• No results found

Chloro­(tri­phenyl­phosphine)(tropolonato)palladium(II)

N/A
N/A
Protected

Academic year: 2020

Share "Chloro­(tri­phenyl­phosphine)(tropolonato)palladium(II)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m974

Gideon Steyl [Pd(C

7H5O2)Cl(C18H15P)] doi:10.1107/S1600536806011652 Acta Cryst.(2006). E62, m974–m976 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Chloro(triphenylphosphine)(tropolonato)-palladium(II)

Gideon Steyl

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: geds12@yahoo.com

Key indicators

Single-crystal X-ray study T= 273 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.024 wRfactor = 0.056

Data-to-parameter ratio = 20.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 17 March 2006 Accepted 30 March 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, [Pd(C7H5O2)Cl(C18H15P)], is a new type of -diketone palladium(II) complex containing a tertiary arylphosphine. It crystallizes with a distorted square-planar geometry about the palladium(II) metal centre. The most important bond distances and angles include Pd—O (transP) = 2.0481 (12) A˚ , Pd—O (trans Cl) = 2.0016 (12) A˚ , Pd—P = 2.2268 (4) A˚ , Pd—Cl = 2.2770 (5) A˚, O—Pd—O = 80.22 (5) and O—C—C—O = 3.7 (2). A stacking interaction is

observed between neighbouring tropolonate groups, with an interplanar distance of 3.377 (6) A˚ .

Comment

A variety of bis--diketonato–palladium(II) complexes have been characterized to date for acetylacetonate-type ligands (Cambridge Structural Database; Version 5.27; Allen, 2002). The addition of tertiary aryl phosphines to these types of complexes has resulted in a limited number of reported structures (Okeya et al., 1984; Ooi et al., 1983; Siedle et al., 1982). The inclusion of a chloro derivative with an- (Langet al., 1999) or-diketone (Woisetschlageret al., 2000; Navarroet al., 2005) has attracted less attention. In a previous study (Steyl, 2006), we reported the structure of [(PCy3)(Trop)2Pd] (Cy = cyclohexyl and Trop = 2-hydroxy-2,4,6-cyclohepta-trienone). The title compound, (I), is presented as an example of a monotropolonate–palladium(II) complex containing chloro and triphenylphosphine ligands.

The molecule of (I) crystallizes with a slightly distorted square-planar geometry about the palladium(II) metal centre. The PdII atom is elevated by 0.0068 (1) A˚ above the plane defined by the four coordinated atoms (O11, O12, P, Cl). The Pd—O bond distances (Table 1) do not differ from those observed for the bis(tropolonato)palladium(II) (Steyl, 2005) or the tricyclohexyl (Steyl, 2006) derivatives. The bidentate bite angle of 80.22 (5)(Table 1) does not differ significantly

(2)

A weak intramolecular C—H Cl hydrogen bond (Table 2) is found in (I).–Stacking between parallel tropolonate ring systems (Fig. 2) is observed, with an interplanar distance of 3.377 (6) A˚ , which is significantly shorter than that [3.51 (1)– 3.80 (2) A˚ ] in the previously published tropolonate–palla-dium(II) complexes (Steyl, 2005, 2006). This close interaction can be attributed to the shift of the tropolonate ring system to form an eclipsed conformation of the C11–C17 seven-membered ring.

In conclusion, the substitution of a chloro group for a tropolonate {[PCy3(Trop)2Pd

II

]; Steyl, 2006} ligand does not significantly alter the bonding mode of the remaining tropo-lonate ligand to the PdIIatom.

Experimental

The title complex was synthesized by the addition of PPh3(83 mg, 0.316 mmol) to an acetone solution (10 ml) of the

bis-tropolonato-palladium(II) complex (100 mg, 0.287 mmol) containing hydrochloric acid (0.5 ml). The suspension dissolved and gave an orange solution; on evaporation of the solvent, crystals suitable for X-ray crystal-lography were obtained. Yield 45 mg (30%).

Crystal data

[Pd(C7H5O2)Cl(C18H15P)]

Mr= 525.23

Triclinic,P1

a= 9.8561 (3) A˚

b= 9.9719 (2) A˚

c= 13.2792 (3) A˚

= 85.851 (1) = 72.262 (1) = 63.317 (1)

V= 1107.51 (5) A˚3

Z= 2

Dx= 1.575 Mg m 3

MoKradiation

= 1.05 mm1

T= 273 (2) K Prism, red

0.250.140.11 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin= 0.782,Tmax= 0.897

24655 measured reflections

5506 independent reflections 4981 reflections withI> 2(I)

Rint= 0.026

max= 28.4

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.024

wR(F2) = 0.057

S= 1.04 5506 reflections 271 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.039P)2

+ 3.4366P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002 max= 0.37 e A˚

3

min=0.45 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Pd—O11 2.0481 (12) Pd—O12 2.0016 (12)

Pd—P 2.2268 (4)

Pd—Cl 2.2770 (5)

C11—O11 1.291 (2) C12—O12 1.295 (2) C12—C11 1.462 (2)

O11—Pd—Cl 93.10 (4) O12—Pd—O11 80.22 (5)

O12—Pd—P 95.01 (4) P—Pd—Cl 91.818 (18)

O12—C12—C11—O11 3.7 (2) C13—C12—C11—C17 5.2 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C32—H32 Cl 0.93 2.67 3.496 (2) 148 C25—H25 O11ii

0.93 2.46 3.333 (3) 157

Symmetry code: (ii)xþ1;yþ1;z.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 A˚ andUiso(H) = 1.2Ueq(C).

Data collection:APEX2(Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP

(Bruker, 2004); program(s) used to solve structure: SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics:DIAMOND(Brandenburg & Putz, 2004); software used to prepare material for publication:

SHELXL97.

metal-organic papers

Acta Cryst.(2006). E62, m974–m976 Gideon Steyl [Pd(C

[image:2.610.47.296.74.232.2]

7H5O2)Cl(C18H15P)]

m975

Figure 1

[image:2.610.46.292.293.470.2]

The molecular structure of (I), showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2

(3)

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L Kirsten is acknowledged for the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant number GUN 2068915. Opinions, findings, conclusions or recommen-dations expressed in this material are those of the author and do not necessarily reflect the views of the NRF.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Brandenburg, K. & Putz, H. (2004).DIAMOND. Release 3.0e. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany.

Bruker (1998). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004).SAINT-Plus(includingXPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005).APEX2.Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.

Lang, R., Schorwerth, A., Polborn, K., Ponikwar, W., Beck, W., Severin, T. & Severin, K. (1999).Z. Anorg. Allg. Chem.625, 1384–1390.

Navarro, O., Marion, N., Stevens, E. D., Scott, N. M., Gonzalez, J., Amoroso, D., Bell, A. & Nolan, S. P. (2005).Tetrahedron,61, 9716–9722.

Okeya, S., Miyamoto, T., Ooi, S., Nakamura, Y. & Kawaguchi, S. (1984).Bull. Chem. Soc. Jpn,57, 395–404.

Ooi, S., Matsushita, T., Nishimoto, K., Okeya, S., Nakamura, Y. & Kawaguchi, S. (1983).Bull. Chem. Soc. Jpn,57, 3297–3301.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Siedle, A. R., Newmark, R. A. & Pignolet, L. H. (1982).J. Am. Chem. Soc.104, 6584–6590.

Steyl, G. (2005).Acta Cryst.E61, m1860–m1862. Steyl, G. (2006).Acta Cryst.E62, m650–m652.

Woisetschlager, O. E., Geisbauer, A., Polborn, K. & Beck, W. (2000).Z. Anorg. Allg. Chem.626, 766–774.

metal-organic papers

m976

Gideon Steyl [Pd(C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, m974–m976

supporting information

Acta Cryst. (2006). E62, m974–m976 [https://doi.org/10.1107/S1600536806011652]

Chloro(triphenylphosphine)(tropolonato)palladium(II)

Gideon Steyl

Chloro(triphenylphosphine)(tropolonato)palladium(II)

Crystal data

[Pd(C7H5O2)Cl(C18H15P)] Mr = 525.23

Triclinic, P1 Hall symbol: -P 1

a = 9.8561 (3) Å

b = 9.9719 (2) Å

c = 13.2792 (3) Å

α = 85.851 (1)°

β = 72.262 (1)°

γ = 63.317 (1)°

V = 1107.51 (5) Å3

Z = 2

F(000) = 528

Dx = 1.575 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 7765 reflections

θ = 2.5–28.2°

µ = 1.05 mm−1 T = 273 K Prism, red

0.25 × 0.15 × 0.11 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 512 pixels mm-1 φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin = 0.782, Tmax = 0.897

24655 measured reflections 5506 independent reflections 4981 reflections with I > 2σ(I)

Rint = 0.026

θmax = 28.4°, θmin = 2.3°

h = −13→13

k = −13→13

l = −17→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.024 wR(F2) = 0.057 S = 1.04 5506 reflections 271 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.039P)2 + 3.4366P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.37 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, m974–m976

Special details

Experimental. Spectral data: 1H NMR (CDCl

3, 300 MHz): 7.75 (dd, 6), 7.52 (m, 3), 7.42(m, 8), 6.95(dd, 1), 9.85(d, 2). 31P NMR (CDCl

3, 121.507 MHz): 27.65 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O12 0.05011 (14) 0.95092 (14) 0.17981 (10) 0.0462 (3) C12 0.0482 (2) 1.05333 (19) 0.11373 (13) 0.0397 (4) C11 0.2016 (2) 1.05271 (19) 0.05891 (13) 0.0411 (4) C13 −0.0988 (2) 1.1517 (2) 0.10008 (15) 0.0479 (4)

H13 −0.1826 1.1302 0.1368 0.057*

C17 0.2249 (3) 1.1584 (2) −0.01068 (15) 0.0528 (5)

H17 0.3301 1.1429 −0.0377 0.063*

C14 −0.1407 (3) 1.2763 (2) 0.04092 (17) 0.0591 (5)

H14 −0.2480 1.3267 0.0451 0.071*

C15 −0.0451 (3) 1.3355 (3) −0.0233 (2) 0.0699 (6)

H15 −0.0962 1.4220 −0.0552 0.084*

C16 0.1167 (3) 1.2819 (3) −0.04560 (19) 0.0655 (6)

H16 0.1602 1.3374 −0.0914 0.079*

C41 −0.02550 (18) 0.72781 (18) 0.33260 (13) 0.0360 (3) C31 0.2031 (2) 0.69692 (18) 0.43676 (13) 0.0386 (3) C21 0.28232 (18) 0.47058 (18) 0.27664 (13) 0.0360 (3) C42 −0.1354 (2) 0.8773 (2) 0.36660 (16) 0.0476 (4)

H42 −0.1007 0.9454 0.3791 0.057*

C46 −0.0797 (2) 0.6282 (2) 0.31488 (15) 0.0444 (4)

H46 −0.0078 0.5282 0.2926 0.053*

C22 0.2762 (2) 0.37328 (19) 0.35587 (14) 0.0430 (4)

H22 0.2298 0.4106 0.4266 0.052*

C26 0.3546 (2) 0.4128 (2) 0.17136 (15) 0.0480 (4)

H26 0.3613 0.4768 0.1175 0.058*

C36 0.0800 (3) 0.7244 (2) 0.53047 (15) 0.0557 (5)

H36 −0.0183 0.7368 0.5284 0.067*

C43 −0.2952 (2) 0.9241 (2) 0.38161 (18) 0.0572 (5)

H43 −0.3681 1.0238 0.4045 0.069*

C23 0.3391 (2) 0.2205 (2) 0.33008 (18) 0.0557 (5)

H23 0.3341 0.1557 0.3835 0.067*

C32 0.3476 (2) 0.6802 (2) 0.44194 (16) 0.0525 (5)

H32 0.4306 0.6639 0.3798 0.063*

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, m974–m976

H33 0.4678 0.6743 0.5419 0.079*

C45 −0.2403 (2) 0.6766 (2) 0.33014 (18) 0.0566 (5)

H45 −0.2759 0.6090 0.3182 0.068*

C44 −0.3475 (2) 0.8243 (3) 0.36294 (19) 0.0600 (5)

H44 −0.4553 0.8567 0.3725 0.072*

C25 0.4169 (3) 0.2594 (3) 0.14685 (18) 0.0619 (6)

H25 0.4643 0.2210 0.0764 0.074*

C34 0.2482 (3) 0.7141 (3) 0.63066 (18) 0.0664 (6)

H34 0.2640 0.7191 0.6956 0.080*

C24 0.4090 (3) 0.1643 (2) 0.2256 (2) 0.0642 (6)

H24 0.4508 0.0617 0.2086 0.077*

C35 0.1030 (3) 0.7335 (3) 0.62707 (17) 0.0692 (6)

H35 0.0198 0.7528 0.6896 0.083*

Pd 0.268385 (14) 0.805328 (14) 0.184685 (10) 0.03724 (5) P 0.18459 (5) 0.67247 (5) 0.30787 (3) 0.03370 (9) Cl 0.52854 (6) 0.64699 (7) 0.16796 (4) 0.06066 (14) O11 0.32498 (15) 0.94478 (14) 0.07758 (10) 0.0465 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, m974–m976

P 0.02780 (19) 0.0392 (2) 0.0337 (2) −0.01669 (16) −0.00639 (16) 0.00291 (16) Cl 0.0328 (2) 0.0787 (3) 0.0653 (3) −0.0246 (2) −0.0114 (2) 0.0177 (3) O11 0.0399 (7) 0.0500 (7) 0.0460 (7) −0.0239 (6) −0.0041 (5) 0.0092 (5)

Geometric parameters (Å, º)

Pd—O11 2.0481 (12) C42—C43 1.379 (3)

Pd—O12 2.0016 (12) C42—H42 0.9300

Pd—P 2.2268 (4) C46—C45 1.382 (3)

Pd—Cl 2.2770 (5) C46—H46 0.9300

C11—O11 1.291 (2) C22—C23 1.385 (3)

C12—O12 1.295 (2) C22—H22 0.9300

C12—C11 1.462 (2) C26—C25 1.390 (3)

C12—C13 1.397 (3) C26—H26 0.9300

C11—C17 1.402 (3) C36—C35 1.385 (3)

C13—C14 1.388 (3) C36—H36 0.9300

C13—H13 0.9300 C43—C44 1.376 (3)

C17—C16 1.381 (3) C43—H43 0.9300

C17—H17 0.9300 C23—C24 1.377 (3)

C14—C15 1.379 (3) C23—H23 0.9300

C14—H14 0.9300 C32—C33 1.383 (3)

C15—C16 1.373 (4) C32—H32 0.9300

C15—H15 0.9300 C33—C34 1.361 (3)

C16—H16 0.9300 C33—H33 0.9300

C41—C46 1.384 (2) C45—C44 1.375 (3)

C41—C42 1.396 (2) C45—H45 0.9300

C41—P 1.8126 (16) C44—H44 0.9300

C31—C32 1.380 (3) C25—C24 1.368 (3)

C31—C36 1.388 (2) C25—H25 0.9300

C31—P 1.8203 (17) C34—C35 1.371 (4)

C21—C22 1.385 (2) C34—H34 0.9300

C21—C26 1.391 (2) C24—H24 0.9300

C21—P 1.8135 (16) C35—H35 0.9300

C12—O12—Pd 114.13 (11) C31—C36—H36 119.8

O12—C12—C13 117.25 (16) C44—C43—C42 120.35 (19) O12—C12—C11 116.48 (16) C44—C43—H43 119.8 C13—C12—C11 126.26 (17) C42—C43—H43 119.8 O11—C11—C17 118.17 (17) C24—C23—C22 120.3 (2) O11—C11—C12 116.13 (15) C24—C23—H23 119.9 C17—C11—C12 125.70 (18) C22—C23—H23 119.9 C14—C13—C12 130.8 (2) C31—C32—C33 120.3 (2)

C14—C13—H13 114.6 C31—C32—H32 119.9

C12—C13—H13 114.6 C33—C32—H32 119.9

C16—C17—C11 130.4 (2) C34—C33—C32 120.7 (2)

C16—C17—H17 114.8 C34—C33—H33 119.7

C11—C17—H17 114.8 C32—C33—H33 119.7

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, m974–m976

C15—C14—H14 115.6 C44—C45—H45 119.9

C13—C14—H14 115.6 C46—C45—H45 119.9

C16—C15—C14 127.7 (2) C45—C44—C43 119.92 (18)

C16—C15—H15 116.2 C45—C44—H44 120.0

C14—C15—H15 116.2 C43—C44—H44 120.0

C15—C16—C17 130.1 (2) C24—C25—C26 120.49 (19)

C15—C16—H16 115.0 C24—C25—H25 119.8

C17—C16—H16 115.0 C26—C25—H25 119.8

C46—C41—C42 118.99 (15) C33—C34—C35 119.9 (2)

C46—C41—P 122.15 (13) C33—C34—H34 120.0

C42—C41—P 118.81 (13) C35—C34—H34 120.0

C32—C31—C36 118.73 (17) C25—C24—C23 119.96 (19)

C32—C31—P 118.70 (14) C25—C24—H24 120.0

C36—C31—P 122.49 (14) C23—C24—H24 120.0

C22—C21—C26 119.26 (16) C34—C35—C36 120.1 (2)

C22—C21—P 120.80 (12) C34—C35—H35 120.0

C26—C21—P 119.78 (14) C36—C35—H35 120.0

C43—C42—C41 120.10 (18) O11—Pd—Cl 93.10 (4)

C43—C42—H42 119.9 O12—Pd—O11 80.22 (5)

C41—C42—H42 119.9 O12—Pd—P 95.01 (4)

C45—C46—C41 120.33 (17) O11—Pd—P 174.56 (4)

C45—C46—H46 119.8 O12—Pd—Cl 172.45 (4)

C41—C46—H46 119.8 P—Pd—Cl 91.818 (18)

C21—C22—C23 120.17 (17) C41—P—C21 104.75 (7)

C21—C22—H22 119.9 C41—P—C31 104.94 (8)

C23—C22—H22 119.9 C21—P—C31 105.13 (8)

C25—C26—C21 119.83 (19) C41—P—Pd 111.25 (5)

C25—C26—H26 120.1 C21—P—Pd 115.72 (6)

C21—C26—H26 120.1 C31—P—Pd 114.05 (6)

C35—C36—C31 120.3 (2) C11—O11—Pd 112.93 (11) C35—C36—H36 119.8

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, m974–m976

C42—C41—C46—C45 0.3 (3) C22—C21—P—Pd 160.95 (12) P—C41—C46—C45 −177.04 (16) C26—C21—P—Pd −23.69 (16) C26—C21—C22—C23 −1.1 (3) C32—C31—P—C41 −172.57 (15) P—C21—C22—C23 174.26 (15) C36—C31—P—C41 10.67 (18) C22—C21—C26—C25 1.2 (3) C32—C31—P—C21 77.23 (16) P—C21—C26—C25 −174.21 (16) C36—C31—P—C21 −99.53 (17) C32—C31—C36—C35 −0.5 (3) C32—C31—P—Pd −50.58 (16) P—C31—C36—C35 176.23 (17) C36—C31—P—Pd 132.66 (15) C41—C42—C43—C44 −0.2 (3) O12—Pd—P—C41 9.37 (7) C21—C22—C23—C24 0.4 (3) Cl—Pd—P—C41 −167.41 (6) C36—C31—C32—C33 1.4 (3) O12—Pd—P—C21 128.75 (7) P—C31—C32—C33 −175.49 (17) Cl—Pd—P—C21 −48.02 (6) C31—C32—C33—C34 −1.2 (4) O12—Pd—P—C31 −109.09 (7) C41—C46—C45—C44 0.1 (3) Cl—Pd—P—C31 74.14 (6) C46—C45—C44—C43 −0.6 (4) C17—C11—O11—Pd 178.02 (13) C42—C43—C44—C45 0.6 (4) C12—C11—O11—Pd −1.74 (18) C21—C26—C25—C24 −0.6 (3) O12—Pd—O11—C11 −0.11 (11) C32—C33—C34—C35 0.1 (4) Cl—Pd—O11—C11 176.35 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C32—H32···Cl 0.93 2.67 3.496 (2) 148

C25—H25···O11i 0.93 2.46 3.333 (3) 157

Figure

Figure 1

References

Related documents

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are