• No results found

The first dinuclear zinc(II) di­thio­carbamate complex with butyl substituent groups

N/A
N/A
Protected

Academic year: 2020

Share "The first dinuclear zinc(II) di­thio­carbamate complex with butyl substituent groups"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, m1067±m1069 DOI: 10.1107/S160053680302419X Filipe A. Almeida Pazet al. [Zn2(C9H18NS2)4]

m1067

metal-organic papers

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

The first dinuclear zinc(II) dithiocarbamate

complex with butyl substituent groups

Filipe A. Almeida Paz,aMarcia C.

Neves,bTito Trindadeband Jacek

Klinowskia*

aDepartment of Chemistry, University of

Cambridge, Lensfield Road, Cambridge CB2 1EW, England, andbDepartment of

Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal

Correspondence e-mail: jk18@cam.ac.uk

Key indicators Single-crystal X-ray study T= 180 K

Mean(C±C) = 0.009 AÊ Disorder in main residue Rfactor = 0.066 wRfactor = 0.196

Data-to-parameter ratio = 27.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The crystal structure of the title compound, bis(-N,N -dibutyldithiocarbamato-2S:S0)bis[(N,N

-dibutyldithio-carba\-forcelb]mato-2S,S0)zinc(II)], [Zn

2(C9H18NS2)4], has been determined at 180 K. The structure contains two crystallographically unique Zn2+ metal centres, showing almost identical slightly distorted tetrahedral coordination environments, and forming a dinuclear complex with two skew-bridging syn-N,N-dibutyldithiocarbamate ligands. Two other dithiocarbamate ligands are connected to the Zn2+ centres in asyn,syn-chelate coordination mode.

Comment

Metal dithiocarbamate complexes have been known for a long time, with the ®rst crystallographic result dating back 50 years, when Simonsen & Ho (1953) reported the space group and unit-cell parameters for the structure of the ethyl analogue of the title compound. There has been a recent renewal of interest in this type of compound, which can act as a molecular precursor in the synthesis of novel metal sul®de nanomaterials (Trindade et al., 2001). Such compounds have been success-fully used as single-molecule precursors to prepare a wide range of nanocrystalline semiconductors, such as ZnS (Malik

et al., 2001), CdS (Monteiro et al., 2002; Lazzel & O'Brien, 1999; Trindade, O'Brien & Zhang, 1997), PbS (Trindade, O'Brien, Zhang & Motevalli, 1997) and Bi2S3(Monteiroet al., 2001). ZnS, a technologically important material as a phosphor and as a white pigment, can be prepared from a well known

zinc(II) diethyldithiocarbamate complex [Zn2(C5H10NS2)4], the crystal structure of which has been extensively studied (Simonsen & Ho, 1953; Bonamicoet al., 1965; Zvonkovaet al., 1967; Tiekink, 2000). A search in the Cambridge Structural Database (Allen, 2002) reveals that an analogous compound containing methyl substituents, viz. [Zn2(C3H6NS2)4], has

(2)

been described (Klug, 1966; Ramalingam et al., 1998). We report here the ®rst crystal structure of a dinuclear zinc(II) dithiocarbamate complex with butyl substituent groups, [Zn2(C9H18NS2)4], (I).

Compound (I) crystallizes in the monoclinic space group

P21/c, with one complete dinuclear [Zn2(C9H18NS2)4] complex molecule in the asymmetric unit (Fig. 1). The

crystal-(Table 1), and are bridged by twoN,N-dibutyldithiocarbamate ligands in a skew syn coordination fashion, imposing a Zn1 Zn2 separation of 3.7141 (12) AÊ (Fig. 1). Each metal centre is further connected to another organic ligand in a

syn,syn-chelating coordination fashion. Molecules related by the 21 screw axis close-pack in the bc plane to form layers (Fig. 2), which alternate in an ABAB. . . fashion along the

a-axis direction (Fig. 3), leading to the complete crystal structure of (I) (Fig. 4).

Experimental

All chemicals were purchased from Aldrich and used without further puri®cation. CS2(4.13 mmol) was added to an ethanol suspension (ca

50 ml) containing dibutylamine (C8H19N, 4.13 mmol) and freshly

prepared zinc(II) hydroxide [Zn(OH)2, 2.07 mmol], and the resulting

mixture was stirred overnight at ambient temperature. A white precipitate was isolated by vacuum ®ltration and was air-dried at 333 K. Moderate-quality colourless crystals of the title compound

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level, H atoms as small spheres, and the labelling scheme for all non-H atoms. Disordered H atoms on C17 have been omitted for clarity; atom C18 is disordered over two different positions.

Figure 3

Schematic representation of the alternation in an ABAB. . . fashion along theaaxis (due to thec-glide plane), of layers (in blue and orange) of [Zn2(C9H18NS2)4] molecules. H atoms have been omitted for clarity.

Figure 4

Perspective view of (I) along theaaxis. H atoms have been omitted for clarity.

Figure 2

Perspective views, along thea(top) andb(bottom) axes, of the layers in the bc plane, formed by the parallel stacking of [Zn2(C9H18NS2)4]

(3)

Crystal data [Zn2(C9H18NS2)4] Mr= 948.20 Monoclinic,P21=c a= 16.036 (3) AÊ

b= 16.604 (3) AÊ

c= 18.487 (4) AÊ

= 95.10 (3) V= 4902.7 (17) AÊ3 Z= 4

Dx= 1.285 Mg mÿ3 MoKradiation

Cell parameters from 22557 re¯ections

= 1.0±27.5 = 1.35 mmÿ1 T= 180 (2) K Block, colourless 0.140.120.10 mm Data collection

Nonius KappaCCD diffractometer Thin-slice!and'scans Absorption correction: multi-scan

(SORTAV; Blessing, 1995)

Tmin= 0.748,Tmax= 0.877

30156 measured re¯ections 11123 independent re¯ections

7744 re¯ections withI> 2(I)

Rint= 0.037 max= 27.5 h=ÿ20!20

k=ÿ20!21

l=ÿ18!23

Re®nement Re®nement onF2 R[F2> 2(F2)] = 0.066 wR(F2) = 0.196 S= 1.04 11123 re¯ections 409 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0737P)2 + 11.7125P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 1.64 e AÊÿ3 min=ÿ0.86 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Zn1ÐS8 2.3164 (14) Zn1ÐS1 2.3468 (13) Zn1ÐS3 2.3659 (13) Zn1ÐS2 2.4365 (14) Zn2ÐS4 2.3118 (14) Zn2ÐS5 2.3406 (13) Zn2ÐS7 2.3660 (13) Zn2ÐS6 2.4390 (16) S1ÐC1 1.734 (5) S2ÐC1 1.719 (5)

N1ÐC1 1.329 (5) S3ÐC10 1.755 (5) S4ÐC10 1.722 (5) N2ÐC10 1.316 (6) S5ÐC19 1.723 (5) S6ÐC19 1.723 (5) N3ÐC19 1.332 (6) S7ÐC28 1.747 (5) S8ÐC28 1.722 (4) N4ÐC28 1.320 (5)

S8ÐZn1ÐS1 125.51 (5) S8ÐZn1ÐS3 112.59 (5) S1ÐZn1ÐS3 116.50 (5) S8ÐZn1ÐS2 110.67 (5) S1ÐZn1ÐS2 76.05 (5) S3ÐZn1ÐS2 107.05 (5) S4ÐZn2ÐS5 123.14 (5) S4ÐZn2ÐS7 112.71 (5)

S5ÐZn2ÐS7 119.42 (5) S4ÐZn2ÐS6 109.85 (6) S5ÐZn2ÐS6 75.99 (5) S7ÐZn2ÐS6 106.59 (6) S2ÐC1ÐS1 117.2 (3) S4ÐC10ÐS3 118.4 (3) S6ÐC19ÐS5 117.3 (3) S8ÐC28ÐS7 118.6 (3)

All H atoms were positioned geometrically and re®ned in the riding-model approximation, with Uiso(H) values ®xed at 1.2

(methylene H atoms) or 1.5 (methyl H atoms) timesUeqof the parent

atom. The alkyl chains were found to be severely affected by disorder, with some C atoms showing extended ellipsoids when treated with anisotropic displacement parameters. Attempts to model disorder for these alkyl chains resulted in a negligible improvement;

the crystal used for data collection, the best from several batches, was a very small block of only moderate quality. However, re®nement of the crystal structure with strong geometrical restraints for the alkyl chains (approximately equal CÐC bond lengths and CÐCÐC angles), and common isotropic displacement parameters for some C atoms, resulted in a satisfactory solution. Disorder for atom C18 was successfully modelled over two different positions (C18 and C180)

with occupancy factors of 0.600 (13) and 0.400 (13), respectively. The highest peak in the ®nal difference map is located 0.09 AÊ from C36, and the deepest hole is 0.75 AÊ from S6.

Data collection:COLLECT(Nonius, 1998); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to re®ne structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL; software used to prepare material for publication:SHELXTL.

We are grateful to the University of Aveiro (project No. 3.64.33.7/NANOENG/CTS15) and the Portuguese Foundation for Science and Technology (FCT) for ®nancial support through PhD scholarship No. SFRH/BD/3024/2000 to FAAP.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Blessing, R. H. (1995).Acta Cryst.A51, 33±58.

Bonamico, M., Mazzone, G., Vaciago, A. & Zambonelli, L. (1965).Acta Cryst. 19, 898±909.

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Klug, H. P. (1966).Acta Cryst.21, 536±546.

Lazzel, M. & O'Brien, P. (1999).Chem. Commun.pp. 2041±2042.

Malik, M. A., O'Brien, P. & Revaprasadu, N. (2001).J. Mater. Chem.11, 2382± 2386.

Monteiro, O. C., Esteves, A. C. C. & Trindade, T. (2002).Chem. Mater.14, 2900±2904.

Monteiro, O. C., Nogueira, H. I. S., Trindade, T. & Motevalli, M. (2001).Chem. Mater.13, 2103±2111.

Nonius (1998).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Ramalingam, K., bin Shawkataly, O., Fun, H.-K. & Razak, I. A. (1998).Z. Kristallogr. New Cryst. Struct.213, 371±372.

Simonsen, S. H. & Ho, J. W. (1953).Acta Cryst.6, 430.

Tiekink, E. R. T. (2000).Z. Kristallogr. New Cryst. Struct.215, 445±446. Trindade, T., O'Brien, P. & Pickett, N. (2001).Chem. Mater.13, 3843±3858. Trindade, T., O'Brien, P. & Zhang, X. (1997).Chem. Mater.9, 523±530. Trindade, T., O'Brien, P., Zhang, X. & Motevalli, M. (1997).J. Mater. Chem.7,

1011±1016.

Zvonkova, Z. V., Khvatkina, A. N. & Isanova, N. S. (1967).Kristallogra®ya

(Russ.) (Crystallogr. Rep.),12, 1065.

(4)

supporting information

Acta Cryst. (2003). E59, m1067–m1069 [https://doi.org/10.1107/S160053680302419X]

The first dinuclear zinc(II) dithiocarbamate complex with butyl substituent

groups

Filipe A. Almeida Paz, Marcia C. Neves, Tito Trindade and Jacek Klinowski

bis(µ-N,N-dibutyldithiocarbamato- κ2S:S)bis[(N,N-dibutyldithiocarbamato-κ2S,S)zinc(II)]

Crystal data [Zn2(C9H18NS2)4]

Mr = 948.20 Monoclinic, P21/c

Hall symbol: -P 2ybc a = 16.036 (3) Å b = 16.604 (3) Å c = 18.487 (4) Å β = 95.10 (3)° V = 4902.7 (17) Å3

Z = 4

F(000) = 2016 Dx = 1.285 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 22557 reflections θ = 1.0–27.5°

µ = 1.35 mm−1

T = 180 K Block, colourless 0.14 × 0.12 × 0.10 mm

Data collection Nonius KappaCCD

diffractometer

Radiation source: fine-focus sealed tube Thin–slice ω and φ scans

Absorption correction: multi-scan (Sortav; Blessing, 1995) Tmin = 0.748, Tmax = 0.877

30156 measured reflections

11123 independent reflections 7744 reflections with I > 2σ(I) Rint = 0.037

θmax = 27.5°, θmin = 3.5°

h = −20→20 k = −20→21 l = −18→23

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.066

wR(F2) = 0.196

S = 1.04

11123 reflections 409 parameters 50 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0737P)2 + 11.7125P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 1.64 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, m1067–m1069

Special details

Experimental. Zn atoms directly located from Patterson synthesis. The remaining atoms were located from consecutive difference Fourier map syntheses.

Although all the C-atoms from the butyl substituent groups were easily found in difference Fourier maps, they are severely affected by thermal disorder, which is reflected in large Ueq when isotropic displacements are considered.

Anisotropic treatment for these atoms results in large adps for some of them. Common/independent isotropic displacement parameters were used for the following C-atoms: 1 - C24 2 - C25 3 - C8 C17 C26 C35 4 - C9 C27 C38 The C18 atom was found to be disordered over two different positions. This was modelled with partial occupancies of 60 and 40% for C18 and C18′, respectively.

The –CH2—CH2—CH2—CH3 chains were also refined with bond length restraints (C–C distance of 1.52 A, plus a geometrical restraint for the C···C···C distance associated with the refined C–C bond length).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Zn1 0.29406 (3) 0.91781 (3) 0.60034 (3) 0.04816 (16) Zn2 0.21360 (3) 0.92350 (3) 0.40513 (3) 0.04807 (16) S1 0.36961 (7) 0.79986 (7) 0.63130 (7) 0.0516 (3) S2 0.29278 (8) 0.90940 (8) 0.73182 (7) 0.0580 (3) N1 0.3705 (2) 0.7727 (2) 0.7738 (2) 0.0543 (10) C1 0.3473 (3) 0.8222 (3) 0.7192 (3) 0.0485 (10) C2 0.4198 (3) 0.6993 (3) 0.7629 (3) 0.0598 (13)

H2A 0.4035 0.6776 0.7138 0.072*

H2B 0.4059 0.6581 0.7987 0.072*

C3 0.5135 (3) 0.7138 (3) 0.7708 (3) 0.0636 (14)

H3A 0.5267 0.7595 0.7394 0.076*

H3B 0.5310 0.7290 0.8217 0.076*

C4 0.5629 (3) 0.6414 (3) 0.7510 (3) 0.0696 (15)

H4A 0.5459 0.6262 0.7000 0.084*

H4B 0.5498 0.5956 0.7823 0.084*

C5 0.6572 (3) 0.6569 (4) 0.7596 (4) 0.089 (2)

H5A 0.6869 0.6083 0.7462 0.133*

H5B 0.6745 0.6709 0.8102 0.133*

H5C 0.6706 0.7015 0.7279 0.133*

C6 0.3479 (3) 0.7896 (4) 0.8479 (3) 0.0739 (17)

H6A 0.3464 0.7382 0.8749 0.089*

H6B 0.2909 0.8130 0.8448 0.089*

C7 0.4078 (4) 0.8470 (5) 0.8905 (3) 0.100 (2)

H7A 0.4098 0.8995 0.8654 0.120*

H7B 0.4650 0.8241 0.8964 0.120*

C8 0.3725 (7) 0.8572 (7) 0.9652 (5) 0.152 (2)*

(6)

H8B 0.3775 0.8058 0.9925 0.183* C9 0.4202 (8) 0.9210 (8) 1.0065 (7) 0.205 (3)*

H9A 0.4258 0.9071 1.0582 0.307*

H9B 0.3905 0.9724 0.9996 0.307*

H9C 0.4760 0.9258 0.9890 0.307*

S3 0.15428 (7) 0.90073 (8) 0.55006 (6) 0.0514 (3) S4 0.14958 (8) 1.03786 (8) 0.44524 (6) 0.0529 (3) N2 0.0861 (2) 1.0451 (3) 0.5724 (2) 0.0605 (11) C10 0.1264 (2) 1.0006 (3) 0.5280 (2) 0.0475 (10) C11 0.0615 (3) 1.0165 (4) 0.6426 (3) 0.0736 (17)

H11A 0.0644 0.9570 0.6436 0.088*

H11B 0.0025 1.0320 0.6470 0.088*

C12 0.1155 (3) 1.0495 (3) 0.7076 (2) 0.0580 (12)

H12A 0.1745 1.0339 0.7039 0.070*

H12B 0.1125 1.1091 0.7074 0.070*

C13 0.0872 (4) 1.0180 (4) 0.7781 (3) 0.0799 (17)

H13A 0.0902 0.9585 0.7783 0.096*

H13B 0.0280 1.0336 0.7816 0.096*

C14 0.1405 (5) 1.0507 (5) 0.8433 (3) 0.098 (2)

H14A 0.1197 1.0298 0.8880 0.147*

H14B 0.1376 1.1097 0.8433 0.147*

H14C 0.1987 1.0337 0.8409 0.147*

C15 0.0595 (3) 1.1277 (3) 0.5516 (4) 0.0827 (19)

H15A 0.0096 1.1422 0.5767 0.099*

H15B 0.0437 1.1297 0.4987 0.099*

C16 0.1290 (4) 1.1890 (4) 0.5712 (4) 0.093 (2)

H16A 0.1478 1.1853 0.6236 0.111*

H16B 0.1776 1.1780 0.5432 0.111*

C17 0.0946 (7) 1.2717 (5) 0.5534 (6) 0.152 (2)*

H17A 0.0435 1.2806 0.5787 0.183* 0.600 (13)

H17B 0.1365 1.3129 0.5707 0.183* 0.600 (13)

H17C 0.0854 1.2748 0.4998 0.183* 0.400 (13)

H17D 0.0386 1.2741 0.5719 0.183* 0.400 (13)

C18 0.0743 (14) 1.2808 (12) 0.4746 (8) 0.205 (3)* 0.600 (13)

H18A 0.0827 1.3369 0.4606 0.307* 0.600 (13)

H18B 0.0158 1.2656 0.4619 0.307* 0.600 (13)

H18C 0.1109 1.2458 0.4487 0.307* 0.600 (13)

C18′ 0.1386 (18) 1.3465 (10) 0.5776 (18) 0.205 (3)* 0.400 (13)

H18D 0.1197 1.3909 0.5453 0.307* 0.400 (13)

H18E 0.1991 1.3391 0.5763 0.307* 0.400 (13)

H18F 0.1262 1.3591 0.6273 0.307* 0.400 (13)

S5 0.13939 (7) 0.80851 (7) 0.36401 (7) 0.0517 (3) S6 0.21634 (10) 0.92856 (10) 0.27351 (7) 0.0713 (4) N3 0.1360 (3) 0.7976 (3) 0.2199 (2) 0.0699 (13) C19 0.1602 (3) 0.8406 (3) 0.2788 (3) 0.0541 (11) C20 0.0846 (3) 0.7250 (4) 0.2236 (3) 0.0711 (16)

H20A 0.1012 0.6964 0.2696 0.085*

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, m1067–m1069

C21 −0.0091 (3) 0.7432 (3) 0.2197 (3) 0.0676 (15)

H21A −0.0204 0.7792 0.2604 0.081*

H21B −0.0259 0.7719 0.1737 0.081*

C22 −0.0610 (3) 0.6681 (3) 0.2233 (4) 0.0799 (19)

H22A −0.0448 0.6400 0.2696 0.096*

H22B −0.0486 0.6316 0.1832 0.096*

C23 −0.1544 (3) 0.6852 (4) 0.2177 (4) 0.091 (2)

H23A −0.1849 0.6352 0.2255 0.137*

H23B −0.1721 0.7067 0.1694 0.137*

H23C −0.1664 0.7247 0.2548 0.137*

C24 0.1639 (5) 0.8206 (5) 0.1451 (4) 0.099 (2)*

H24A 0.2215 0.8428 0.1505 0.119*

H24B 0.1635 0.7725 0.1134 0.119*

C25 0.1037 (6) 0.8827 (5) 0.1123 (5) 0.133 (3)*

H25A 0.0917 0.9224 0.1500 0.160*

H25B 0.0503 0.8562 0.0950 0.160*

C26 0.1396 (7) 0.9278 (6) 0.0470 (5) 0.152 (2)*

H26A 0.1021 0.9722 0.0290 0.183*

H26B 0.1959 0.9500 0.0614 0.183*

C27 0.1434 (9) 0.8639 (8) −0.0088 (6) 0.205 (3)*

H27A 0.1684 0.8859 −0.0511 0.307*

H27B 0.0867 0.8446 −0.0236 0.307*

H27C 0.1777 0.8190 0.0115 0.307*

S7 0.35428 (7) 0.91066 (7) 0.45436 (6) 0.0467 (3) S8 0.35135 (7) 1.03892 (7) 0.56711 (6) 0.0476 (3) N4 0.4115 (2) 1.0613 (2) 0.4403 (2) 0.0451 (8) C28 0.3752 (2) 1.0098 (3) 0.4820 (2) 0.0423 (9) C29 0.4376 (3) 1.0404 (3) 0.3679 (2) 0.0522 (11)

H29A 0.4374 0.9811 0.3627 0.063*

H29B 0.4957 1.0593 0.3647 0.063*

C30 0.3818 (3) 1.0766 (3) 0.3058 (2) 0.0483 (10)

H30A 0.3835 1.1361 0.3095 0.058*

H30B 0.3233 1.0591 0.3093 0.058*

C31 0.4099 (4) 1.0507 (3) 0.2328 (2) 0.0657 (14)

H31A 0.4089 0.9912 0.2297 0.079*

H31B 0.4683 1.0687 0.2294 0.079*

C32 0.3543 (4) 1.0855 (4) 0.1692 (3) 0.0823 (18)

H32A 0.3762 1.0697 0.1235 0.123*

H32B 0.3536 1.1444 0.1729 0.123*

H32C 0.2972 1.0647 0.1704 0.123*

C33 0.4305 (3) 1.1448 (3) 0.4642 (3) 0.0538 (11)

H33A 0.4763 1.1659 0.4370 0.065*

H33B 0.4507 1.1442 0.5164 0.065*

C34 0.3561 (3) 1.2012 (3) 0.4531 (3) 0.0573 (12)

H34A 0.3362 1.2029 0.4008 0.069*

H34B 0.3099 1.1804 0.4799 0.069*

C35 0.3788 (6) 1.2846 (5) 0.4790 (6) 0.152 (2)*

(8)

H35B 0.3928 1.2828 0.5322 0.183* C36 0.3120 (8) 1.3472 (7) 0.4624 (7) 0.205 (3)*

H36A 0.3300 1.3983 0.4853 0.307*

H36B 0.2599 1.3295 0.4813 0.307*

H36C 0.3027 1.3547 0.4097 0.307*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, m1067–m1069

C34 0.054 (3) 0.049 (3) 0.066 (3) 0.000 (2) −0.010 (2) −0.001 (2)

Geometric parameters (Å, º)

Zn1—S8 2.3164 (14) C17—H17D 0.990

Zn1—S1 2.3468 (13) C18—H18A 0.980

Zn1—S3 2.3659 (13) C18—H18B 0.980

Zn1—S2 2.4365 (14) C18—H18C 0.980

Zn2—S4 2.3118 (14) C18′—H18D 0.980

Zn2—S5 2.3406 (13) C18′—H18E 0.980

Zn2—S7 2.3660 (13) C18′—H18F 0.980

Zn2—S6 2.4390 (16) S5—C19 1.723 (5)

S1—C1 1.734 (5) S6—C19 1.723 (5)

S2—C1 1.719 (5) N3—C19 1.332 (6)

N1—C1 1.329 (5) N3—C20 1.466 (7)

N1—C6 1.475 (7) N3—C24 1.539 (8)

N1—C2 1.476 (6) C20—C21 1.528 (6)

C2—C3 1.517 (5) C20—H20A 0.990

C2—H2A 0.990 C20—H20B 0.990

C2—H2B 0.990 C21—C22 1.504 (6)

C3—C4 1.503 (6) C21—H21A 0.990

C3—H3A 0.990 C21—H21B 0.990

C3—H3B 0.990 C22—C23 1.519 (6)

C4—C5 1.528 (6) C22—H22A 0.990

C4—H4A 0.990 C22—H22B 0.990

C4—H4B 0.990 C23—H23A 0.980

C5—H5A 0.980 C23—H23B 0.980

C5—H5B 0.980 C23—H23C 0.980

C5—H5C 0.980 C24—C25 1.504 (7)

C6—C7 1.522 (7) C24—H24A 0.990

C6—H6A 0.990 C24—H24B 0.990

C6—H6B 0.990 C25—C26 1.571 (8)

C7—C8 1.548 (8) C25—H25A 0.990

C7—H7A 0.990 C25—H25B 0.990

C7—H7B 0.990 C26—C27 1.486 (8)

C8—C9 1.479 (17) C26—H26A 0.990

C8—H8A 0.990 C26—H26B 0.990

C8—H8B 0.990 C27—H27A 0.980

C9—H9A 0.980 C27—H27B 0.980

C9—H9B 0.980 C27—H27C 0.980

C9—H9C 0.980 S7—C28 1.747 (5)

S3—C10 1.755 (5) S8—C28 1.722 (4)

S4—C10 1.722 (5) N4—C28 1.320 (5)

N2—C10 1.316 (6) N4—C33 1.477 (6)

N2—C11 1.468 (7) N4—C29 1.479 (6)

N2—C15 1.478 (8) C29—C30 1.515 (5)

C11—C12 1.520 (5) C29—H29A 0.990

(10)

C11—H11B 0.990 C30—C31 1.523 (6)

C12—C13 1.510 (6) C30—H30A 0.990

C12—H12A 0.990 C30—H30B 0.990

C12—H12B 0.990 C31—C32 1.524 (6)

C13—C14 1.516 (6) C31—H31A 0.990

C13—H13A 0.990 C31—H31B 0.990

C13—H13B 0.990 C32—H32A 0.980

C14—H14A 0.980 C32—H32B 0.980

C14—H14B 0.980 C32—H32C 0.980

C14—H14C 0.980 C33—C34 1.516 (5)

C15—C16 1.528 (6) C33—H33A 0.990

C15—H15A 0.990 C33—H33B 0.990

C15—H15B 0.990 C34—C35 1.500 (7)

C16—C17 1.507 (8) C34—H34A 0.990

C16—H16A 0.990 C34—H34B 0.990

C16—H16B 0.990 C35—C36 1.505 (8)

C17—C18 1.472 (9) C35—H35A 0.990

C17—C18′ 1.477 (10) C35—H35B 0.990

C17—H17A 0.990 C36—H36A 0.980

C17—H17B 0.990 C36—H36B 0.980

C17—H17C 0.990 C36—H36C 0.980

S8—Zn1—S1 125.51 (5) C18′—C17—H17D 106.6

S8—Zn1—S3 112.59 (5) C16—C17—H17D 106.6

S1—Zn1—S3 116.50 (5) H17B—C17—H17D 118.1

S8—Zn1—S2 110.67 (5) H17C—C17—H17D 106.5

S1—Zn1—S2 76.05 (5) C17—C18—H18A 109.5

S3—Zn1—S2 107.05 (5) C17—C18—H18B 109.5

S4—Zn2—S5 123.14 (5) C17—C18—H18C 109.5

S4—Zn2—S7 112.71 (5) C17—C18′—H18D 109.5

S5—Zn2—S7 119.42 (5) C17—C18′—H18E 109.5

S4—Zn2—S6 109.85 (6) H18D—C18′—H18E 109.5

S5—Zn2—S6 75.99 (5) C17—C18′—H18F 109.5

S7—Zn2—S6 106.59 (6) H18D—C18′—H18F 109.5

C1—S1—Zn1 84.57 (15) H18E—C18′—H18F 109.5

C1—S2—Zn1 82.13 (16) C19—S5—Zn2 84.85 (16)

C1—N1—C6 120.8 (4) C19—S6—Zn2 81.83 (17)

C1—N1—C2 121.6 (4) C19—N3—C20 121.7 (5)

C6—N1—C2 117.6 (4) C19—N3—C24 121.0 (5)

N1—C1—S2 121.9 (4) C20—N3—C24 117.2 (5)

N1—C1—S1 120.9 (4) N3—C19—S6 121.6 (4)

S2—C1—S1 117.2 (3) N3—C19—S5 121.1 (4)

N1—C2—C3 113.2 (4) S6—C19—S5 117.3 (3)

N1—C2—H2A 108.9 N3—C20—C21 113.0 (5)

C3—C2—H2A 108.9 N3—C20—H20A 109.0

N1—C2—H2B 108.9 C21—C20—H20A 109.0

C3—C2—H2B 108.9 N3—C20—H20B 109.0

(11)

supporting information

sup-8

Acta Cryst. (2003). E59, m1067–m1069

C4—C3—C2 112.8 (4) H20A—C20—H20B 107.8

C4—C3—H3A 109.0 C22—C21—C20 112.3 (4)

C2—C3—H3A 109.0 C22—C21—H21A 109.2

C4—C3—H3B 109.0 C20—C21—H21A 109.2

C2—C3—H3B 109.0 C22—C21—H21B 109.2

H3A—C3—H3B 107.8 C20—C21—H21B 109.2

C3—C4—C5 112.2 (5) H21A—C21—H21B 107.9

C3—C4—H4A 109.2 C21—C22—C23 112.8 (5)

C5—C4—H4A 109.2 C21—C22—H22A 109.0

C3—C4—H4B 109.2 C23—C22—H22A 109.0

C5—C4—H4B 109.2 C21—C22—H22B 109.0

H4A—C4—H4B 107.9 C23—C22—H22B 109.0

C4—C5—H5A 109.5 H22A—C22—H22B 107.8

C4—C5—H5B 109.5 C22—C23—H23A 109.5

H5A—C5—H5B 109.5 C22—C23—H23B 109.5

C4—C5—H5C 109.5 H23A—C23—H23B 109.5

H5A—C5—H5C 109.5 C22—C23—H23C 109.5

H5B—C5—H5C 109.5 H23A—C23—H23C 109.5

N1—C6—C7 113.9 (4) H23B—C23—H23C 109.5

N1—C6—H6A 108.8 C25—C24—N3 107.7 (6)

C7—C6—H6A 108.8 C25—C24—H24A 110.2

N1—C6—H6B 108.8 N3—C24—H24A 110.2

C7—C6—H6B 108.8 C25—C24—H24B 110.2

H6A—C6—H6B 107.7 N3—C24—H24B 110.2

C6—C7—C8 105.4 (6) H24A—C24—H24B 108.5

C6—C7—H7A 110.7 C24—C25—C26 111.7 (7)

C8—C7—H7A 110.7 C24—C25—H25A 109.3

C6—C7—H7B 110.7 C26—C25—H25A 109.3

C8—C7—H7B 110.7 C24—C25—H25B 109.3

H7A—C7—H7B 108.8 C26—C25—H25B 109.3

C9—C8—C7 109.0 (8) H25A—C25—H25B 107.9

C9—C8—H8A 109.9 C27—C26—C25 103.5 (8)

C7—C8—H8A 109.9 C27—C26—H26A 111.1

C9—C8—H8B 109.9 C25—C26—H26A 111.1

C7—C8—H8B 109.9 C27—C26—H26B 111.1

H8A—C8—H8B 108.3 C25—C26—H26B 111.1

C8—C9—H9A 109.5 H26A—C26—H26B 109.0

C8—C9—H9B 109.5 C26—C27—H27A 109.5

H9A—C9—H9B 109.5 C26—C27—H27B 109.5

C8—C9—H9C 109.5 H27A—C27—H27B 109.5

H9A—C9—H9C 109.5 C26—C27—H27C 109.5

H9B—C9—H9C 109.5 H27A—C27—H27C 109.5

C10—S3—Zn1 101.00 (14) H27B—C27—H27C 109.5

C10—S4—Zn2 97.28 (16) C28—S7—Zn2 100.33 (13)

C10—N2—C11 123.7 (5) C28—S8—Zn1 97.14 (16)

C10—N2—C15 120.4 (5) C28—N4—C33 121.6 (4)

C11—N2—C15 115.8 (4) C28—N4—C29 123.4 (4)

(12)

N2—C10—S3 121.0 (4) N4—C28—S8 119.8 (3)

S4—C10—S3 118.4 (3) N4—C28—S7 121.6 (3)

N2—C11—C12 113.8 (4) S8—C28—S7 118.6 (3)

N2—C11—H11A 108.8 N4—C29—C30 113.4 (3)

C12—C11—H11A 108.8 N4—C29—H29A 108.9

N2—C11—H11B 108.8 C30—C29—H29A 108.9

C12—C11—H11B 108.8 N4—C29—H29B 108.9

H11A—C11—H11B 107.7 C30—C29—H29B 108.9

C13—C12—C11 111.3 (4) H29A—C29—H29B 107.7

C13—C12—H12A 109.4 C29—C30—C31 111.0 (4)

C11—C12—H12A 109.4 C29—C30—H30A 109.4

C13—C12—H12B 109.4 C31—C30—H30A 109.4

C11—C12—H12B 109.4 C29—C30—H30B 109.4

H12A—C12—H12B 108.0 C31—C30—H30B 109.4

C12—C13—C14 111.8 (5) H30A—C30—H30B 108.0

C12—C13—H13A 109.3 C30—C31—C32 112.2 (4)

C14—C13—H13A 109.3 C30—C31—H31A 109.2

C12—C13—H13B 109.3 C32—C31—H31A 109.2

C14—C13—H13B 109.3 C30—C31—H31B 109.2

H13A—C13—H13B 107.9 C32—C31—H31B 109.2

C13—C14—H14A 109.5 H31A—C31—H31B 107.9

C13—C14—H14B 109.5 C31—C32—H32A 109.5

H14A—C14—H14B 109.5 C31—C32—H32B 109.5

C13—C14—H14C 109.5 H32A—C32—H32B 109.5

H14A—C14—H14C 109.5 C31—C32—H32C 109.5

H14B—C14—H14C 109.5 H32A—C32—H32C 109.5

N2—C15—C16 111.7 (5) H32B—C32—H32C 109.5

N2—C15—H15A 109.3 N4—C33—C34 113.6 (4)

C16—C15—H15A 109.3 N4—C33—H33A 108.9

N2—C15—H15B 109.3 C34—C33—H33A 108.9

C16—C15—H15B 109.3 N4—C33—H33B 108.9

H15A—C15—H15B 108.0 C34—C33—H33B 108.9

C17—C16—C15 108.1 (6) H33A—C33—H33B 107.7

C17—C16—H16A 110.1 C35—C34—C33 111.2 (5)

C15—C16—H16A 110.1 C35—C34—H34A 109.4

C17—C16—H16B 110.1 C33—C34—H34A 109.4

C15—C16—H16B 110.1 C35—C34—H34B 109.4

H16A—C16—H16B 108.4 C33—C34—H34B 109.4

C18—C17—C18′ 105.8 (17) H34A—C34—H34B 108.0

C18—C17—C16 110.7 (10) C34—C35—C36 115.1 (8)

C18′—C17—C16 123.0 (12) C34—C35—H35A 108.5

C18—C17—H17A 109.5 C36—C35—H35A 108.5

C18′—C17—H17A 97.2 C34—C35—H35B 108.5

C16—C17—H17A 109.5 C36—C35—H35B 108.5

C18—C17—H17B 109.5 H35A—C35—H35B 107.5

C16—C17—H17B 109.5 C35—C36—H36A 109.5

H17A—C17—H17B 108.1 C35—C36—H36B 109.5

(13)

supporting information

sup-10

Acta Cryst. (2003). E59, m1067–m1069

C16—C17—H17C 106.6 C35—C36—H36C 109.5

H17A—C17—H17C 114.1 H36A—C36—H36C 109.5

H17B—C17—H17C 109.0 H36B—C36—H36C 109.5

C18—C17—H17D 102.2

S8—Zn1—S1—C1 107.04 (15) S4—Zn2—S5—C19 105.01 (17)

S3—Zn1—S1—C1 −100.94 (15) S7—Zn2—S5—C19 −101.14 (17)

S2—Zn1—S1—C1 1.40 (15) S6—Zn2—S5—C19 0.23 (17)

S8—Zn1—S2—C1 −124.51 (15) S4—Zn2—S6—C19 −120.83 (17)

S1—Zn1—S2—C1 −1.42 (15) S5—Zn2—S6—C19 −0.23 (17)

S3—Zn1—S2—C1 112.45 (15) S7—Zn2—S6—C19 116.76 (17)

C6—N1—C1—S2 1.8 (6) C20—N3—C19—S6 −176.8 (4)

C2—N1—C1—S2 −177.9 (3) C24—N3—C19—S6 5.5 (7)

C6—N1—C1—S1 −176.9 (3) C20—N3—C19—S5 5.4 (7)

C2—N1—C1—S1 3.3 (6) C24—N3—C19—S5 −172.3 (4)

Zn1—S2—C1—N1 −176.7 (4) Zn2—S6—C19—N3 −177.6 (4)

Zn1—S2—C1—S1 2.1 (2) Zn2—S6—C19—S5 0.3 (3)

Zn1—S1—C1—N1 176.6 (4) Zn2—S5—C19—N3 177.6 (4)

Zn1—S1—C1—S2 −2.2 (2) Zn2—S5—C19—S6 −0.4 (3)

C1—N1—C2—C3 88.3 (6) C19—N3—C20—C21 85.7 (7)

C6—N1—C2—C3 −91.5 (5) C24—N3—C20—C21 −96.5 (6)

N1—C2—C3—C4 −173.2 (4) N3—C20—C21—C22 179.7 (5)

C2—C3—C4—C5 −179.7 (5) C20—C21—C22—C23 −178.8 (5)

C1—N1—C6—C7 −84.1 (6) C19—N3—C24—C25 −85.4 (8)

C2—N1—C6—C7 95.6 (6) C20—N3—C24—C25 96.8 (7)

N1—C6—C7—C8 179.3 (6) N3—C24—C25—C26 164.0 (7)

C6—C7—C8—C9 −172.1 (9) C24—C25—C26—C27 66.4 (11)

S8—Zn1—S3—C10 −19.22 (17) S4—Zn2—S7—C28 −19.10 (16)

S1—Zn1—S3—C10 −174.79 (16) S5—Zn2—S7—C28 −175.52 (15)

S2—Zn1—S3—C10 102.62 (16) S6—Zn2—S7—C28 101.49 (16)

S5—Zn2—S4—C10 74.81 (15) S1—Zn1—S8—C28 73.04 (14)

S7—Zn2—S4—C10 −80.60 (15) S3—Zn1—S8—C28 −79.91 (13)

S6—Zn2—S4—C10 160.70 (14) S2—Zn1—S8—C28 160.33 (13)

C11—N2—C10—S4 177.7 (3) C33—N4—C28—S8 −1.5 (5)

C15—N2—C10—S4 0.4 (5) C29—N4—C28—S8 177.2 (3)

C11—N2—C10—S3 0.1 (6) C33—N4—C28—S7 −178.9 (3)

C15—N2—C10—S3 −177.1 (3) C29—N4—C28—S7 −0.2 (5)

Zn2—S4—C10—N2 −178.5 (3) Zn1—S8—C28—N4 −179.5 (3)

Zn2—S4—C10—S3 −0.9 (2) Zn1—S8—C28—S7 −2.0 (2)

Zn1—S3—C10—N2 −96.2 (3) Zn2—S7—C28—N4 −95.3 (3)

Zn1—S3—C10—S4 86.3 (2) Zn2—S7—C28—S8 87.2 (2)

C10—N2—C11—C12 104.8 (5) C28—N4—C29—C30 106.6 (5)

C15—N2—C11—C12 −77.8 (6) C33—N4—C29—C30 −74.6 (5)

N2—C11—C12—C13 −180.0 (5) N4—C29—C30—C31 −178.1 (4)

C11—C12—C13—C14 −179.9 (5) C29—C30—C31—C32 179.3 (5)

C10—N2—C15—C16 −86.2 (6) C28—N4—C33—C34 −81.8 (5)

C11—N2—C15—C16 96.3 (5) C29—N4—C33—C34 99.4 (5)

(14)

References

Related documents

When we focus on different types of absences, we find that being ranked 1 percent higher in your class increases the estimated effect of a relaxed class attendance policy on your

(2014b): &#34;The Impact of Public Spending on the Financial Performance of Microfinance Institutions.&#34; In Lucie Sedmihradska (ed.), Proceedings of the 19th International

This increased probability of the revelation of unfavorable evidence reduces the defendant’s expected payoff, and therefore the defendant strictly prefers a biased expert to an

Electrodiagnostic (EDx) studies are a valid and reliable means of confirming the diagnosis. The amplitudes along with the conduction velocities of the sensory

Figure 7 jointly considers how the probability of observing a price increase (decrease) i ) varies during the season; ii ) is affected by a positive exogenous demand

Lactobacillus jensenii, Lactobacillus johnsonii, Lactobacillus crispatus and Lactobacillus acidophilus were recovered from Algerian pregnant women with intermediate

The model was able to resolve the fact that they and need had to be aligned to 2 different cepts, rather than eg a larger cept corresponding to a 2-4 alignment, and to produce

A more accurate estimate of the value of expected outcomes is provided by Monte Carlo analysis, which is based on the full distribution of possible values of highly