• No results found

Tetra μ L isoleucine bis­­[tetra­aqua­samarium(III)] hexaperchlorate

N/A
N/A
Protected

Academic year: 2020

Share "Tetra μ L isoleucine bis­­[tetra­aqua­samarium(III)] hexaperchlorate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m32

Wang, Niu, Hu and Ni [Sm2(C6H13NO2)4(H2O)8](ClO4)6 DOI: 10.1107/S1600536803027557 Acta Cryst.(2004). E60, m32±m34 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Tetra-

l

-

L

-isoleucine-bis[tetraaquasamarium(III)]

hexaperchlorate

Jinping Wang, Chunji Niu,* Ninghai Hu and Jiazuan Ni

Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China

Correspondence e-mail: cjniu@ciac.jl.cn

Correspondence e-mail: cjniu@ciac.jl.cn

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.024 AÊ H-atom completeness 77% Disorder in solvent or counterion

Rfactor = 0.052

wRfactor = 0.139

Data-to-parameter ratio = 10.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title complex, [Sm2(C6H13NO2)4(H2O)8](ClO4)6, contains

dimeric [Sm2(Ile)4(H2O)8]6+cations (Ile is l-isoleucine) and

perchlorate anions. The two Sm3+ cations lie on a

crystal-lographic twofold rotation axis. The four isoleucine molecules act as bridging ligands, linking two Sm3+ ions through their

carboxyl O atoms. Each Sm3+ion is also coordinated by four

water molecules to complete eightfold coordination in a square antiprismatic fashion. One of the three perchlorate anions in the asymmetric unit is disordered.

Comment

The increasing effort to better understand the biological effects of rare earth elements has led to considerable interest in amino acid complexes of rare earth elements. In recent years, more than 50 structures of such complexes have been reported (Ni, 2002; Wanget al., 1996). The crystal structures of rare earth complexes with amino acids show some interesting characteristics. For example, at low pH the amino acid ligands are bonded to the rare earth elements through their carboxyl groups, while the amino groups are protonated and are not involved in the coordination. These complexes adopt one of three types of structures, namely, dinuclear dimer, chain or network polymer; see, for example, Legendziewicz et al. (1984), Csoreghet al.(1989), Glowiaket al.(1991), Huet al. (1995), Ma et al.(1995), Wang et al.(1994) and Wang et al. (2003). However, at high pH, amino groups may participate in coordination, and these complexes show tetranuclear and pentadecanuclear forms (Wang et al., 1999; Ma et al., 2000; Zhang et al., 2000a,b). However, studies of the crystal struc-tures of rare earth element±isoleucine complexes have rarely been reported (Zhao et al., 1995). In this work, the crystal structure of a samarium(III) complex with l-isoleucine, (I), has been studied as part of our crystallographic studies of rare earth±amino acid complexes.

The compound crystallizes in the monoclinic system, and consists ofC2-symmetric dimeric [Sm2(Ile)4(H2O)8]6+complex

(2)

cations and ClO4ÿanions. The structure of the cation is

illu-strated in Fig. 1 and selected geometric parameters are listed in Table 1. The two Sm3+ions lie on a twofold rotation axis.

Thel-isoleucine molecules exist in zwitterionic form, with the amino groups protonated and the carboxyl groups deproton-ated. The two Sm3+ ions in the dimeric [Sm

2(Ile)4(H2O)8]6+

complex cation are connected by four bridging carboxylate groups, the Sm Sm distance being 4.446 (5) AÊ, indicating that there is no metal±metal bond in the complex. The average length of SmÐO(carboxylate) is 2.35 (6) AÊ. Eachtranspair of carboxylate groups is coplanar with the two Sm3+ions and the

dihedral angle between the two planes is 85.1 (1), showing

almost perpendicularity of the two planes. The coordination polyhedron around each Sm3+ion is a square antiprism, with

four of the sites occupied by the O atoms from the carboxylate groups and the other four by the O atoms from four coord-inated water molecules to complete an eightfold coordination, and the average length of SmÐOwater is 2.47 (2) AÊ. The

perchlorate anions reside in the cavities between cations. Two O atoms of perchlorate form hydrogen bonds with NH3+and

coordinated H2O O atoms from two [Sm2(Ile)4(H2O)8]6+

cations. This contributes to the stability of the crystal.

Experimental

Samarium perchlorate and isoleucine were mixed in a 1:1 molar ratio in aqueous solution and the pH value was adjusted to 4.0 with NaOH. The solution was evaporated slowly at room temperature, yielding colorless prismatic crystals.

Crystal data

[Sm2(C6H13NO2)4(H2O)8](ClO4)6

Mr= 1566.22 Monoclinic,C2

a= 21.682 (3) AÊ

b= 10.3815 (19) AÊ

c= 15.177 (4) AÊ

= 120.03 (3)

V= 2957.7 (14) AÊ3

Z= 2

Dx= 1.759 Mg mÿ3 MoKradiation Cell parameters from 26

re¯ections

= 5.2±13.8

= 2.34 mmÿ1

T= 293 (2) K Prism, colorless 0.520.400.32 mm

Data collection

SiemensP4 diffractometer

!scans

Absorption correction: scan (SHELXTL; Siemens, 1994)

Tmin= 0.398,Tmax= 0.473

6875 measured re¯ections 3400 independent re¯ections 3009 re¯ections withI> 2(I)

Rint= 0.037

max= 26.0

h=ÿ25!26

k=ÿ1!12

l=ÿ18!18 3 standard re¯ections

every 97 re¯ections intensity decay: none

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.052

wR(F2) = 0.139

S= 1.03 3400 re¯ections 338 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.050

max= 1.17 e AÊÿ3

min=ÿ1.03 e AÊÿ3

Absolute structure: Flack (1983) Flack parameter = 0.00 (3)

Table 1

Selected geometric parameters (AÊ,).

Sm1ÐO3 2.310 (10)

Sm1ÐOW2 2.445 (12)

Sm1ÐO1 2.411 (12)

Sm1ÐOW1 2.474 (13)

Sm2ÐO2 2.279 (13)

Sm2ÐO4 2.412 (9)

Sm2ÐOW3 2.446 (12)

Sm2ÐOW4 2.505 (13)

O3iÐSm1ÐO3 107.7 (5)

O3ÐSm1ÐOW2i 145.9 (4)

O3iÐSm1ÐOW2 145.9 (4)

O3ÐSm1ÐOW2 84.8 (4) OW2iÐSm1ÐOW2 102.7 (6)

O3ÐSm1ÐO1i 73.1 (4)

OW2ÐSm1ÐO1i 74.4 (5)

O3iÐSm1ÐO1 73.1 (4)

O3ÐSm1ÐO1 79.1 (4)

OW2iÐSm1ÐO1 74.4 (5)

OW2ÐSm1ÐO1 141.0 (4) O1iÐSm1ÐO1 131.9 (7)

O3iÐSm1ÐOW1 141.2 (4)

O3ÐSm1ÐOW1 81.4 (4)

OW2iÐSm1ÐOW1 70.2 (4)

OW2ÐSm1ÐOW1 70.8 (4) O1iÐSm1ÐOW1 138.3 (4)

O1ÐSm1ÐOW1 71.8 (5) O3ÐSm1ÐOW1i 141.2 (4)

OW2ÐSm1ÐOW1i 70.2 (4)

O1ÐSm1ÐOW1i 138.3 (4)

OW1ÐSm1ÐOW1i 115.4 (7)

O2ÐSm2ÐO2i 115.5 (7)

O2ÐSm2ÐO4i 77.0 (4)

O2ÐSm2ÐO4 79.7 (4)

O2iÐSm2ÐO4 77.0 (4)

O4iÐSm2ÐO4 135.5 (5)

O2ÐSm2ÐOW3i 142.2 (4)

O4ÐSm2ÐOW3i 138.0 (4)

O2ÐSm2ÐOW3 79.2 (5) O2iÐSm2ÐOW3 142.2 (4)

O4iÐSm2ÐOW3 138.0 (3)

O4ÐSm2ÐOW3 71.6 (4) OW3iÐSm2ÐOW3 111.2 (8)

O2ÐSm2ÐOW4 143.8 (4) O2iÐSm2ÐOW4 80.1 (5)

O4iÐSm2ÐOW4 139.2 (4)

O4ÐSm2ÐOW4 72.2 (4) OW3iÐSm2ÐOW4 70.0 (4)

OW3ÐSm2ÐOW4 70.7 (5) O2ÐSm2ÐOW4i 80.1 (5)

O4ÐSm2ÐOW4i 139.2 (4)

OW3ÐSm2ÐOW4i 70.0 (4)

OW4ÐSm2ÐOW4i 106.9 (7)

C1ÐO1ÐSm1 132.4 (10)

C1ÐO2ÐSm2 157.7 (12)

C7ÐO3ÐSm1 163.0 (10)

C7ÐO4ÐSm2 129.5 (9)

Symmetry code: (i) 1ÿx;y;1ÿz.

The perchlorate group containing Cl3 was found to be disordered. The occupancy factors for the disordered atoms were re®ned so that the sum of the occupancy factors was equal to 1. Finally, re®nement gave the occupancy factors for Cl3 and the four O atoms of the perchlorate group in the two positions as 0.805 (11) and 0.195 (11), respectively. All non-H atoms were re®ned anisotropically, except for those with occupancy factors less than 0.5, which were re®ned isotropically. Amino acid H atoms were added at calculated positions and those of water molecules were not located. H atoms were re®ned using a riding mode [Uiso(H) = 1.2Ueq(C,N)].maxwas located near the disordered perchlorate anion andminwas located 0.72 AÊ from the Cl3 atom.

Data collection:P4Software(Siemens, 1995); cell re®nement:P4

Software; data reduction: P4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne

Acta Cryst.(2004). E60, m32±m34 Wang, Niu, Hu and Ni [Sm2(C6H13NO2)4(H2O)8](ClO4)6

m33

metal-organic papers

Figure 1

The structure of the [Sm2(Ile)4(H2O)8]6+ cation of (I). Displacement

(3)

metal-organic papers

m34

Wang, Niu, Hu and Ni [Sm2(C6H13NO2)4(H2O)8](ClO4)6 Acta Cryst.(2004). E60, m32±m34 structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL(Siemens, 1994); software used to prepare material for publication:SHELXL97.

We thank the NSFC for ®nancial support of this work (project Nos. 29890280 and 29971029).

References

Csoregh, I., Kierkegaard, P., Legendziewicz, J. & Huskowska, E. (1989).Acta Chem. Scand.43, 636±640.

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Glowiak, T., Legendziewicz, J., Dao, C. N. & Huskowska, E. (1991).J. Less Common Met.168, 237±248.

Hu, N. H., Wang, Z. L., Niu, C. J. & Ni, J. Z. (1995).Acta Cryst.C51, 1565±1568. Legendziewicz, J., Huskowska, E., Waskowska, A. & Argay, G. (1984).Inorg.

Chim. Acta,92, 151±157.

Ma, A. Z., Li, M. L., Lin, Y. H. & Xi, S. Q. (1995).Chin. J. Struct. Chem.14, 5± 14.

Ma, B. Q., Zhang, D. S., Gao, S., Jin, T. Z., Yan, C. H. & Xu, G. X. (2000).

Angew. Chem. Int. Ed.39, 3644±3646.

Ni, J. (2002).Bioinorg. Chem. Rare Earth Elem. pp. 42±43.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

Siemens (1994).SHELXTL.Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1995). P4 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wang, J., Hu, N., Yang, K., Zhang, H., Niu, C. & Ni, J. (2003).Acta Cryst.C59, m52±m54.

Wang, R., Gao, F. & Jin, T. (1996).Hua Xue Tong Bao,10, 14±20.

Wang, R., Zheng, Z., Jin, T. & Staples, R. (1999).Angew. Chem. Int. Ed.38, 1813±1815.

Wang, X. Q., Jin, T. Z. & Jin, Q. R. (1994).Polyhedron,13, 2333±2336. Zhang, D., Bu, W., Yang, W., Li, J., Jin, T., Ye, L. & Fan, Y. (2000a).Chem. Res.

Chin. Univ.16, 97±101.

Zhang, D., Bu, W., Yang, W., Li, J., Jin, T., Ye, L. & Fan, Y. (2000b).Chem. Res. Chin. Univ.16, 102±107.

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m32–m34

supporting information

Acta Cryst. (2004). E60, m32–m34 [https://doi.org/10.1107/S1600536803027557]

Tetra-

µ

-

L

-isoleucine-bis[tetraaquasamarium(III)] hexaperchlorate

Jinping Wang, Chunji Niu, Ninghai Hu and Jiazuan Ni

Tetra-µ-alpha-isoleucine-bis[tetraaquasamarium(III)] hexaperchlorate

Crystal data

[Sm2(C6H13NO2)4(H2O)8](ClO4)6 Mr = 1566.22

Monoclinic, C2 Hall symbol: C2y a = 21.682 (3) Å b = 10.3815 (19) Å c = 15.177 (4) Å β = 120.03 (3)° V = 2957.7 (14) Å3 Z = 2

F(000) = 1572 Dx = 1.759 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 26 reflections θ = 5.2–13.8°

µ = 2.34 mm−1 T = 293 K

Prismatic, colorless 0.52 × 0.40 × 0.32 mm

Data collection Siemens P4

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: ψ scan (Sheldrick, 1983)

Tmin = 0.398, Tmax = 0.473 6875 measured reflections

3400 independent reflections 3009 reflections with I > 2σ(I) Rint = 0.037

θmax = 26.0°, θmin = 1.9° h = −25→26

k = −1→12 l = −18→18

3 standard reflections every 97 reflections intensity decay: none

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.052 wR(F2) = 0.139 S = 1.03 3400 reflections 338 parameters 49 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.050

Δρmax = 1.17 e Å−3 Δρmin = −1.03 e Å−3

Absolute structure: Flack (1983), XXXX Friedel pairs

Absolute structure parameter: −0.00 (3)

Special details

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m32–m34

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Sm1 0.5000 0.83519 (6) 0.5000 0.0408 (2) Sm2 0.5000 0.40682 (6) 0.5000 0.0474 (3) OW1 0.5542 (6) 0.9625 (15) 0.6591 (9) 0.080 (4) OW2 0.4108 (6) 0.9822 (14) 0.4967 (9) 0.068 (3) OW3 0.5533 (6) 0.2737 (16) 0.6536 (10) 0.081 (4) OW4 0.4064 (7) 0.2632 (16) 0.4978 (11) 0.083 (4) O1 0.6138 (6) 0.7406 (15) 0.6167 (9) 0.067 (3) O2 0.5993 (6) 0.5239 (14) 0.6034 (9) 0.064 (3) O3 0.4692 (5) 0.7039 (10) 0.5949 (8) 0.060 (3) O4 0.4664 (5) 0.4947 (11) 0.6171 (8) 0.061 (3) N1 0.7524 (6) 0.7205 (18) 0.6996 (11) 0.092 (5)

H1A 0.7417 0.7229 0.6349 0.110*

H1B 0.7991 0.7096 0.7395 0.110*

H1C 0.7394 0.7943 0.7155 0.110*

N2 0.4127 (8) 0.5139 (14) 0.7390 (11) 0.082 (4)

H2A 0.3970 0.4529 0.6915 0.098*

H2B 0.3809 0.5264 0.7589 0.098*

H2C 0.4539 0.4894 0.7921 0.098*

C1 0.6360 (5) 0.618 (2) 0.6380 (7) 0.051 (2) C2 0.7145 (6) 0.613 (3) 0.7144 (9) 0.063 (3)

H2 0.7335 0.5333 0.7032 0.075*

C3 0.7267 (6) 0.609 (2) 0.8240 (9) 0.068 (4)

H3 0.7046 0.6873 0.8325 0.081*

C4 0.6931 (10) 0.502 (2) 0.8424 (17) 0.106 (7)

H4A 0.7186 0.4246 0.8466 0.127*

H4B 0.6448 0.4948 0.7877 0.127*

H4C 0.6934 0.5150 0.9053 0.127*

C5 0.8078 (8) 0.616 (5) 0.9061 (12) 0.132 (11)

H5A 0.8309 0.6805 0.8862 0.159*

H5B 0.8299 0.5336 0.9098 0.159*

C6 0.8181 (12) 0.649 (5) 1.0082 (14) 0.186 (14)

H6A 0.7795 0.6149 1.0147 0.223*

H6B 0.8193 0.7414 1.0156 0.223*

H6C 0.8623 0.6136 1.0602 0.223*

C7 0.4561 (5) 0.609 (2) 0.6316 (8) 0.050 (3) C8 0.4229 (6) 0.634 (2) 0.6973 (9) 0.058 (3)

H8 0.3758 0.6723 0.6538 0.070*

C9 0.4691 (7) 0.7350 (14) 0.7825 (10) 0.058 (3)

H9 0.4739 0.8133 0.7503 0.069*

C10 0.4309 (10) 0.770 (2) 0.8454 (13) 0.095 (6)

H10A 0.3820 0.7915 0.7993 0.114*

H10B 0.4544 0.8426 0.8887 0.114*

H10C 0.4332 0.6977 0.8862 0.114*

C11 0.5429 (9) 0.682 (2) 0.8543 (14) 0.109 (7)

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m32–m34

H11B 0.5618 0.6420 0.8149 0.131*

C12 0.5930 (12) 0.786 (3) 0.9206 (15) 0.186 (14)

H12A 0.5777 0.8676 0.8863 0.223*

H12B 0.6403 0.7678 0.9340 0.223*

H12C 0.5928 0.7899 0.9837 0.223*

Cl1 0.75194 (18) 1.4054 (4) 0.5258 (3) 0.0687 (9) O5 0.8066 (7) 1.3472 (18) 0.5142 (13) 0.131 (6) O6 0.6846 (7) 1.361 (3) 0.4326 (10) 0.181 (13) O7 0.7483 (7) 1.3457 (15) 0.6075 (8) 0.103 (4) O8 0.7497 (14) 1.5386 (11) 0.5271 (19) 0.196 (12) Cl2 0.7407 (2) 1.0627 (5) 0.7789 (4) 0.0823 (11) O9 0.7031 (7) 0.9637 (14) 0.7979 (12) 0.116 (5) O10 0.6914 (9) 1.1669 (16) 0.725 (2) 0.244 (17) O11 0.7652 (12) 1.012 (2) 0.7131 (17) 0.207 (11) O12 0.8003 (8) 1.102 (3) 0.8715 (11) 0.195 (11)

Cl3 0.4628 (3) 1.1715 (6) 0.7883 (5) 0.0844 (17)* 0.804 (11) O13 0.4645 (12) 1.079 (2) 0.7237 (16) 0.168 (11)* 0.804 (11) O14 0.3946 (9) 1.221 (3) 0.7585 (19) 0.190 (12)* 0.804 (11) O15 0.4927 (11) 1.117 (3) 0.8919 (12) 0.165 (8)* 0.804 (11) O16 0.5115 (9) 1.2791 (16) 0.8028 (14) 0.115 (6)* 0.804 (11) Cl3′ 0.4814 (9) 1.0524 (14) 0.8173 (12) 0.049 (5)* 0.195 (11) O13′ 0.5103 (17) 1.017 (3) 0.9207 (17) 0.37 (8)* 0.195 (11) O14′ 0.519 (2) 0.999 (2) 0.771 (3) 0.37 (8)* 0.195 (11) O15′ 0.4063 (13) 1.034 (4) 0.757 (3) 0.37 (8)* 0.195 (11) O16′ 0.493 (3) 1.1952 (18) 0.818 (4) 0.37 (8)* 0.195 (11)

Atomic displacement parameters (Å2)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m32–m34

C8 0.052 (5) 0.061 (9) 0.074 (6) −0.006 (9) 0.041 (5) −0.010 (10) C9 0.063 (7) 0.056 (7) 0.060 (6) −0.013 (6) 0.035 (6) −0.013 (6) C10 0.093 (11) 0.117 (15) 0.085 (10) −0.027 (12) 0.053 (9) −0.026 (11) C11 0.085 (11) 0.122 (17) 0.082 (10) 0.015 (12) 0.013 (9) −0.020 (11) C12 0.102 (10) 0.35 (4) 0.073 (7) −0.06 (2) 0.023 (7) −0.027 (17) Cl1 0.0571 (17) 0.085 (2) 0.084 (2) 0.0053 (18) 0.0500 (17) 0.0065 (19) O5 0.097 (10) 0.143 (15) 0.196 (16) 0.019 (11) 0.105 (11) 0.041 (16) O6 0.097 (10) 0.33 (4) 0.124 (11) 0.024 (19) 0.059 (9) 0.04 (2) O7 0.118 (9) 0.132 (12) 0.092 (7) 0.010 (10) 0.077 (7) 0.025 (9) O8 0.32 (4) 0.106 (13) 0.27 (3) −0.05 (2) 0.23 (3) −0.037 (18) Cl2 0.0573 (19) 0.098 (3) 0.095 (3) −0.0102 (19) 0.0408 (19) −0.015 (2) O9 0.106 (10) 0.101 (11) 0.159 (13) −0.026 (9) 0.080 (10) −0.013 (11) O10 0.154 (17) 0.118 (18) 0.54 (5) 0.031 (15) 0.23 (3) 0.06 (3) O11 0.26 (2) 0.21 (2) 0.31 (3) −0.01 (2) 0.25 (2) −0.04 (3) O12 0.138 (13) 0.20 (2) 0.134 (12) −0.084 (19) −0.015 (10) −0.004 (19)

Geometric parameters (Å, º)

Sm1—O3i 2.310 (10) C5—C6 1.49 (3)

Sm1—O3 2.310 (10) C5—H5A 0.9700

Sm1—OW2i 2.445 (12) C5—H5B 0.9700

Sm1—OW2 2.445 (12) C6—H6A 0.9600

Sm1—O1i 2.411 (12) C6—H6B 0.9600

Sm1—O1 2.411 (12) C6—H6C 0.9600

Sm1—OW1 2.474 (13) C7—C8 1.518 (15)

Sm1—OW1i 2.474 (13) C8—C9 1.57 (2)

Sm2—O2 2.279 (13) C8—H8 0.9800

Sm2—O2i 2.279 (13) C9—C10 1.59 (2)

Sm2—O4i 2.412 (9) C9—C11 1.52 (2)

Sm2—O4 2.412 (9) C9—H9 0.9800

Sm2—OW3i 2.446 (12) C10—H10A 0.9600

Sm2—OW3 2.446 (12) C10—H10B 0.9600

Sm2—OW4 2.505 (13) C10—H10C 0.9600

Sm2—OW4i 2.505 (13) C11—C12 1.51 (3)

O1—C1 1.34 (3) C11—H11A 0.9700

O2—C1 1.20 (2) C11—H11B 0.9700

O3—C7 1.23 (2) C12—H12A 0.9600

O4—C7 1.25 (3) C12—H12B 0.9600

N1—C2 1.46 (3) C12—H12C 0.9600

N1—H1A 0.8900 Cl1—O8 1.385 (12)

N1—H1B 0.8900 Cl1—O7 1.424 (9)

N1—H1C 0.8900 Cl1—O5 1.417 (11)

N2—C8 1.47 (3) Cl1—O6 1.509 (13)

N2—H2A 0.8900 Cl2—O12 1.413 (11)

N2—H2B 0.8900 Cl2—O10 1.450 (13)

N2—H2C 0.8900 Cl2—O9 1.428 (11)

C1—C2 1.507 (14) Cl2—O11 1.443 (12)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, m32–m34

C2—H2 0.9800 Cl3—O13 1.388 (14)

C3—C4 1.43 (3) Cl3—O15 1.481 (13)

C3—C5 1.568 (19) Cl3—O16 1.476 (14)

C3—H3 0.9800 Cl3′—O13′ 1.418 (18)

C4—H4A 0.9600 Cl3′—O16′ 1.503 (17)

C4—H4B 0.9600 Cl3′—O15′ 1.425 (18)

C4—H4C 0.9600 Cl3′—O14′ 1.426 (19)

O3i—Sm1—O3 107.7 (5) C4—C3—C5 111 (2)

O3i—Sm1—OW2i 84.8 (4) C4—C3—C2 113.6 (19) O3—Sm1—OW2i 145.9 (4) C5—C3—C2 111.8 (11)

O3i—Sm1—OW2 145.9 (4) C4—C3—H3 106.7

O3—Sm1—OW2 84.8 (4) C5—C3—H3 106.6

OW2i—Sm1—OW2 102.7 (6) C2—C3—H3 106.7

O3i—Sm1—O1i 79.1 (4) C3—C4—H4A 109.5

O3—Sm1—O1i 73.1 (4) C3—C4—H4B 109.5

OW2i—Sm1—O1i 141.0 (4) H4A—C4—H4B 109.5

OW2—Sm1—O1i 74.4 (5) C3—C4—H4C 109.5

O3i—Sm1—O1 73.1 (4) H4A—C4—H4C 109.5

O3—Sm1—O1 79.1 (4) H4B—C4—H4C 109.5

OW2i—Sm1—O1 74.4 (5) C3—C5—C6 111.2 (14)

OW2—Sm1—O1 141.0 (4) C3—C5—H5A 109.4

O1i—Sm1—O1 131.9 (7) C6—C5—H5A 109.4

O3i—Sm1—OW1 141.2 (4) C3—C5—H5B 109.4

O3—Sm1—OW1 81.4 (4) C6—C5—H5B 109.4

OW2i—Sm1—OW1 70.2 (4) H5A—C5—H5B 108.0

OW2—Sm1—OW1 70.8 (4) C5—C6—H6A 109.5

O1i—Sm1—OW1 138.3 (4) C5—C6—H6B 109.5

O1—Sm1—OW1 71.8 (5) H6A—C6—H6B 109.5

O3i—Sm1—OW1i 81.4 (4) C5—C6—H6C 109.5

O3—Sm1—OW1i 141.2 (4) H6A—C6—H6C 109.5

OW2i—Sm1—OW1i 70.8 (4) H6B—C6—H6C 109.5

OW2—Sm1—OW1i 70.2 (4) O4—C7—O3 125.4 (11)

O1i—Sm1—OW1i 71.8 (5) O4—C7—C8 117.7 (16)

O1—Sm1—OW1i 138.3 (4) O3—C7—C8 116.8 (17)

OW1—Sm1—OW1i 115.4 (7) N2—C8—C7 111.2 (17)

O2—Sm2—O2i 115.5 (7) N2—C8—C9 112.5 (11)

O2—Sm2—O4i 77.0 (4) C7—C8—C9 109.8 (11)

O2i—Sm2—O4i 79.7 (4) N2—C8—H8 107.7

O2—Sm2—O4 79.7 (4) C7—C8—H8 107.7

O2i—Sm2—O4 77.0 (4) C9—C8—H8 107.7

O4i—Sm2—O4 135.5 (5) C8—C9—C10 109.7 (11) O2—Sm2—OW3i 142.2 (4) C8—C9—C11 110.8 (14) O2i—Sm2—OW3i 79.2 (5) C10—C9—C11 109.4 (13)

O4i—Sm2—OW3i 71.6 (4) C8—C9—H9 109.0

O4—Sm2—OW3i 138.0 (4) C10—C9—H9 109.0

O2—Sm2—OW3 79.2 (5) C11—C9—H9 109.0

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, m32–m34

O4i—Sm2—OW3 138.0 (3) C9—C10—H10B 109.5

O4—Sm2—OW3 71.6 (4) H10A—C10—H10B 109.5

OW3i—Sm2—OW3 111.2 (8) C9—C10—H10C 109.5

O2—Sm2—OW4 143.8 (4) H10A—C10—H10C 109.5

O2i—Sm2—OW4 80.1 (5) H10B—C10—H10C 109.5 O4i—Sm2—OW4 139.2 (4) C12—C11—C9 111.3 (18)

O4—Sm2—OW4 72.2 (4) C12—C11—H11A 109.4

OW3i—Sm2—OW4 70.0 (4) C9—C11—H11A 109.4

OW3—Sm2—OW4 70.7 (5) C12—C11—H11B 109.4

O2—Sm2—OW4i 80.1 (5) C9—C11—H11B 109.4

O2i—Sm2—OW4i 143.8 (4) H11A—C11—H11B 108.0 O4i—Sm2—OW4i 72.2 (4) C11—C12—H12A 109.5 O4—Sm2—OW4i 139.2 (4) C11—C12—H12B 109.5 OW3i—Sm2—OW4i 70.7 (5) H12A—C12—H12B 109.5 OW3—Sm2—OW4i 70.0 (4) C11—C12—H12C 109.5 OW4—Sm2—OW4i 106.9 (7) H12A—C12—H12C 109.5

C1—O1—Sm1 132.4 (10) H12B—C12—H12C 109.5

C1—O2—Sm2 157.7 (12) O8—Cl1—O7 113.9 (10)

C7—O3—Sm1 163.0 (10) O8—Cl1—O5 117.7 (10)

C7—O4—Sm2 129.5 (9) O7—Cl1—O5 109.7 (8)

C2—N1—H1A 109.5 O8—Cl1—O6 107.1 (11)

C2—N1—H1B 109.5 O7—Cl1—O6 103.6 (9)

H1A—N1—H1B 109.5 O5—Cl1—O6 103.3 (9)

C2—N1—H1C 109.5 O12—Cl2—O10 112.9 (12)

H1A—N1—H1C 109.5 O12—Cl2—O9 109.8 (10)

H1B—N1—H1C 109.5 O10—Cl2—O9 108.3 (8)

C8—N2—H2A 109.5 O12—Cl2—O11 109.0 (11)

C8—N2—H2B 109.5 O10—Cl2—O11 107.9 (12)

H2A—N2—H2B 109.5 O9—Cl2—O11 108.9 (10)

C8—N2—H2C 109.5 O14—Cl3—O13 114.8 (13)

H2A—N2—H2C 109.5 O14—Cl3—O15 108.0 (12)

H2B—N2—H2C 109.5 O13—Cl3—O15 109.5 (13)

O2—C1—O1 125.9 (11) O14—Cl3—O16 109.4 (12)

O2—C1—C2 124 (2) O13—Cl3—O16 111.1 (11)

O1—C1—C2 110.1 (19) O15—Cl3—O16 103.3 (10)

N1—C2—C1 111.4 (17) O13′—Cl3′—O16′ 105.5 (16) N1—C2—C3 112.2 (17) O13′—Cl3′—O15′ 114.0 (17) C1—C2—C3 110.2 (9) O16′—Cl3′—O15′ 105.6 (16)

N1—C2—H2 107.6 O13′—Cl3′—O14′ 113.3 (17)

C1—C2—H2 107.6 O16′—Cl3′—O14′ 105.0 (16)

C3—C2—H2 107.6 O15′—Cl3′—O14′ 112.3 (17)

References

Related documents

Precisamente la relación entre ―cuerpo‖ y ―tecnologías de la comunicación‖ –territorio donde se ubica este texto– hace mucho más complejo el análisis

• Foundations of Clinical Research and Study Design • Regulatory and Legal Issues in Drug Development • Data Management.. Foundations of Clinical Research and

Such a collegiate cul- ture, like honors cultures everywhere, is best achieved by open and trusting relationships of the students with each other and the instructor, discussions

Figure 3 SHIELD functional architecture Heterogeneous Measurements, Parameters SPD Metrics pSHIELD Network Layer pSHIELD Middleware Layer SPD Security Agent Discovery

Studi sebelumnya telah dilaporkan bahwa film campuran polisakarida dengan CMC dapat miliki sifat mekanik dan penghalang yang sangat baik karena kesamaan kimia dari

The Ociesęki Formation ranges from the lowermost Holmia − Schmidtiellus Assemblage Zone through the Protolenus − Issafeniella Zone of Cam- brian Series 2 up to the

The first trials using the three different wave packets to interrogate the edge breaking defect were not successful as stated above, but allowed the observation of the sensitivity

Such statements include, but are not limited to, statements about the continued demand for our product, the potential benefits resulting from the sale of ExpressJet, including