• No results found

1 (3 Amino 1 benzo­furan 2 yl) 2 mesityl­ethano­ne

N/A
N/A
Protected

Academic year: 2020

Share "1 (3 Amino 1 benzo­furan 2 yl) 2 mesityl­ethano­ne"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1211±o1212 DOI: 10.1107/S160053680401428X Cengiz Arõcõet al. C19H19NO2

o1211

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-(3-Amino-1-benzofuran-2-yl)-2-mesityl-ethanone

Cengiz Arõcõ,a* DincËer UÈlkuÈ,a

Cumhur KõrõlmõsË,bMurat Kocab

and Misir Ahmedzadeb

aDepartment of Engineering Physics, Hacettepe University, Beytepe 06800, Ankara, Turkey, and bDepartment of Chemistry, Faculty of Arts and

Science, Fõrat University, 23169 Elazõg, Turkey

Correspondence e-mail: arici@hacettepe.edu.tr

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.054

wRfactor = 0.132

Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C19H19NO2, features a benzofuran ring

system coplanar with an amino substituent and linked to a mesityl group by an acetyl bridge. In the crystal structure, symmetry-related molecules are linked by NÐH O inter-molecular hydrogen bonds involving one amino H atom and the O atom of the acetyl group to form in®nite chains. The other amino H atom is involved in an intramolecular hydrogen bond with the acetyl O atom.

Comment

Benzofuran derivatives possess antimicrobial, bacteriostatic, bactericidal, fungistatic and fungicidal activities (Hassaneenet al., 2002). Moreover, benzofurans are building blocks for optical brighteners and are applied, for example, in combin-ation with benzimidazoles as biphenyl end groups (Schmidt, 1999). Many of the natural benzofurans have physiological, pharmacological and toxic properties and, as a result, there is continuing interest in their chemical synthesis (Kappe et al., 1997).

The benzofuran ring system of the title compound, (2), is planar [with a maximum deviation from the plane of 0.101 (3) AÊ for C7] and the acetyl group is slightly twisted about the C1ÐC9 bond, as seen from the torsion angles O1Ð C1ÐC9ÐO2 [5.7 (3)] and C2ÐC1ÐC9ÐC10 [13.2 (3)].

Because of the amino group, the acetyl group is more twisted about the C1ÐC9 bond than in a similar compound (Arõcõet al., 2004). The benzofuran ring system is linked to the mesityl group by the acetyl group. The dihedral angle between the benzofuran ring system and the mesityl group is 79.91 (9).

The structure is stabilized by intramolecular and inter-molecular hydrogen-bonding interactions. In the crystal structure, molecules related by the 21rotation axis are linked

by NÐH O intermolecular hydrogen bonds involving an amino H atom and the O atom of the acetyl group to form in®nite chains along the b axis. The other amino H atom is involved in an intramolecular hydrogen bond with the acetyl O atom. Adjacent chains are interlinked through weak CÐ H interactions involving the furan ring.

(2)

Experimental

A mixture of 1-chloro-3-mesitylacetone, (1) (5 g, 23.73 mmol), 2-hydroxybenzaldehyde (2.85 g, 24 mmol) and K2CO3 (6.55 g,

47.46 mmol) in absolute acetone was re¯uxed for 8 h. After cooling, compound (2) (6.02 g, 89.3%) was ®ltered off, washed with water, dried and recrystallized from tetrahydrofuran.

Crystal data C19H19NO2

Mr= 293.35

Monoclinic,P21=c

a= 10.3779 (12) AÊ b= 10.3151 (11) AÊ c= 15.2789 (13) AÊ

= 105.116 (4)

V= 1579.0 (3) AÊ3

Z= 4

Dx= 1.234 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections

= 2.4±24.6

= 0.08 mmÿ1

T= 293 (2) K Prism, colourless 0.250.200.15 mm Data collection

Enraf±Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (Fair, 1990)

Tmin= 0.981,Tmax= 0.988

2499 measured re¯ections 2370 independent re¯ections 1392 re¯ections withI> 2(I)

Rint= 0.046

max= 24.6

h=ÿ12!0 k=ÿ12!0 l=ÿ17!17 3 standard re¯ections

frequency: 120 min intensity decay: 0.7%

Re®nement Re®nement onF2

R[F2> 2(F2)] = 0.054

wR(F2) = 0.132

S= 1.01 2370 re¯ections 200 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0639P)2

+ 1.0373P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.24 e AÊÿ3

min=ÿ0.27 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.097 (19)

Table 1

Selected bond distances (AÊ).

C1ÐO1 1.408 (4)

C2ÐN1 1.346 (4) C4ÐO1 1.373 (4)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1A O2 0.86 2.37 2.927 (4) 122 N1ÐH1B O2i 0.86 2.43 3.076 (4) 133

Symmetry code: (i) 1ÿx;yÿ1 2;12ÿz.

All H atoms were positioned geometrically (NÐH = 0.86 and CÐ H = 0.93±0.97 AÊ)and re®ned as riding, withUeq(H) = 1.2Ueq(C,N).

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1993); cell re®nement: CAD-4EXPRESS; program(s) used to solve structure:

SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON2000 (Spek, 2000); software used to prepare material for publication:

SHELXL97.

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 from the Scienti®c and Technical Research Council of Turkey.

References

Arõcõ, C., UÈlkuÈ, D., KõrõlmõsË, C., Koca, M. & Ahmedzade, M.Acta Cryst.E60, m941±m942.

Enraf±Nonius (1993).CAD-4EXPRESS. Version 1.1. Enraf±Nonius, Delft, The Netherlands.

Fair, C. K. (1990).MolEN.Enraf±Nonius, Delft, The Netherlands.

Hassaneen, H. M., Atta, S. M. S., Fawzy, N. M., Ahmed, F. A., Hegazi, A. G., Abdalla, F. A. & Abd El Rahman, A. H. (2002).Arch. Pharm. Med. Chem.

6, 251±261.

Kappe, C., Murphree, S. & Padwa, A. (1997).Tetrahedron,53, 14179±14233. Schmidt, E. (1999). InUllmann's Ecyclopedia, 6th ed. (electronic release);

Optical Brighteners. Weinheim: Wiley-VCH.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Spek, A. L. (2000).PLATON.University of Utrecht, The Netherlands.

Figure 1

A view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles with arbitrary radii.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, o1211–o1212

supporting information

Acta Cryst. (2004). E60, o1211–o1212 [https://doi.org/10.1107/S160053680401428X]

1-(3-Amino-1-benzofuran-2-yl)-2-mesitylethanone

Cengiz Ar

ı

c

ı

, Din

ç

er

Ü

lk

ü

, Cumhur K

ı

r

ı

lm

ış

, Murat Koca and Misir Ahmedzade

(2)

Crystal data

C19H19NO2 Mr = 293.35 Monoclinic, P21/c Hall symbol: -P 2ybc a = 10.3779 (12) Å b = 10.3151 (11) Å c = 15.2789 (13) Å β = 105.116 (4)° V = 1579.0 (3) Å3 Z = 4

F(000) = 624 Dx = 1.234 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 2.4–24.6°

µ = 0.08 mm−1 T = 293 K Prism, colourless 0.25 × 0.20 × 0.15 mm

Data collection

CAD-4 EXPRESS (Enraf–Nonius, 1993) diffractometer

ω/2θ scans

Absorption correction: ψ scan

empirical (using intensity measurements) via ψ scans (Fair, 1990)

Tmin = 0.981, Tmax = 0.988 2499 measured reflections 2370 independent reflections

1392 reflections with I > 2σ(I) Rint = 0.046

θmax = 24.6° h = −12→0 k = −12→0 l = −17→17

3 standard reflections every 120 min intensity decay: 0.7%

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.054 wR(F2) = 0.132 S = 1.01 2370 reflections 200 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0639P)2 + 1.0373P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.24 e Å−3 Δρmin = −0.27 e Å−3

(4)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.1455 (2) 0.3710 (2) 0.12700 (15) 0.0461 (7)

O2 0.4404 (2) 0.5653 (2) 0.16677 (17) 0.0538 (8)

N1 0.4633 (3) 0.3461 (3) 0.2915 (2) 0.0543 (9)

C1 0.2769 (3) 0.4131 (3) 0.1664 (2) 0.0412 (9)

C2 0.3389 (3) 0.3339 (3) 0.2372 (2) 0.0378 (9)

C3 0.2424 (3) 0.2361 (3) 0.2436 (2) 0.0379 (9)

C4 0.1275 (3) 0.2636 (3) 0.1756 (2) 0.0402 (9)

C5 0.0126 (4) 0.1923 (4) 0.1608 (3) 0.0466 (10)

C6 0.0141 (4) 0.0886 (4) 0.2179 (3) 0.0497 (10)

C7 0.1266 (4) 0.0577 (4) 0.2869 (2) 0.0490 (10)

C8 0.2416 (4) 0.1297 (3) 0.3002 (2) 0.0456 (10)

C9 0.3282 (4) 0.5208 (3) 0.1283 (2) 0.0411 (9)

C10 0.2502 (4) 0.5746 (3) 0.0383 (2) 0.0494 (10)

C11 0.2656 (3) 0.7194 (3) 0.0273 (2) 0.0393 (9)

C12 0.2019 (4) 0.8036 (4) 0.0740 (2) 0.0459 (10)

C13 0.2081 (4) 0.9362 (4) 0.0604 (3) 0.0521 (10)

C14 0.2745 (4) 0.9876 (4) 0.0015 (3) 0.0477 (10)

C15 0.3391 (4) 0.9035 (4) −0.0430 (2) 0.0483 (10)

C16 0.3365 (3) 0.7694 (3) −0.0314 (2) 0.0430 (9)

C17 0.1251 (5) 0.7534 (4) 0.1377 (3) 0.0819 (15)

C18 0.2747 (5) 1.1327 (4) −0.0158 (3) 0.0768 (14)

C19 0.4086 (4) 0.6836 (4) −0.0829 (3) 0.0724 (14)

H1A 0.5132 0.4092 0.2834 0.065*

H1B 0.4928 0.2909 0.3342 0.065*

H5 −0.0626 0.2128 0.1147 0.056*

H6 −0.0622 0.0379 0.2100 0.060*

H7 0.1239 −0.0125 0.3245 0.059*

H8 0.3172 0.1081 0.3458 0.055*

H10A 0.1564 0.5555 0.0306 0.059*

H10B 0.2783 0.5303 −0.0096 0.059*

H13 0.1661 0.9920 0.0920 0.062*

H15 0.3859 0.9373 −0.0821 0.058*

H17A 0.0885 0.8249 0.1634 0.123*

H17B 0.1838 0.7046 0.1853 0.123*

H17C 0.0541 0.6984 0.1051 0.123*

H18A 0.2245 1.1761 0.0202 0.115*

H18B 0.2348 1.1496 −0.0788 0.115*

H18C 0.3649 1.1642 0.0004 0.115*

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, o1211–o1212

H19B 0.5017 0.7053 −0.0668 0.109*

H19C 0.3720 0.6963 −0.1468 0.109*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0419 (14) 0.0388 (15) 0.0495 (15) 0.0072 (12) −0.0025 (12) 0.0012 (12)

O2 0.0468 (15) 0.0419 (15) 0.0632 (17) 0.0037 (13) −0.0025 (13) −0.0028 (13)

N1 0.0460 (19) 0.051 (2) 0.056 (2) 0.0101 (16) −0.0047 (16) −0.0045 (16)

C1 0.036 (2) 0.033 (2) 0.049 (2) −0.0008 (18) 0.0019 (17) 0.0005 (17)

C2 0.037 (2) 0.033 (2) 0.041 (2) −0.0013 (17) 0.0060 (17) 0.0048 (17)

C3 0.038 (2) 0.034 (2) 0.040 (2) −0.0014 (17) 0.0081 (17) 0.0065 (17)

C4 0.043 (2) 0.032 (2) 0.044 (2) 0.0038 (17) 0.0084 (18) 0.0075 (18)

C5 0.039 (2) 0.047 (2) 0.048 (2) −0.0022 (19) 0.0027 (18) −0.0008 (19)

C6 0.049 (2) 0.045 (2) 0.057 (2) −0.005 (2) 0.018 (2) −0.005 (2)

C7 0.055 (2) 0.043 (2) 0.050 (2) 0.0050 (19) 0.015 (2) 0.000 (2)

C8 0.048 (2) 0.042 (2) 0.044 (2) 0.0063 (19) 0.0063 (17) 0.0043 (19)

C9 0.042 (2) 0.032 (2) 0.048 (2) −0.0032 (17) 0.0071 (18) 0.0034 (18)

C10 0.058 (2) 0.037 (2) 0.046 (2) 0.0024 (18) 0.0014 (19) −0.0028 (19)

C11 0.038 (2) 0.038 (2) 0.038 (2) 0.0012 (17) 0.0022 (17) 0.0002 (17)

C12 0.052 (2) 0.042 (2) 0.046 (2) 0.0060 (18) 0.0178 (19) 0.0027 (19)

C13 0.064 (3) 0.041 (2) 0.057 (2) 0.002 (2) 0.026 (2) 0.012 (2)

C14 0.053 (2) 0.034 (2) 0.055 (2) 0.0061 (19) 0.013 (2) 0.0025 (19)

C15 0.052 (2) 0.047 (2) 0.048 (2) 0.001 (2) 0.0163 (19) −0.0077 (19)

C16 0.039 (2) 0.043 (2) 0.045 (2) −0.0078 (18) 0.0081 (17) −0.0042 (18)

C17 0.111 (4) 0.065 (3) 0.088 (3) 0.013 (3) 0.058 (3) 0.013 (3)

C18 0.093 (4) 0.044 (3) 0.096 (4) 0.014 (2) 0.029 (3) −0.001 (2)

C19 0.075 (3) 0.063 (3) 0.090 (3) −0.025 (3) 0.040 (3) −0.013 (2)

Geometric parameters (Å, º)

C1—C2 1.374 (5) C11—C12 1.398 (5)

C1—O1 1.408 (4) C12—C13 1.388 (5)

C1—C9 1.421 (5) C12—C17 1.501 (5)

C2—N1 1.346 (4) C13—C14 1.374 (5)

C2—C3 1.442 (2) C13—H13 0.9300

C3—C4 1.391 (4) C14—C15 1.379 (5)

C3—C8 1.399 (5) C14—C18 1.520 (5)

C4—C5 1.370 (5) C15—C16 1.396 (5)

C4—O1 1.373 (4) C15—H15 0.9300

C5—C6 1.377 (5) C16—C19 1.507 (5)

C5—H5 0.9300 C17—H17A 0.9600

C6—C7 1.391 (5) C17—H17B 0.9600

C6—H6 0.9300 C17—H17C 0.9600

C7—C8 1.375 (5) C18—H18A 0.9600

C7—H7 0.9300 C18—H18B 0.9600

C8—H8 0.9300 C18—H18C 0.9600

(6)

C9—C10 1.508 (5) C19—H19B 0.9600

C10—C11 1.516 (5) C19—H19C 0.9600

C10—H10A 0.9700 N1—H1A 0.8600

C10—H10B 0.9700 N1—H1B 0.8600

C11—C16 1.396 (5)

C2—C1—O1 110.8 (3) C13—C12—C11 119.4 (4)

C2—C1—C9 129.7 (3) C13—C12—C17 119.4 (4)

O1—C1—C9 119.4 (3) C11—C12—C17 121.2 (3)

N1—C2—C1 127.3 (3) C14—C13—C12 121.9 (4)

N1—C2—C3 126.5 (3) C14—C13—H13 119.0

C1—C2—C3 106.2 (3) C12—C13—H13 119.0

C4—C3—C8 118.7 (3) C13—C14—C15 118.2 (4)

C4—C3—C2 106.3 (3) C13—C14—C18 121.1 (4)

C8—C3—C2 135.0 (3) C15—C14—C18 120.7 (4)

C5—C4—O1 125.4 (3) C14—C15—C16 122.2 (4)

C5—C4—C3 123.6 (3) C14—C15—H15 118.9

O1—C4—C3 111.0 (3) C16—C15—H15 118.9

C4—C5—C6 116.6 (3) C15—C16—C11 118.6 (3)

C4—C5—H5 121.7 C15—C16—C19 119.1 (4)

C6—C5—H5 121.7 C11—C16—C19 122.3 (3)

C5—C6—C7 121.8 (4) C12—C17—H17A 109.5

C5—C6—H6 119.1 C12—C17—H17B 109.5

C7—C6—H6 119.1 H17A—C17—H17B 109.5

C8—C7—C6 120.9 (4) C12—C17—H17C 109.5

C8—C7—H7 119.6 H17A—C17—H17C 109.5

C6—C7—H7 119.6 H17B—C17—H17C 109.5

C7—C8—C3 118.5 (3) C14—C18—H18A 109.5

C7—C8—H8 120.8 C14—C18—H18B 109.5

C3—C8—H8 120.8 H18A—C18—H18B 109.5

O2—C9—C1 119.9 (3) C14—C18—H18C 109.5

O2—C9—C10 120.5 (3) H18A—C18—H18C 109.5

C1—C9—C10 119.5 (3) H18B—C18—H18C 109.5

C9—C10—C11 114.6 (3) C16—C19—H19A 109.5

C9—C10—H10A 108.6 C16—C19—H19B 109.5

C11—C10—H10A 108.6 H19A—C19—H19B 109.5

C9—C10—H10B 108.6 C16—C19—H19C 109.5

C11—C10—H10B 108.6 H19A—C19—H19C 109.5

H10A—C10—H10B 107.6 H19B—C19—H19C 109.5

C16—C11—C12 119.7 (3) C4—O1—C1 105.6 (3)

C16—C11—C10 121.6 (3) C2—N1—H1A 120.0

C12—C11—C10 118.6 (3) C2—N1—H1B 120.0

O1—C1—C2—N1 −178.6 (3) C1—C9—C10—C11 148.2 (3)

C9—C1—C2—C3 −176.8 (3) C9—C10—C11—C12 −73.8 (4)

N1—C2—C3—C4 178.4 (3) C9—C10—C11—C16 109.3 (4)

C1—C2—C3—C8 −179.4 (4) C10—C11—C12—C13 −176.0 (3)

(7)

supporting information

sup-5 Acta Cryst. (2004). E60, o1211–o1212

C8—C3—C4—O1 179.7 (3) C17—C12—C13—C14 −178.6 (4)

O1—C4—C5—C6 −179.2 (3) C12—C13—C14—C18 177.1 (4)

C2—C3—C8—C7 178.4 (4) C18—C14—C15—C16 −177.4 (4)

C2—C1—C9—O2 −9.2 (6) C14—C15—C16—C19 179.5 (3)

O1—C1—C9—O2 174.3 (3) C10—C11—C16—C15 175.6 (3)

C2—C1—C9—C10 166.8 (4) C12—C11—C16—C19 179.3 (3)

O1—C1—C9—C10 −9.7 (5) C5—C4—O1—C1 179.2 (3)

O2—C9—C10—C11 −35.9 (5) C9—C1—O1—C4 177.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···O2 0.8600 2.3700 2.927 (4) 122.00

N1—H1B···O2i 0.8600 2.4300 3.076 (4) 133.00

References

Related documents

c.JLenata collected from near to the sewage outfal Is were lower per unit tissue dry weight bllt higher in total-' metal per individual than In those from the

This section provides a road-map of the chapters in this thesis. Chapter 2 Background Research presents related work in the aresa of AR authoring tools, software libraire for mobile

Concentration of ferrous and ferric iron in the final solutions of chemical leaching of the copper concen- trate at 0.15 M iron addition (except the control test), pulp density

An experiment growing seedlings of seven totara provenances in two temperature regimes was undertaken to discover whether optimum growing temperature was

The same trend can be seen for simazine at both pH 6 and 8, only in this case the adsorption on the surface of aluminum is better than NPS of iron (III) oxide and iron (III) oxide

Different molecular approaches have shown the advan- tage of conclusive species determination and also strain differentiation within the genus echinococcus which is responsible

We are interested at the time of our research to identify specificities of the transmission channels of exchange rate of the monetary policy in the case of six countries of the

The main contributions of this paper are: (i) a recorded dataset of 400 speeches discussing 200 controversial topics, along with mined claims for each topic; (ii) an