez-Salas,S.E.Cox,A.M.Prentice,B.J.Hennig,S.E.Moore,Maternal nutritionalstatus,C1metabolismandoffspringDNAmethylation:areviewof currentevidenceinhumansubjects,Proc.Natl.Acad.Sci.71(2012)154–165.
[6]J.A.Alegria-Torres,A.Baccarelli,V.Bollati,Epigeneticsandlifestyle, Epige-nomics3(2011)267–277.
[7]A.Baccarelli,V.Bollati,Epigeneticsandenvironmentalchemicals,Curr.Opin. Pediatr.21(2009)243–251.
[8]A.J.Morgan,P.Kille,S.R.Sturzenbaum,Microevolutionandecotoxicologyof metalsininvertebrates,Environ.Sci.Technol.41(2007)1085–1096.
[9]K.B.Flores,F.Wolschin,G.V.Amdam,TheroleofmethylationofDNAin envi-ronmentaladaptation,Integr.Comp.Biol.(2013),PMID:23620251.
[10]B.M.Turner,Epigeneticresponsestoenvironmentalchangeandtheir evo-lutionaryimplications,Philos.Trans.R.Soc.Lond.B:Biol.Sci.364(2009) 3403–3418.
[11]D.C.Dolinoy,R.Das,J.R.Weidman,R.L.Jirtle,Metastableepialleles,imprinting, andthefoetaloriginsofadultdiseases,Pediatr.Res.61(2007)30–37.
[12]B.C.Christensen,E.AndresHouseman,C.J.Marsit,S.Zheng,M.R.Wrensch,J.L. Wiemels,H.H.Nelson,M.R.Karagas,J.F.Padbury,R.Bueno,D.J.Sugarbaker, R.Yeh,J.K.Wiencke,K.T.Kelsey,Agingandenvironmentalexposuresalter tissue-specificDNAmethylationdependentuponCpGislandcontext,PLOS Genet.5(2009)1–13.
[13]E. Gomez-Diaz, M. Jorda, M.A. Peinado, A. Rivero, Epigenetics of host–pathogeninteractions:theroadaheadandtheroadbehind,PLoSPathog. 8(2012)e1003007.
[14]G.Egger,G.Liang,A.Apqricio,P.A.Jones,Epigeneticsinhumandiseaseand prospectsforepigenetictherapy,Nature429(2004)457–460.
[15]R.Jirtle,A.Bird,Epigeneticregulationofgeneexpression:howthegenome integrates intrinsic and environmental signals, Nat. Genet. 33 (2003) 245–254.
[16]B.M.Turner,Defininganepigeneticcode,Nat.CellBiol.9(2007)2–6.
[17]T.A.Chan,S.Glockner,J.M.Yi,W.Chen,L.VanNeste,L.Cope,J.G.Herman, V.Velculescu,K.E.Schuebel,N.Ahuja,S.B.Baylin,Convergenceofmutation andepigeneticalterationsidentifiescommongenesincancerthatpredictfor poorprognosis,PLOSMed.5(2008)823–838.
[18]P.Cui,L.Zhang,Q.Lin,F.Ding,C.Xin,X.Fang,S.Hu,J.Yu,Anovelmechanismof epigeneticregulation:nucleosome-spaceoccupancy,Biochem.Biophys.Res. Commun.391(2010)884–889.
[19]A.V.Probst,E.Dunleavy,G.Almouzni,Epigeneticinheritanceduringthecell cycle,Nat.Rev.Mol.CellBiol.10(2009)192–206.
[20]I.P. Pogribny, Epigenetic events in tumourigenesis: putting the pieces together,Exp.Oncol.32(2010)132–136.
[21]K.Gronbaek,C.Hother,P.A.Jones,Epigeneticchangesincancer,Agric.Prod. MarketInform.Syst.115(2007)1039–1059.
[22]J.P.Thomson,P.J.Skene,J.Selfridge,T.Clouaire,J.Guy,S.Webb,A.R.W.Kerr,A. Deaton,R.Andrews,K.D.James,D.J.Turner,R.Illingworth,A.Bird,CpGislands influencechromatinstructureviatheCpG-bindingproteinCfp1,Nature464 (2010)1082–1087.
[23]J.S.Butler,J.H.Lee,D.G.Skalnik,CFP1interactswithDNMT1independentlyof associationwiththeSetd1histoneH3K4methyltransferasecomplexes,DNA CellBiol.27(2008)533–543.
[24]C.M.Tate,J.Lee,D.G.Skalnik,CXXCfingerprotein1restrictstheSetd1A his-toneH3K4methyltransferasecomplextoeuchromatin,FASEBJ.277(2010) 210–223.
[25]Z.Herceg, T.Vaissiere, Epigeneticmechanismsandcancer. Aninterface betweentheenvironmentandthegenome,Epigenetics6(2011)804–819.
[26]M.Tahiliani,K.PengKoh,Y.Shen,W.A.Pastor,H.Bandukwala,Y.Brudno,S. Agarwal,L.M.Iyer,D.R.Liu,L.Aravind,A.Rao,Conversionof5-methylcytosine to5-hydroxymethylcytosineinmammalianDNAbyMLLpartnerTET1, Sci-ence324(2009)930–935.
[27]K.Williams,J.Christensen,M.TerndrupPedersen,J.V.Johansen,P.A.C.Cloos, J.Rappsilber,K.Helin,TET1andhydroxymethylcytosineintranscriptionand DNAmethylationfidelity,Nature473(2011)343–349.
[28]A.Bird,DNAmethylationpatternsandepigeneticmemory,GenesDev.16 (2002)6–21.
[29]R.Holliday,DNAmethylationandepigenotypes,Biochemistry(Mosc).70 (2005)500–504.
[30]M.Godmann,R.Lambrot,S.Kimmins,Thedynamicepigeneticprogramin malegermcells:itsroleinspermatogenesis,testiscancer,anditsresponse totheenvironment,Microsc.Res.Tech.72(2009)603–619.
[31]Y.He,S.D.Michaels,R.M.Amasino,Regulationoffloweringtimebyhistone acetylationinArabidopsis,Science302(2003)1751–1754.
[32]R.Bastow,J.S.Mylne,C.Lister,Z.Lippman,R.A.Martienssen,C.Dean, Vernal-izationrequiresepigeneticsilencingofFLCbyhistonemethylation,Nature 427(2004)164–167.
[33]J.E.Burn,D.J.Bagnall,J.D.Metzger,E.S.Dennis,W.J.Peacock,DNAmethylation, vernalization,andtheinitiationofflowering,Proc.Natl.Acad.Sci.90(1993) 287–291.
[34]M.E.Wilson,T.Sengoku,DevelopmentalregulationofneuronalgenesbyDNA methylation:environmentalinfluences,Int.J.Dev.Neurosci.(2013),PMID: 23501000.
[35]D.Crews,Epigenetics,brain,behaviour,andtheenvironment,Hormones (Athens)9(2010)41–50.
[36]M.M.McCarthy,D.Crews,Epigenetics-newfrontiersinneuroendocrinology, Front.Neuroendocrinol.29(2008)341–343.
[37]L.Navarro-Martin,J.Vinas,L.Ribas,N.Diaz,A.Gutierrez,L.DiCroce,F.Piferrer, DNAmethylationofthegonadalaromatase(cyp19a)promoterisinvolvedin temperature-dependentsexratioshiftsintheEuropeanseabass,PLOSGenet. 7(2011)1–15.
[38]R.G.Contractor,C.M.Foran,S.Li,K.L.Willett,Evidenceofgender-and tissue-specificpromotermethylationandthepotentialforethinylestradiolinduced changesinJapanesemedaka(Oryziaslatipes)estrogenreceptorandaromatase genes,Environ.Health67(2004)1–22.
[39]R.Massicotte,E.Whitelaw,B.Angers,DNAmethylation.Asourceofrandom variationinnaturalpopulations,Epigenetics6(2011)421–427.
[40]F.Lyko,S.Foret,R.Kucharski,S.Wolf,C.Falckenhayn,R.Maleszka,Thehoney beeepigenomes:differentialmethylationofBbrainDNAinqueensand work-ers,PLoSBiol.8(2010)1–12.
[41]P.Moran,A.Perez-Figueroa,Methylationchangesassociatedwithearly mat-urationstagesintheAtlanticsalmon,BMCGenet.12(2011)1–8.
[42]M.F.Fraga,E. Ballester,M.F.Paz, S.Ropero, F.Setien,M.L.Ballestar, D. Heine-Suner,J.C.Cigudose,M.Urioste,J.Benitez,M.Boix-Chornet,A. Sanchez-Aguilera,C.Ling,E.Carlsson,P.Poulsen,A.Vaag,Z.Stephan,T.D.Spector,Y. Wu,C.Plass,M.Esteller,Epigeneticdifferencesariseduringthelifetimeof monozygotictwins,Proc.Natl.Acad.Sci.102(2005)10604–10609.
[43]I.P.Pogribny,F.A.Beland,DNAmethylomealterationsinchemical carcino-genesis,CancerLett.334(2013)39–45.
[44]V.K.Cortessis,D.C.Thomas,A.J.Levine,C.V.Breton,T.M.Mack,K.D.Siegmund, R.W.Haile,P.W.Laird,Environmentalepigenetics:prospectsforstudying epigeneticmediationofexposure–responserelationships,Hum.Genet.131 (2012)1565–1589.
[45]R.Martinez-Zamudio,H.C.Ha,Environmentalepigeneticsinmetalexposure, Epigenetics6(2011)820–827.
[46]A.C.Gore,Developmentalprogrammingandendocrinedisruptoreffectson reproductiveneuroendocrinesystems,Front.Neuroendocrinol.29(2008) 358–374.
[47]D.Crews,Epigeneticsanditsimplicationsforbehavioralneuroendocrinology, Front.Neuroendocrinol.29(2008)344–357.
[48]S.Ho,W.Tang,J.B.deFrausto,G.S.Prins,Developmentalexposureto estra-diolandbisphenolAincreasessusceptibilitytoprostatecarcinogenesisand epigeneticallyregulatesphosphodiesterasetype4variant4,CancerRes.66 (2006)5624–5632.
[49]V.Michel,Z.Yuan,S.Ramsubir,M.Bakovic,Cholinetransportforphospholipid synthesis,Exp.Biol.Med.231(2006)490–504.
[50]J.Locker,T.V.Reddy,B.Lombardi,DNAmethylationandhepatocarcinogenesis inratsfedacholine-devoiddiet,Carcinogenesis7(1986)1309–1312.
[51]M.J.Wilson,N.Shivapurkar,L.A.Poirier,Hypomethylationofhepaticnuclear DNAinratsfedwithacarcinogenicmethyl-deficientdiet,Biochem.J.218 (1984)987–990.
[52]A.K.Ghoshal,E.Farber,Theinductionoflivercancerbydietarydeficiencyof cholineandmethioninewithoutaddedcarcinogens,Carcinogenesis5(1984) 1367–1370.
[53]S.Sibani,S.Melnyk,I.P.Pogribny,W.Wang,F.Hiou-Tim,L.Deng,J.Trasler, S.J.James,R.Rozen,Studiesofmethioninecycleintermediates(SAM,SAH), DNAmethylationandtheimpactoffolatedeficiencyontumournumbersin Minmice,Carcinogenesis23(2002)61–65.
[54]L. Mirbahai, A.D. Southam, U. Sommer, T.D. Williams, J.P. Bignell, B.P. Lyons,M.R. Viant,J.K. Chipman,Disruption of DNAmethylation viaS -adenosylhomocysteineisakeyprocessinhighincidencelivercarcinogenesis infish,J.ProteomeRes.(2013),PMID:23611792.
[55]S.P.Barros,S.Offenbacher,Epigenetics:connectingenvironmentand geno-typetophenotypeanddisease,J.Dent.Res.88(2009)400–408.
[56]R.L.Jirtle,M.K.Skinner,Environmentalepigenomicsanddisease susceptibil-ity,Nat.Rev.Genet.8(2007)253–262.
diethylstilbesterol-induced cancers, Ann. N. Y. Acad. Sci. 983 (2003) 161–169.
[58]M.K.Skinner,M.Manikkam,C.Guerrero-Bosagna,Epigenetic transgenera-tionalactionsofenvironmentalfactorsindiseaseetiology,TrendsEndocrinol. Metab.21(2010)214–222.
[59]G.S.Prins,Estrogenimprinting:whenyourepigeneticmemoriescomeback tohauntyou,Endocrinology149(2008)5919–5921.
[60]M.D.Anway,M.A.Memon,M.Uzumcu,M.K.Skinner,Transgenerationaleffect oftheendocrinedisruptorvinclozolinonmalespermatogenesis,J.Androl.27 (2006)868–879.
[61]R.R.Newbold,R.B.Hanson,W.N. Jefferson,B.C.Bullock,J. Haseman,J.A. McLachlan,Proliferativelesionsandreproductivetract tumoursinmale descendantsofmiceexposeddevelopmentallytodiethylstilbestrol, Carcino-genesis21(2000)1355–1363.
[62]G.S.Prins,L.Birch,W.-Y.Tang,S.-M.Ho,Developmentalestrogenexposures predisposetoprostatecarcinogenesiswithaging,Reprod.Toxicol.23(2007) 374–382.
[63]A.Andres,D.B.Muellener,G.U.Ryffel,Persistence,methylationand expres-sionofvitellogeningenederivativesafterinjectionintofertilizedeggsof Xenopuslaevis,NucleicAcidsRes.12(1984)2283–2302.
[64]S.Li,K.A.Washburn,R.Moore,T.Uno,C.Teng,R.R.Newbold,J.A.McLachian, M.Negishi,Developmentalexposuretodiethylstilbestrolelicits demethyla-tionofestrogen-responsivelactoferringeneinmouseuterus,CancerRes.57 (1997)4356–4359.
[65]D.C.Dolinoy,Theagoutimousemodel:anepigeneticbiosensorfornutritional andenvironmentalalterationsonthefoetalepigenome,Nutr.Rev.66(2008) 1–8.
[66]D.C.Dolinoy,J.Wiedman,R.Waterland,R.L.Jirtle,Maternalgenisteinalters coatcolourandprotectsAvymouseoffspringfromobesitybymodifyingthe foetalepigenome,Environ.HealthPerspect.114(2006)567–572.
[67]L.Mirbahai,G.Yin,J.P.Bignell,N.Li,T.D.Williams,J.K.Chipman,DNA meth-ylationinlivertumourigenesisinfishfromtheenvironment,Epigenetics6 (2011)1319–1333.
[68]A.P.Feinberg,R.Ohlsson,S.Henikoff,Theepigeneticprogenitororiginof humancancer,Nat.Rev.Genet.7(2006)21–33.
[69]N.A.Youngson,E.Whitelaw,Transgenerationalepigeneticeffects,Annu.Rev. GenomicsHum.Genet.9(2008)233–257.
[70]W.Reik,J.Walter,Evolutionofimprintingmechanisms:thebattleofthesexes beginsinthezygote,Nat.Genet.27(2001)255–256.
[71]N.C.Whitelaw,E.Whitelaw,Transgenerationalepigeneticinheritancein healthanddisease,Curr.Opin.Genet.Dev.18(2008)273–279.
[72]D.Francis,J.Diorio,D.Liu,M.J.Meaney,Nongenomictransmissionacross generationsofmaternalbehaviourandstressresponsesintherat,Science 286(1999)1155–1158.
[73]I.C.G.Weaver,N.Cervoni,F.A.Champagne,A.C.D’Alessio,S.Sharma,J.R. Seckl,S.Dymov,M.Szyf,M.J.Meaney,Epigeneticprogrammingbymaternal behaviour,Nat.Neurosci.7(2004)847–854.
[74]I.C.G.Weaver,A.C.D’Alessio,S.E.Brown,I.C.Hellstrom,S.Dymov,S.Sharma, M.Szyf,M.J.Meaney,ThetranscriptionfactornervegrowthfactoriproteinA mediatesepigeneticrogramming:alteringepigeneticmarksby immediate-earlygenes,J.Neurosci.27(2007)1756–1768.
[75]M.D.Anway,A.S.Cupp,M.Uzumcu,M.K.Skinner,Epigenetic transgenera-tionalactionsofendocrinedisruptorsandmalefertility,Science308(2005) 1466–1469.
[76]M.D.Anway,M.K.Skinner,Epigenetictransgenerationalactionsofendocrine disruptors,Endocrinology147(2006)S43–S49.
[77]M.D.Anway,M.K.Skinner,Transgenerationaleffectsoftheendocrine dis-ruptorvinclozolinontheprostatetranscriptomeandadultonsetdisease, Prostate68(2008)517–529.
[78]M.D.Anway,S.S.Rekow,M.K.Skinner,Transgenerationalepigenetic program-mingoftheembryonictestistranscriptome,Genomics91(2008)30–40.
[79]M.D.Anway,S.S.Rekow,M.K.Skinner,Comparativeanti-androgenicactions ofvinclozolinandflutamideontransgenerationaladultonsetdiseaseand spermatogenesis,Reprod.Toxicol.26(2008)100–106.
[80]C.Stouder,A.Paoloni-Giacobino,Transgenerationaleffectsoftheendocrine disruptorvinclozolinonthemethylationpatternofimprintedgenesinthe mousesperm,Reproduction139(2010)373–379.
[81]E.Nilson,G.Larsen,M.Manikkam,C.Guerrero-Bosagna,M.I.Savenkova,M.K. Skinner,Environmentallyinducedepigenetictransgenerationalinheritance ofovariandisease,PLoSONE7(2012)e36129.
[82]K.Inawaka,M.Kawabe,S.Takahashi,Y.Doi,Y.Tomigahara,H.Tarui,J.Abe, S.Kawamura,T.Shirai,Maternalexposuretoanti-androgeniccompounds, vinclozolin,flutamideandprocymidone,hasnoeffectsonspermatogenesis andDNAmethylationinmaleratsofsubsequentgenerations,Toxicol.Appl. Pharmacol.237(2009)178–187.
[83]S.Schneider,W.Kaufmann,R.Buesen,B.VanRavenzwaay,Vinclozolin—the lackofatransgenerationaleffectafteroralmaternalexposureduring organo-genesis,Reprod.Toxicol.25(2008)352–360.
[84]S. Schneider, H. Marxfeld, S. Groters, R. Buesen, B. van Ravenzwaay, Vinclozolin—Notransgenerational inheritance of anti-androgenic effects aftermaternalexposureduringorganogenesisviatheintraperitonealroute, Reprod.Toxicol.37(2013)6–14.
[85]M.B.Vandegehuchte,D.DeConinck,T.Vandenbrouck,W.M.DeCoen,C.R. Janssen,Genetranscriptionprofiles,globalDNAmethylationandpotential transgenerationalepigeneticeffectsrelatedtoZnexposurehistoryinDaphnia magna,Environ.Pollut.158(2010)3323–3329.
[86]M.B.Vandegehuchte,T.Kyndt,B.Vanholme,A.Haegeman,G.Gheysen,C.R. Janssen,OccuranceofDNAmethylationinDaphniamagnaandinfluenceof multigenerationCdexposure,Environ.Int.35(2009)700–706.
[87]M.B.Vandegehuchte,F.Lemiere,C.R.Janssen,QuantitativeDNA methyla-tioninDaphniamagnaandeffectsofmultigenerationZnexposure,Comp. Biochem.Physiol.150(2009)343–348.
[88]M.B.Vandegehuchte,F. Lemiere, L. Vanhaecke,W.Vanden Berghe, C.R. Janssen,DirectandtransgenerationalimpactonDaphniamagnaof chemi-calswithaknowneffectonDNAmethylation,Comp.Biochem.Physiol.151 (2010)278–285.
[89]M.B.Vandegehuchte,C.R.Janssen,Epigeneticsanditsimplicationsfor eco-toxicology,Ecotoxicology20(2011)607–624.
[90]K.D.M.Harris,N.J.Bartlett,K.L.Vett,Daphniaasanemergingepigeneticmodel organism,Genet.Res.Int.2012(2012)1–8.
[91]J.I.Goodman,K.A.Augustine,M.L.Cunnningham,D. Dixon,Y.P.Dragan, J.G. Falls, R.J. Rasoulpour, R.C. Sills, R.D. Storer, D.C. Wolf, S.D. Pettit, What do we need to know prior to thinking about incorporating an epigeneticevaluation into safety assessments? Toxicol. Sci. 116 (2010) 375–381.
[92]J.G.Moggs,J.I.Goodman,J.E.Trosko,R.A.Robertsd,Epigeneticsandcancer. Implicationsfordrugdiscoveryandsafetyassessment,Toxicol.Appl. Pharma-col.196(2004)422–430.
[93]J.Legler,Epigenetics:anemergingfieldinenvironmentaltoxicology,Integr. Environ.AssessManag.6(2010)314–315.
[94]J.Sved,A.Bird,TheexpectedequilibriumoftheCpGdinucleotidein ver-tebrategenomesunderamutationmodel,Proc.Natl.Acad.Sci.87(1990) 4692–4696.
[95]C.Guerrero-Bosagna,P.Sabat,L.Valladares,Environmentalsignalingand evolutionarychange:canexposureofpregnantmammalstoenvironmental estrogensleadtoepigeneticallyinducedevolutionarychangesinembryos? Evol.Dev.7(2005)341–350.
[96]http://www.wfduk.org/faq/HowAreTheNewClassificationSystemsDifferent FromPreviousClassificationSystems
[97]I. Ahmad,M.Pacheco,M.A.Santos,Anguilla anguillaL.,oxidativestress biomarkers:aninsitustudyoffreshwaterwetlandecosystem(Pateirade Fermentelos,Portugal),Chemosphere65(2006)952–962.
[98]X.W.Zhou,G.N.Zhu,M.Jilisa,J.H.Sun,InfluenceofCu,Zn,Pb,Cdandtheir heavymetalionmixtureontheDNAmethylationlevelofthefish(Carassius auratus),J.Environ.Sci.(China)21(2001)549–552.
[99]M.Stromqvist,N.Tooke,B.Brunstrom,DNAmethylationlevelsinthe5 flank-ingregionofthevitellogeninIgeneinliverandbrainofadultzebrafish(Danio rerio)-sexandtissuedifferencesandeffectsof17␣-ethinylestradiolexposure, Aquat.Toxicol.98(2010)275–281.
[100]A.P.Scott,M.Sanders,G.D.Stentiford,R.A.Reese,I.Katsiadaki,Evidencefor estrogenicendocrinedisruptioninanoffshoreflatfish,thedab(Limanda limanda),Mar.Environ.Res.64(2007)128–148.
[101]H.Lempiainen, A. Muller,S. Brasa,S. Teo,T.C. Roloff, L. Morawiec, N. Zamurovic,A.Vicart,E.Funhoff,P.Couttet,D.Schubeler,O.Grenet,J. Mar-lowe,J.Moggs,R.Terranova,Phenobarbitalmediatesanepigeneticswitchat theconstitutiveandrostanereceptor(CAR)targetgeneCyp2b10intheliver ofB6C3F1mice,PLoSONE6(2011)1–14.
[102]J.M.Phillips,L.D.Burgoon,J.I.Goodman,Phenobarbitalelicitsunique,early changesintheexpressionofhepaticgenesthataffectcriticalpathwaysin tumour-proneB6C3F1mice,Toxicol.Sci.109(2009)193–205.
[103]J.M.Phillips,J.I.Goodman,Multiplegenesexhibitphenobarbital-induced constitutiveactive/androstanereceptor-mediatedDNAmethylationchanges duringlivertumourigenesisandinlivertumours,Toxicol.Sci.108(2009) 273–289.
[104]A.N.Bachman,J.M.Phillips,J.I.Goodman,Phenobarbitalinducesprogressive patternsofGC-richandgene-specificalteredDNAmethylationintheliverof tumour-proneB6C3F1mice,Toxicol.Sci.91(2006)393–405.
[105]Y.Pei,T.Zhang,V.Renault,X.Zhang,Anoverviewofhepatocellularcarcinoma studybyomics-basedmethods,ActaBiochim.Biophys.Sin.(Shanghai)41 (2009)1–15.
[106]N.Brede,C.Sandrock,D.Straile,P.Spaak,T.Jankowski,B.Streit,K.Schwenk, Theimpactofhuman-madeecologicalchangesonthegeneticarchitectureof Daphniaspecies,Proc.Natl.Acad.Sci.106(2009)4758–4763.
[107]W.C.Kerfoot,L.J.Weider,Experimentalpaleoecology(resurrectionecology): chasingVanValen’sRedQueenhypothesis,Limnol.Oceanogr.49(2004) 1300–1316.
[108]B.D. Eads, J. Andrews, J.K. Colbourne, Ecological genomics in Daphnia: stressresponsesandenvironmentalsexdetermination,Heredity100(2008) 184–190.
[109]C.Furusawa,K.Kaneko,Epigeneticfeedbackregulationaccelerates adapta-tionandevolution,PLoSONE8(2013)e61251.
[110]O.Paun,Bateman,R.M.Fay,M.Hedren,L.Civeyrel,M.W.Chase,Stable epi-geneticeffectsimpactadaptationinallopolyploidorchids(Dactylorhiza: Orchidaceae),Mol.Biol.Evol.27(2010)2465–2473.
[111]K.Brautigam,K.J.Vining,C.Lafon-Placette,C.G.Fossdal,M.Mirouze,J.G. Mar-cos,S.Fluch,M.F.Fraga,M.A.Guevara,D.Abarca,O.Johnsen,S.Maury,S.H. Strauss,M.M.Campbell,A.Rohde,C.Diaz-Sala,M.T.Cervera,Epigenetic reg-ulationofadaptiveresponsesofforesttreespeciestotheenvironment,Ecol. Evol.3(2013)399–415.