• No results found

catena Poly­[[bis­(1H benz­imidazole κN3)­zinc(II)] μ 3 carb­oxy­phen­oxy­acetato κ2O:O′]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[bis­(1H benz­imidazole κN3)­zinc(II)] μ 3 carb­oxy­phen­oxy­acetato κ2O:O′]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m494

Gao, Huo, Liu and Gu [Zn(C

9H6O5)(C7H6N2)2] doi:10.1107/S1600536805003661 Acta Cryst.(2005). E61, m494–m495 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[bis(1

H

-benzimidazole-

j

N

3

)zinc(II)]-l

-3-carboxyphenoxyacetato-

j

2

O

:

O

000

]

Shan Gao,a* Li-Hua Huo,aJi-Wei

Liua,band Chang-Sheng Gua

a

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People’s Republic of China, andbCollege of

Chemistry and Chemical Technology, Da Qing Petroleum Institute, Da Qing 163318, People’s Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.008 A˚

Rfactor = 0.060

wRfactor = 0.151

Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title one-dimensional polymer, [Zn(C9H6O5

)-(C7H6N2)2]n, the Zn II

center exhibits a deformed tetrahedral coordination geometry defined by two N atoms from two benzimidazole molecules and two carboxyl O atoms from two different 4-carboxyphenoxyacetate groups. Each 4-carboxy-phenoxyacetate ligand acts in a bis-monodentate mode to connect two adjacent ZnII ions, forming a chain structure. Hydrogen bonds serve to connect the chains into a two-dimensional supramolecular network.

Comment

Carboxyphenoxyacetic acids (CPOAH2) can be regarded as a

family of excellent bridging ligands with both rigid and flexible parts, and hence they can be used to form coordination polymers because of their versatile coordination modes and high structural stability. Recently, we have reported the structures of three zincII polymers constructed by 3- or 4-CPOA2 ligands (3- and 4-carboxyphenoxyacetate, respec-tively), namely [Zn(4-CPOA)(2,20-bipy)(H

2O)]n, (II) (Gaoet

al., 2004), [Zn(4-CPOA)(H2O)2]n, (III) (Zhao, Gao et al.,

2005), in which the octahedrally coordinated ZnIIatoms are bridged by 4-CPOA2 ligands, forming a chain structure, as well as {[Zn(4,40-bipy)(H

2O)4](3-CPOA)}n (4,40-bipy is 4,40

-bipyridine), (IV), in which the octahedrally coordinated ZnII atoms are linked by 4,40-bipy ligands into infinite cationic

polymeric chains (Zhao, Gu et al., 2005). In our efforts to investigate the bonding nature of carboxylate-bridged ZnII polymers, we have now synthesized [Zn(3-CPOA)(1H -benz-imidazole)2]n, (I).

As depicted in Fig. 1, the ZnII atom exists in a distorted tetrahedral coordination that is defined by two N atoms from two benzimidazole molecules and two carboxyl O atoms from two different 3-CPOA2 groups. The oxyacetate group is twisted out of the benzene ring plane. Each 3-CPOA2ligand links two adjacent ZnIIatoms, utilizing its two monodentate

(2)

carboxyl groups to form a one-dimensional infinite chain structure (Fig. 2). The chains are connected through inter-molecular hydrogen bonds, forming a two-dimensional supramolecular network (Table 2).

Experimental

The title complex was prepared by the addition of stoichiometric amounts of zinc diacetate dihydrate (0.44 g, 5 mmol) and benz-imidazole (0.68 g, 10 mmol) to an aqueous solution of 3-CPOAH2 (0.39 g, 5 mmol), and adjusting the pH to 7 with 0.1MNaOH. The mixture was sealed in a 50 ml Teflon-lined stainless steel bomb and held at 423 K for 3 d. The bomb was cooled slowly to room temperature and colorless prismatic crystals were obtained over several days. Analysis calculated for C23H18N4O5Zn: C 55.72, H 3.66, N 11.30%; found: C 55.86, H 3.62, N 11.33%.

Crystal data

[Zn(C9H6O5)(C7H6N2)2]

Mr= 495.80 Triclinic,P1

a= 10.580 (3) A˚

b= 11.356 (3) A˚

c= 11.492 (3) A˚ = 116.06 (2)

= 100.32 (2)

= 104.936 (14) V= 1128.4 (6) A˚3

Z= 2

Dx= 1.459 Mg m

3

MoKradiation Cell parameters from 8851

reflections = 3.4–27.5

= 1.13 mm1

T= 295 (2) K Prism, colorless 0.370.260.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer !scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.679,Tmax= 0.822 10127 measured reflections

5055 independent reflections 3129 reflections withI> 2(I)

Rint= 0.045 max= 27.5

h=13!13

k=14!14

l=14!14

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.060

wR(F2) = 0.151

S= 1.03 5055 reflections 298 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0715P)2 + 0.3509P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.43 e A˚ 3

[image:2.610.312.568.70.142.2]

min=0.26 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Zn1—O1 1.942 (3) Zn1—O4i

1.986 (3) Zn1—N1 2.027 (3) Zn1—N3 2.011 (3)

O1—C15 1.266 (4) O2—C15 1.231 (5) O4—C23 1.277 (5) O5—C23 1.232 (5)

O1—Zn1—O4i

110.49 (12) O1—Zn1—N1 105.98 (13) O1—Zn1—N3 119.11 (13)

O4i

—Zn1—N1 100.62 (12) O4i

—Zn1—N3 111.56 (12) N3—Zn1—N1 107.20 (14)

Symmetry code: (i)x;1þy;z.

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

N2—H24 O2ii

0.86 1.93 2.747 (5) 158 N4—H25 O5iii

0.86 1.93 2.688 (4) 146

Symmetry codes: (ii) 1x;1y;1z; (iii) 2x;1y;1z.

H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 A˚ , N—H = 0.86 A˚ andUiso(H) = 1.2Ueq(C,N), and were refined in the riding-model approximation.

Data collection:RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEPII(Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054G036) and Heilongjiang University for supporting this work.

References

Gao, S., Gu, C.-S., Huo, L.-H., Liu, J.-W. & Zhao, J.-G. (2004).Acta Cryst.E60, m1906–m1908.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails

Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Zhao, J.-G., Gao, S., Huo, L.-H. & Ng, S. W. (2005).Acta Cryst.E61, m115– m116.

[image:2.610.46.293.71.232.2]

Zhao, J.-G., Gu, C.-S., Huo, L.-H., Liu, J.-W. & Gao, S. (2005).Acta Cryst.E61,

Figure 1

ORTEPIIplot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. See Table 1 for symmetry codes.

Figure 2

[image:2.610.313.566.221.299.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m494–m495

supporting information

Acta Cryst. (2005). E61, m494–m495 [https://doi.org/10.1107/S1600536805003661]

catena

-Poly[[bis(1

H

-benzimidazole-

κ

N

3

)zinc(II)]-

µ

-3-carboxyphenoxyacetato-κ

2

O

:

O

]

Shan Gao, Li-Hua Huo, Ji-Wei Liu and Chang-Sheng Gu

catena-Poly[[bis(1H-benzimidazole-κN3)zinc(II)]-µ-3-carboxyphenoxyacetato- κ2O:O]

Crystal data

[Zn(C9H6O5)(C7H6N2)2]

Mr = 495.80 Triclinic, P1 Hall symbol: -P 1

a = 10.580 (3) Å

b = 11.356 (3) Å

c = 11.492 (3) Å

α = 116.06 (2)°

β = 100.32 (2)°

γ = 104.936 (14)°

V = 1128.4 (6) Å3

Z = 2

F(000) = 508

Dx = 1.459 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 8851 reflections

θ = 3.4–27.5°

µ = 1.13 mm−1

T = 295 K Prism, colorless 0.37 × 0.26 × 0.18 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.679, Tmax = 0.822

10127 measured reflections 5055 independent reflections 3129 reflections with I > 2σ(I)′

Rint = 0.045

θmax = 27.5°, θmin = 3.1°

h = −13→13

k = −14→14

l = −14→14

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.060

wR(F2) = 0.151

S = 1.03 5055 reflections 298 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0715P)2 + 0.3509P] where P = (Fo2 + 2Fc2)/3

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 0.74550 (5) 0.89735 (5) 0.68338 (5) 0.05213 (19)

O1 0.8747 (3) 0.8960 (3) 0.8255 (3) 0.0618 (8)

O2 0.8601 (3) 0.6840 (3) 0.6722 (3) 0.0648 (8)

O3 0.9940 (3) 0.6508 (3) 0.8778 (3) 0.0633 (8)

O4 0.7018 (3) 0.0702 (3) 0.7632 (3) 0.0621 (8)

O5 0.9159 (3) 0.1644 (3) 0.7723 (3) 0.0596 (7)

N1 0.5598 (3) 0.7461 (3) 0.6316 (3) 0.0532 (8)

N2 0.3532 (4) 0.5726 (4) 0.5123 (4) 0.0736 (11)

N3 0.7845 (3) 0.8594 (3) 0.5080 (3) 0.0534 (8)

N4 0.9021 (4) 0.8260 (4) 0.3624 (4) 0.0598 (9)

C1 0.4721 (5) 0.6476 (5) 0.5084 (5) 0.0641 (11)

C2 0.4941 (4) 0.7354 (4) 0.7238 (4) 0.0535 (10)

C3 0.5368 (5) 0.8156 (5) 0.8656 (5) 0.0701 (12)

C4 0.4463 (6) 0.7845 (7) 0.9298 (6) 0.0977 (19)

C5 0.3156 (7) 0.6766 (7) 0.8547 (7) 0.0983 (18)

C6 0.2712 (6) 0.5965 (6) 0.7155 (7) 0.0877 (16)

C7 0.3644 (5) 0.6274 (4) 0.6507 (5) 0.0614 (11)

C8 0.8739 (5) 0.8060 (4) 0.4632 (4) 0.0571 (10)

C9 0.7527 (4) 0.9218 (4) 0.4316 (4) 0.0531 (10)

C10 0.6675 (5) 0.9974 (5) 0.4371 (5) 0.0660 (12)

C11 0.6634 (5) 1.0514 (6) 0.3517 (6) 0.0813 (15)

C12 0.7383 (5) 1.0324 (5) 0.2624 (6) 0.0766 (14)

C13 0.8208 (5) 0.9568 (5) 0.2539 (5) 0.0678 (12)

C14 0.8274 (4) 0.9014 (4) 0.3399 (4) 0.0546 (10)

C15 0.8993 (4) 0.7841 (4) 0.7909 (4) 0.0528 (10)

C16 0.9893 (5) 0.7856 (4) 0.9107 (5) 0.0645 (12)

C17 0.8795 (4) 0.5500 (4) 0.8631 (4) 0.0523 (10)

C18 0.7565 (5) 0.5656 (4) 0.8766 (5) 0.0616 (11)

C19 0.6478 (5) 0.4537 (5) 0.8582 (5) 0.0671 (12)

C20 0.6589 (5) 0.3245 (5) 0.8251 (5) 0.0597 (11)

C21 0.7840 (4) 0.3102 (4) 0.8158 (4) 0.0497 (9)

C22 0.8927 (4) 0.4221 (4) 0.8339 (4) 0.0505 (9)

C23 0.8044 (5) 0.1736 (4) 0.7828 (4) 0.0509 (9)

H1 0.4901 0.6314 0.4276 0.077*

H3 0.6240 0.8883 0.9161 0.084*

H4 0.4732 0.8366 1.0253 0.117*

H5 0.2568 0.6588 0.9013 0.118*

H6 0.1834 0.5247 0.6656 0.105*

H8 0.9138 0.7590 0.4978 0.068*

H10 0.6157 1.0106 0.4959 0.079*

H11 0.6078 1.1032 0.3537 0.098*

H12 0.7322 1.0721 0.2071 0.092*

H13 0.8705 0.9430 0.1932 0.081*

H16A 1.0831 0.8531 0.9411 0.077*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m494–m495

H18 0.7471 0.6513 0.8982 0.074*

H19 0.5657 0.4651 0.8680 0.081*

H20 0.5839 0.2486 0.8094 0.072*

H22 0.9758 0.4118 0.8266 0.061*

H24 0.2833 0.5037 0.4425 0.088*

H25 0.9567 0.7971 0.3197 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.0602 (3) 0.0454 (3) 0.0551 (3) 0.0173 (2) 0.0207 (2) 0.0301 (2)

O1 0.0742 (19) 0.0387 (14) 0.0608 (19) 0.0150 (14) 0.0068 (15) 0.0256 (13)

O2 0.077 (2) 0.0463 (15) 0.0521 (18) 0.0101 (15) 0.0121 (15) 0.0208 (15)

O3 0.0659 (18) 0.0432 (15) 0.082 (2) 0.0182 (14) 0.0167 (16) 0.0371 (15)

O4 0.0697 (18) 0.0461 (15) 0.078 (2) 0.0186 (14) 0.0332 (16) 0.0366 (15)

O5 0.0656 (19) 0.0557 (16) 0.075 (2) 0.0312 (15) 0.0324 (16) 0.0401 (15)

N1 0.059 (2) 0.0433 (17) 0.051 (2) 0.0153 (16) 0.0148 (17) 0.0232 (17)

N2 0.070 (2) 0.049 (2) 0.067 (3) 0.0058 (19) 0.010 (2) 0.0161 (19)

N3 0.063 (2) 0.0500 (18) 0.057 (2) 0.0218 (17) 0.0222 (18) 0.0335 (17)

N4 0.068 (2) 0.063 (2) 0.065 (2) 0.0335 (19) 0.0318 (19) 0.0383 (19)

C1 0.076 (3) 0.054 (2) 0.057 (3) 0.024 (2) 0.023 (2) 0.023 (2)

C2 0.060 (3) 0.046 (2) 0.054 (3) 0.015 (2) 0.019 (2) 0.029 (2)

C3 0.067 (3) 0.078 (3) 0.057 (3) 0.009 (2) 0.015 (2) 0.039 (3)

C4 0.097 (4) 0.116 (5) 0.063 (3) 0.011 (4) 0.025 (3) 0.049 (3)

C5 0.091 (4) 0.117 (5) 0.094 (5) 0.020 (4) 0.042 (4) 0.065 (4)

C6 0.072 (3) 0.072 (3) 0.100 (5) −0.001 (3) 0.023 (3) 0.048 (3)

C7 0.067 (3) 0.048 (2) 0.061 (3) 0.013 (2) 0.019 (2) 0.028 (2)

C8 0.067 (3) 0.048 (2) 0.062 (3) 0.023 (2) 0.024 (2) 0.031 (2)

C9 0.050 (2) 0.052 (2) 0.052 (2) 0.0112 (19) 0.0133 (19) 0.029 (2)

C10 0.061 (3) 0.080 (3) 0.074 (3) 0.034 (3) 0.027 (2) 0.048 (3)

C11 0.079 (3) 0.093 (4) 0.092 (4) 0.047 (3) 0.026 (3) 0.057 (3)

C12 0.086 (4) 0.082 (3) 0.078 (3) 0.035 (3) 0.023 (3) 0.055 (3)

C13 0.079 (3) 0.069 (3) 0.056 (3) 0.017 (3) 0.024 (2) 0.039 (2)

C14 0.056 (2) 0.052 (2) 0.052 (2) 0.011 (2) 0.018 (2) 0.028 (2)

C15 0.052 (2) 0.039 (2) 0.055 (3) 0.0032 (18) 0.010 (2) 0.025 (2)

C16 0.081 (3) 0.038 (2) 0.062 (3) 0.016 (2) 0.004 (2) 0.027 (2)

C17 0.063 (3) 0.043 (2) 0.050 (2) 0.017 (2) 0.014 (2) 0.0272 (19)

C18 0.079 (3) 0.052 (2) 0.071 (3) 0.037 (2) 0.031 (2) 0.037 (2)

C19 0.072 (3) 0.074 (3) 0.086 (3) 0.041 (3) 0.041 (3) 0.053 (3)

C20 0.065 (3) 0.059 (2) 0.069 (3) 0.023 (2) 0.029 (2) 0.041 (2)

C21 0.063 (3) 0.045 (2) 0.047 (2) 0.021 (2) 0.0184 (19) 0.0273 (18)

C22 0.057 (2) 0.046 (2) 0.054 (2) 0.0228 (19) 0.0167 (19) 0.0286 (19)

C23 0.067 (3) 0.047 (2) 0.048 (2) 0.023 (2) 0.021 (2) 0.0319 (19)

Geometric parameters (Å, º)

Zn1—O1 1.942 (3) C5—H5 0.9300

(6)

Zn1—N1 2.027 (3) C6—H6 0.9300

Zn1—N3 2.011 (3) C8—H8 0.9300

O1—C15 1.266 (4) C9—C10 1.388 (6)

O2—C15 1.231 (5) C9—C14 1.402 (6)

O4—C23 1.277 (5) C10—C11 1.367 (7)

O5—C23 1.232 (5) C10—H10 0.9300

O3—C16 1.424 (4) C11—C12 1.383 (7)

O3—C17 1.360 (5) C11—H11 0.9300

O4—Zn1ii 1.986 (3) C12—C13 1.361 (7)

N1—C1 1.311 (5) C12—H12 0.9300

N1—C2 1.398 (5) C13—C14 1.386 (6)

N2—C1 1.346 (6) C13—H13 0.9300

N2—C7 1.399 (6) C15—C16 1.518 (6)

N2—H24 0.8600 C16—H16A 0.9700

N3—C8 1.313 (5) C16—H16B 0.9700

N3—C9 1.397 (5) C17—C18 1.384 (6)

N4—C8 1.343 (5) C17—C22 1.391 (5)

N4—C14 1.377 (5) C18—C19 1.379 (6)

N4—H25 0.8600 C18—H18 0.9300

C1—H1 0.9300 C19—C20 1.389 (6)

C2—C7 1.381 (6) C19—H19 0.9300

C2—C3 1.381 (6) C20—C21 1.391 (6)

C3—C4 1.377 (7) C20—H20 0.9300

C3—H3 0.9300 C21—C22 1.382 (5)

C4—C5 1.388 (8) C21—C23 1.511 (5)

C4—H4 0.9300 C22—H22 0.9300

C5—C6 1.356 (8)

O1—Zn1—O4i 110.49 (12) C7—C2—C3 120.1 (4)

O1—Zn1—N1 105.98 (13) C7—C2—N1 109.1 (4)

O1—Zn1—N3 119.11 (13) C7—C6—H6 121.7

O4i—Zn1—N1 100.62 (12) C8—N3—Zn1 127.4 (3)

O4i—Zn1—N3 111.56 (12) C8—N3—C9 105.0 (3)

N3—Zn1—N1 107.20 (14) C8—N4—C14 107.3 (3)

O1—C15—C16 113.4 (4) C8—N4—H25 126.4

O2—C15—O1 125.0 (4) C9—N3—Zn1 125.2 (3)

O2—C15—C16 121.5 (4) C9—C10—H10 121.7

O3—C16—C15 113.4 (3) C10—C9—N3 130.8 (4)

O3—C16—H16A 108.9 C10—C9—C14 120.3 (4)

O3—C16—H16B 108.9 C10—C11—C12 122.9 (5)

O3—C17—C18 126.0 (3) C10—C11—H11 118.5

O3—C17—C22 114.8 (4) C11—C10—C9 116.6 (4)

O4—C23—C21 117.5 (4) C11—C10—H10 121.7

O5—C23—O4 122.8 (3) C11—C12—H12 119.3

O5—C23—C21 119.8 (4) C12—C11—H11 118.5

N1—C1—N2 112.4 (4) C12—C13—C14 116.9 (4)

N1—C1—H1 123.8 C12—C13—H13 121.6

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, m494–m495

N2—C7—C6 132.5 (5) C13—C12—H12 119.3

N3—C8—N4 113.4 (4) C13—C14—C9 121.9 (4)

N3—C8—H8 123.3 C14—N4—H25 126.4

N3—C9—C14 108.8 (4) C14—C13—H13 121.6

N4—C8—H8 123.3 C15—O1—Zn1 116.7 (3)

N4—C14—C9 105.5 (3) C15—C16—H16A 108.9

N4—C14—C13 132.6 (4) C15—C16—H16B 108.9

C1—N1—Zn1 128.4 (3) C17—O3—C16 118.0 (3)

C1—N1—C2 105.9 (4) C17—C18—H18 120.1

C1—N2—C7 107.3 (4) C17—C22—H22 119.5

C1—N2—H24 126.3 C18—C17—C22 119.3 (4)

C2—N1—Zn1 125.4 (3) C18—C19—C20 121.2 (4)

C2—C3—H3 121.0 C18—C19—H19 119.4

C2—C7—N2 105.2 (4) C19—C18—C17 119.9 (4)

C2—C7—C6 122.1 (5) C19—C18—H18 120.1

C3—C2—N1 130.7 (4) C19—C20—C21 119.0 (4)

C3—C4—C5 121.1 (5) C19—C20—H20 120.5

C3—C4—H4 119.4 C20—C19—H19 119.4

C4—C3—C2 118.0 (5) C20—C21—C23 121.9 (4)

C4—C3—H3 121.0 C21—C20—H20 120.5

C4—C5—H5 119.0 C21—C22—C17 120.9 (4)

C5—C4—H4 119.4 C21—C22—H22 119.5

C5—C6—C7 116.6 (5) C22—C21—C20 119.8 (3)

C5—C6—H6 121.7 C22—C21—C23 118.3 (4)

C6—C5—C4 122.0 (5) C23—O4—Zn1ii 107.7 (2)

C6—C5—H5 119.0 H16A—C16—H16B 107.7

C7—N2—H24 126.3

Zn1—O1—C15—O2 8.5 (5) C2—N1—C1—N2 0.0 (5)

Zn1—O1—C15—C16 −174.1 (3) C2—C3—C4—C5 −0.5 (9)

Zn1ii—O4—C23—O5 −10.1 (5) C3—C2—C7—N2 178.0 (4)

Zn1ii—O4—C23—C21 167.9 (3) C3—C2—C7—C6 1.2 (7)

Zn1—N1—C1—N2 −174.6 (3) C3—C4—C5—C6 0.5 (10)

Zn1—N1—C2—C3 −2.8 (6) C4—C5—C6—C7 0.4 (9)

Zn1—N1—C2—C7 174.7 (3) C5—C6—C7—N2 −177.0 (5)

Zn1—N3—C8—N4 −164.1 (3) C5—C6—C7—C2 −1.2 (8)

Zn1—N3—C9—C10 −14.3 (6) C7—N2—C1—N1 0.1 (5)

Zn1—N3—C9—C14 164.0 (3) C7—C2—C3—C4 −0.3 (7)

O1—Zn1—N1—C2 52.6 (3) C8—N3—C9—C10 −178.0 (5)

O1—Zn1—N1—C1 −133.8 (4) C8—N3—C9—C14 0.3 (4)

O1—Zn1—N3—C8 14.4 (4) C8—N4—C14—C9 −0.9 (4)

O1—Zn1—N3—C9 −145.6 (3) C8—N4—C14—C13 176.6 (5)

O1—C15—C16—O3 168.1 (4) C9—N3—C8—N4 −1.0 (5)

O2—C15—C16—O3 −14.4 (6) C9—C10—C11—C12 0.5 (8)

O3—C17—C18—C19 179.6 (4) C10—C9—C14—N4 178.9 (4)

O3—C17—C22—C21 −179.7 (4) C10—C9—C14—C13 1.0 (6)

O4i—Zn1—N1—C1 111.1 (4) C10—C11—C12—C13 0.5 (9)

(8)

O4i—Zn1—O1—C15 172.5 (3) C12—C13—C14—N4 −177.2 (5)

O4i—Zn1—N3—C8 145.0 (3) C12—C13—C14—C9 0.0 (7)

O4i—Zn1—N3—C9 −15.0 (4) C14—N4—C8—N3 1.2 (5)

N1—Zn1—N3—C8 −105.7 (3) C14—C9—C10—C11 −1.2 (7)

N1—Zn1—N3—C9 94.3 (3) C16—O3—C17—C18 0.3 (6)

N1—Zn1—O1—C15 64.4 (3) C16—O3—C17—C22 −178.7 (3)

N1—C2—C3—C4 177.0 (5) C17—O3—C16—C15 −73.2 (5)

N1—C2—C7—N2 0.2 (5) C17—C18—C19—C20 −0.4 (7)

N1—C2—C7—C6 −176.6 (4) C18—C17—C22—C21 1.3 (6)

N3—Zn1—N1—C1 −5.6 (4) C18—C19—C20—C21 2.4 (7)

N3—Zn1—N1—C2 −179.2 (3) C19—C20—C21—C22 −2.6 (6)

N3—Zn1—O1—C15 −56.4 (3) C19—C20—C21—C23 178.9 (4)

N3—C9—C10—C11 176.9 (4) C20—C21—C22—C17 0.7 (6)

N3—C9—C14—N4 0.4 (4) C20—C21—C23—O4 0.2 (6)

N3—C9—C14—C13 −177.5 (4) C20—C21—C23—O5 178.3 (4)

C1—N1—C2—C3 −177.6 (5) C22—C17—C18—C19 −1.5 (6)

C1—N1—C2—C7 −0.1 (5) C22—C21—C23—O4 −178.4 (4)

C1—N2—C7—C2 −0.2 (5) C22—C21—C23—O5 −0.3 (6)

C1—N2—C7—C6 176.2 (5) C23—C21—C22—C17 179.4 (4)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H24···O2iii 0.86 1.93 2.747 (5) 158

N4—H25···O5iv 0.86 1.93 2.688 (4) 146

Figure

Figure 1Zn1—O4i

References

Related documents

The component items of this general index are groups of national indices aggregated according to a harmonized classification confonning to the ESA (European System of

This paper will discuss the problem of management and development of cash waqf funds included in the freezing of Muslims to endowments, understanding that is still wrong

MCC, JHS, and DCA conceived the project; MCC performed experiments on mitochondrial trafficking, chemotaxis, tumor cell invasion, the xenograft mouse model of localized and

3.1 Vanilla Transformer Language Models In order to apply Transformer or self-attention to language modeling, the central problem is how to train a Transformer to effectively encode

While stan- dard multi-task training improves over single-task training for RTE (likely because it is closely re- lated to MNLI), there is no improvement on the other tasks.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 2 (Short Papers) ,

decrease is typical of countries with middle GDP per capita.. Results of integral testing of hypothesis of independence of government. tax behaviour

Additionally, a positive long-run response of stock market development to all three forms of liberalization in all the markets considered suggested that greater focus should