• No results found

Bis(2 pyridyl­ethyl)­ammonium perchlorate

N/A
N/A
Protected

Academic year: 2020

Share "Bis(2 pyridyl­ethyl)­ammonium perchlorate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1204

Ray J. Butcheret al. C14H18N3+ClO4ÿ DOI: 10.1107/S1600536802017117 Acta Cryst.(2002). E58, o1204±o1206 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis(2-pyridylethyl)ammonium perchlorate

Ray J. Butcher,* Yilma Gultneh and A. Raza Khan

Department of Chemistry, Howard University, Washington, DC 20059, USA

Correspondence e-mail: butcher@harker.nrl.navy.mil

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ Disorder in solvent or counterion

Rfactor = 0.053

wRfactor = 0.158

Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C14H18N3+ClO4ÿ, a perchlorate salt of

the monoprotonated form of bis(2-pyridylethyl)amine, has a structure in which one of the two H atoms on the amine N atom forms hydrogen bonds to the two pyridyl N atoms in a chelating fashion, while the second H atom on the amine is also used in hydrogen bonding to a perchlorate O atom.

Comment

The tridentate ligand bis(2-pyridylethyl)amine (bpea) has been extensively used to synthesize transition metal complexes in modeling metalloenzyme active sites, due in part due to its similarity, in donor properties, to the biological donor, histidyl imidazole. Two or more units have been linked to produce ligands with the possibilities of forming multi-nuclear complexes. The groups of Brewer (Smiejaet al., 1991), Camus (Marsich et al., 1998), Fenton (Adams et al., 1996), Gultneh (Gultneh et al., 1998), Holm (Lim & Holm, 1998), Hoskins (Hoskins & Whillans, 1975), Itoh (Itoh et al., 2001, and references therein), Karlin (Itoh et al., 2001, and refer-ences therein), Kitagawa (Itoh et al., 2001, and references therein), Lippard (He et al., 2000), Oshio (Oshio & Ichida, 1995), Reglier (Blainet al., 2000), Toftlund (Schindleret al., 2000) and Tomada (Iwaoka & Tomada, 1995) have used bpea as a chelating ligand for several metal ions, either as a single unit or as two or more units bridged by other moieties through the amine N atom. We report here the structure of the perchlorate salt of the monoprotonated form of this ligand.

The amine N atom, with a pKa(8.95) higher than the two

pyridine N atoms (3.40 and 4.08), is protonated. The amine NÐH bond distances were constrained to be 0.90 AÊ, with tetrahedral angles about the N atom. One of the two H atoms on the amine N atom forms intramolecular hydrogen bonds with the two pyridyl N atoms (2.15 and 2.21 AÊ), folding the ligand in a chelate fashion. This is in marked contrast to the related bis(pyridyl)amine salt, bis(2-pyridylmethyl)-ammonium perchlorate (Butcher et al., 2002), where the

(2)

methylene bridge between the amine N atom and the pyridine ring is not suf®ciently ¯exible to permit the ammonium H atoms to form intramolecular hydrogen bonds with the pyridyl N atoms. The other H atom on the amine N atom forms hydrogen bonds with perchlorate O atoms, in which the H O distances range from 2.11 to 2.58 AÊ. The Namine Npyridyl

distances are 2.810 (3) and 2.846 (3) AÊ and the NamineÐ

H Npyridylangles are 130 and 127. The Namine O distances

range from 3.005 (3) to 3.178 (3) AÊ, while the NamineÐH O

angles range from 124 to 172. In the crystal, face-to-face

stacking of the pyridyl rings along the a axis is observed (Fig. 2). TheBring (C1B±C5B/N1B) makes a more parallel

stack than the A ring (C1A±C5A/N1A). In the stacks, the centroids of theBring and theBrings of the symmetry-related molecules at (ÿx, 1ÿy, ÿz) and (1ÿx, 1ÿy, ÿz) are separated by distances of 3.680 (2) and 3.738 (2) AÊ, respec-tively, while those of the A ring and the A rings of the symmetry-related molecules at (ÿx, 1ÿy, 1ÿz) and (1ÿx, 1ÿy, 1ÿz) are separated by 3.785 (2) and 3.769 (2) AÊ, respectively.

Experimental

The title compound was obtained, as colorless crystals, by acidi®ca-tion of a soluacidi®ca-tion of the free base, bis[2-(2-pyridyl)ethyl]amine in a DMF±H2O (3/1) mixture with a 0.1Maqueous solution of HClO4. Crystal data

C14H18N3+ClO4ÿ

Mr= 327.76

Triclinic,P1 a= 7.4093 (11) AÊ b= 9.0987 (11) AÊ c= 12.161 (2) AÊ = 88.477 (13)

= 82.986 (17)

= 80.079 (12)

V= 801.5 (2) AÊ3

Z= 2

Dx= 1.358 Mg mÿ3

MoKradiation Cell parameters from 53

re¯ections = 4.9±12.5

= 0.26 mmÿ1

T= 293 (2) K Needle, colorless 0.800.340.17 mm Data collection

SiemensP4Sdiffractometer !scans

Absorption correction: re®ned from

F(SHELXTL; Sheldrick, 1997) Tmin= 0.754,Tmax= 0.862

3967 measured re¯ections 3681 independent re¯ections 2318 re¯ections withI> 2(I)

Rint= 0.016

max= 27.5

h=ÿ9!0 k=ÿ11!11 l=ÿ15!15 3 standard re¯ections

every 97 re¯ections intensity decay: 0.4% Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.053

wR(F2) = 0.158

S= 1.02 3681 re¯ections 257 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0698P)2

+ 0.1918P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.030

max= 0.21 e AÊÿ3

min=ÿ0.30 e AÊÿ3

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N2ÐH0A O4B 0.90 2.26 3.151 (6) 170 N2ÐH0A O4 0.90 2.11 3.005 (3) 172 N2ÐH0A O2A 0.90 2.35 3.200 (6) 158 N2ÐH0A O1 0.90 2.58 3.178 (3) 124 N2ÐH0B N1A 0.90 2.15 2.810 (3) 130 N2ÐH0B N1B 0.90 2.21 2.846 (3) 127

All H atoms were ®xed geometrically and allowed to ride on their parent atoms (CÐH 0.93 and 0.97 AÊ, and NÐH = 0.90 AÊ). The disordered perchlorate anion was modeled with three tetrahedral sets of O atoms, with the sum of their occupancies (0.590, 0.203 and 0.207) constrained to be equal to one.

Data collection: XSCANS (Siemens, 1994); cell re®nement:

XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

Acta Cryst.(2002). E58, o1204±o1206 Ray J. Butcheret al. C14H18N3+ClO4ÿ

o1205

organic papers

Figure 2

The molecular packing of the title compound viewed down thebaxis. For the disordered perchlorate anion, only the major component is shown. Figure 1

(3)

organic papers

o1206

Ray J. Butcheret al. C14H18N3+ClO4ÿ Acta Cryst.(2002). E58, o1204±o1206 RJB acknowledges the DoD for funds to upgrade the

diffractometer. YG acknowledges the NIH-MBRS program for funding.

References

Adams, H., Bailey, N. A., Fenton, D. E. & He, Q.-Y. (1996).J. Chem. Soc. Dalton Trans.pp. 2857±2865.

Blain, I., Giorgi, M., De Riggi, I. & Reglier, M. (2000).Eur. J. Inorg. Chem.pp. 393±398.

Butcher, R. J., Gultneh, Y. & Khan, A. R. (2002).Acta Cryst.E58, o858±o859. Gultneh, Y., Khan, A. R., Ahvazi, B. & Butcher, R. J. (1998).Polyhedron,17,

3351±3360.

He, C., Barrios, A. M., Lee, D., Kuzelka, J., Davydov, R. M. & Lippard, S. J. (2000).J. Am. Chem. Soc.122, 12683±12690.

Hoskins, B. F. & Whillans, F. D. (1975).J. Chem. Soc. Dalton Trans.pp. 657± 661.

Itoh, S., Bandoh, H., Nakagawa, M., Nagatomo, S., Kitagawa, T., Karlin, K. D. & Fukuzumi, S. (2001).J. Am. Chem. Soc.123, 11168±11178.

Iwaoka, M. & Tomada, S. (1995).J. Org. Chem.60, 5299±5302. Lim, B. S. & Holm, R. H. (1998).Inorg. Chem.37, 4898±4908.

Marsich, N., Nardin, G., Randaccio, L. & Camus, A. (1998).Inorg. Chim. Acta, 278, 237±240.

Oshio, H. & Ichida, H. (1995).J. Phys. Chem.99, 3294±3302.

Schindler, S., Walter, O., Pedersen, J. Z. & Toftlund, H. (2000).Inorg. Chim. Acta,303, 215±219.

Sheldrick, G. M. (1997).SHELXTL.Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.

Siemens (1994). XSCANS. Version 2.10. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

(4)

supporting information

sup-1 Acta Cryst. (2002). E58, o1204–o1206

supporting information

Acta Cryst. (2002). E58, o1204–o1206 [https://doi.org/10.1107/S1600536802017117]

Bis(2-pyridylethyl)ammonium perchlorate

Ray J. Butcher, Yilma Gultneh and A. Raza Khan

Bis(2-pyridylethyl)ammonium perchlorate

Crystal data

C14H18N3+·ClO4− Mr = 327.76

Triclinic, P1 Hall symbol: -P 1 a = 7.4093 (11) Å b = 9.0987 (11) Å c = 12.161 (2) Å α = 88.477 (13)° β = 82.986 (17)° γ = 80.079 (12)° V = 801.5 (2) Å3

Z = 2 F(000) = 344 Dx = 1.358 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 53 reflections θ = 4.9–12.5°

µ = 0.26 mm−1 T = 293 K Needle, colorless 0.80 × 0.34 × 0.17 mm

Data collection

Siemens P4S diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: part of the refinement model (ΔF)

(SHELXTL; Sheldrick, 1997) Tmin = 0.754, Tmax = 0.862 3967 measured reflections

3681 independent reflections 2318 reflections with I > 2σ(I) Rint = 0.016

θmax = 27.5°, θmin = 2.8° h = −9→0

k = −11→11 l = −15→15

3 standard reflections every 97 reflections intensity decay: 0.4%

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.053 wR(F2) = 0.158 S = 1.02 3681 reflections 257 parameters 41 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0698P)2 + 0.1918P] where P = (Fo2 + 2Fc2)/3

(5)

supporting information

sup-2 Acta Cryst. (2002). E58, o1204–o1206

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cl1 0.82685 (9) −0.02675 (6) 0.24388 (6) 0.0691 (3) O1 0.6683 (2) −0.0960 (2) 0.25550 (17) 0.0971 (7)

O2 0.9382 (6) −0.0733 (7) 0.1440 (4) 0.151 (3) 0.590 (4) O3 0.9281 (7) −0.0670 (7) 0.3345 (4) 0.157 (3) 0.590 (4) O4 0.7712 (3) 0.13008 (19) 0.2417 (6) 0.0689 (14) 0.590 (4) O2A 0.7816 (5) 0.1165 (5) 0.2923 (8) 0.102 (6) 0.203 (6) O3A 0.9675 (6) −0.1147 (7) 0.2972 (7) 0.123 (7) 0.203 (6) O4A 0.8892 (9) −0.0130 (10) 0.12991 (17) 0.069 (4) 0.203 (6) O2B 0.9758 (5) −0.1213 (6) 0.1841 (8) 0.188 (12) 0.207 (6) O3B 0.8730 (10) 0.0004 (11) 0.35024 (19) 0.092 (4) 0.207 (6) O4B 0.7890 (6) 0.1102 (6) 0.1865 (8) 0.101 (5) 0.207 (6) N1A 0.3104 (4) 0.4551 (3) 0.3721 (2) 0.0829 (7)

(6)

supporting information

sup-3 Acta Cryst. (2002). E58, o1204–o1206

C3B 0.2817 (5) 0.5552 (4) −0.0990 (3) 0.0923 (10) H3BA 0.3054 0.5979 −0.1684 0.111* C4B 0.3405 (4) 0.4057 (4) −0.0822 (3) 0.0822 (8) H4BA 0.4023 0.3457 −0.1405 0.099* C5B 0.3071 (4) 0.3453 (3) 0.0219 (2) 0.0692 (7) C6B 0.3680 (5) 0.1814 (3) 0.0449 (3) 0.0810 (9) H6BA 0.3347 0.1244 −0.0135 0.097* H6BB 0.5015 0.1618 0.0414 0.097* C7B 0.2886 (4) 0.1265 (3) 0.1538 (3) 0.0808 (8) H7BA 0.3205 0.0187 0.1566 0.097* H7BB 0.1552 0.1526 0.1607 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0693 (4) 0.0483 (3) 0.0871 (5) −0.0021 (3) −0.0100 (3) 0.0018 (3) O1 0.0931 (15) 0.0833 (14) 0.1215 (18) −0.0307 (12) −0.0170 (13) 0.0009 (13) O2 0.125 (4) 0.096 (4) 0.211 (6) −0.015 (3) 0.076 (4) −0.088 (4) O3 0.138 (5) 0.132 (5) 0.223 (7) −0.039 (4) −0.112 (5) 0.109 (5) O4 0.084 (3) 0.0438 (18) 0.071 (4) −0.0002 (16) 0.007 (2) 0.0005 (17) O2A 0.150 (13) 0.070 (8) 0.080 (11) −0.007 (8) 0.006 (8) −0.042 (7) O3A 0.081 (9) 0.087 (9) 0.189 (17) 0.042 (8) −0.048 (10) −0.031 (11) O4A 0.099 (8) 0.060 (6) 0.037 (5) −0.002 (5) 0.017 (5) −0.009 (4) O2B 0.142 (15) 0.088 (10) 0.28 (3) 0.071 (10) 0.054 (17) 0.039 (15) O3B 0.108 (9) 0.058 (7) 0.123 (10) −0.014 (6) −0.076 (8) 0.028 (6) O4B 0.127 (10) 0.088 (8) 0.061 (9) 0.028 (7) 0.020 (7) 0.033 (7) N1A 0.1047 (19) 0.0644 (14) 0.0739 (16) −0.0041 (13) −0.0034 (13) 0.0005 (12) N1B 0.0795 (15) 0.0586 (12) 0.0843 (16) 0.0081 (11) −0.0198 (12) −0.0059 (11) N2 0.0613 (12) 0.0470 (10) 0.0789 (14) −0.0019 (9) −0.0062 (10) −0.0007 (10) C1A 0.104 (2) 0.0633 (17) 0.094 (2) −0.0069 (16) −0.0179 (18) 0.0009 (16) C2A 0.087 (2) 0.0681 (18) 0.106 (3) 0.0019 (15) −0.0269 (18) −0.0187 (18) C3A 0.098 (2) 0.097 (2) 0.087 (2) 0.0092 (19) −0.0241 (19) −0.028 (2) C4A 0.086 (2) 0.087 (2) 0.0708 (19) 0.0044 (16) −0.0162 (15) −0.0017 (15) C5A 0.0718 (17) 0.0685 (16) 0.0712 (18) −0.0005 (13) −0.0061 (14) −0.0026 (13) C6A 0.106 (2) 0.0706 (17) 0.0706 (18) 0.0048 (16) 0.0013 (17) 0.0110 (14) C7A 0.089 (2) 0.0573 (15) 0.094 (2) −0.0082 (14) 0.0123 (17) 0.0016 (14) C1B 0.0780 (19) 0.0612 (16) 0.105 (2) 0.0082 (14) −0.0258 (17) −0.0082 (16) C2B 0.087 (2) 0.0617 (16) 0.113 (3) −0.0043 (15) −0.0433 (19) 0.0097 (17) C3B 0.103 (2) 0.084 (2) 0.097 (2) −0.0209 (19) −0.038 (2) 0.0189 (19) C4B 0.087 (2) 0.081 (2) 0.079 (2) −0.0076 (16) −0.0211 (16) −0.0066 (16) C5B 0.0666 (16) 0.0612 (15) 0.0809 (19) −0.0017 (12) −0.0253 (14) −0.0053 (13) C6B 0.100 (2) 0.0592 (15) 0.082 (2) 0.0053 (15) −0.0281 (17) −0.0121 (14) C7B 0.0841 (19) 0.0522 (14) 0.110 (2) −0.0077 (13) −0.0289 (17) −0.0092 (14)

Geometric parameters (Å, º)

(7)

supporting information

sup-4 Acta Cryst. (2002). E58, o1204–o1206

Cl1—O3A 1.4133 (17) C4A—H4AA 0.93 Cl1—O2 1.4134 (17) C5A—C6A 1.510 (4) Cl1—O2A 1.4138 (17) C6A—C7A 1.511 (4) Cl1—O4B 1.4144 (17) C6A—H6AA 0.97 Cl1—O3B 1.4158 (17) C6A—H6AB 0.97 Cl1—O4 1.4159 (17) C7A—H7AA 0.97 Cl1—O4A 1.4159 (17) C7A—H7AB 0.97 Cl1—O1 1.4162 (15) C1B—C2B 1.360 (5) N1A—C5A 1.342 (4) C1B—H1BA 0.9300 N1A—C1A 1.343 (4) C2B—C3B 1.371 (5) N1B—C5B 1.338 (3) C2B—H2BA 0.93 N1B—C1B 1.353 (3) C3B—C4B 1.373 (4) N2—C7A 1.485 (3) C3B—H3BA 0.93 N2—C7B 1.495 (3) C4B—C5B 1.378 (4) N2—H0A 0.90 C4B—H4BA 0.93 N2—H0B 0.90 C5B—C6B 1.511 (4) C1A—C2A 1.370 (4) C6B—C7B 1.491 (4) C1A—H1AA 0.93 C6B—H6BA 0.97 C2A—C3A 1.360 (5) C6B—H6BB 0.97 C2A—H2AA 0.93 C7B—H7BA 0.97 C3A—C4A 1.380 (4) C7B—H7BB 0.97

(8)

supporting information

sup-5 Acta Cryst. (2002). E58, o1204–o1206

O2A—Cl1—O4A 109.46 (9) C1B—C2B—C3B 118.2 (3) O4B—Cl1—O4A 58.5 (5) C1B—C2B—H2BA 120.9 O3B—Cl1—O4A 141.38 (14) C3B—C2B—H2BA 120.9 O4—Cl1—O4A 85.8 (3) C2B—C3B—C4B 119.4 (3) O2B—Cl1—O1 109.58 (9) C2B—C3B—H3BA 120.3 O3—Cl1—O1 109.48 (9) C4B—C3B—H3BA 120.3 O3A—Cl1—O1 109.50 (9) C3B—C4B—C5B 119.3 (3) O2—Cl1—O1 109.58 (9) C3B—C4B—H4BA 120.3 O2A—Cl1—O1 109.43 (9) C5B—C4B—H4BA 120.3 O4B—Cl1—O1 109.36 (9) N1B—C5B—C4B 122.1 (3) O3B—Cl1—O1 109.26 (9) N1B—C5B—C6B 116.4 (3) O4—Cl1—O1 109.19 (9) C4B—C5B—C6B 121.5 (3) O4A—Cl1—O1 109.30 (9) C7B—C6B—C5B 115.2 (2) C5A—N1A—C1A 117.5 (3) C7B—C6B—H6BA 108.5 C5B—N1B—C1B 117.2 (3) C5B—C6B—H6BA 108.5 C7A—N2—C7B 114.8 (2) C7B—C6B—H6BB 108.5 C7A—N2—H0A 108.6 C5B—C6B—H6BB 108.5 C7B—N2—H0A 108.6 H6BA—C6B—H6BB 107.5 C7A—N2—H0B 108.6 C6B—C7B—N2 111.8 (2) C7B—N2—H0B 108.6 C6B—C7B—H7BA 109.3 H0A—N2—H0B 107.6 N2—C7B—H7BA 109.3 N1A—C1A—C2A 123.4 (3) C6B—C7B—H7BB 109.3 N1A—C1A—H1AA 118.3 N2—C7B—H7BB 109.3 C2A—C1A—H1AA 118.3 H7BA—C7B—H7BB 107.9 C3A—C2A—C1A 118.6 (3)

C5A—N1A—C1A—C2A 0.6 (5) C5B—N1B—C1B—C2B −0.6 (4) N1A—C1A—C2A—C3A −0.2 (5) N1B—C1B—C2B—C3B −0.4 (5) C1A—C2A—C3A—C4A −0.7 (5) C1B—C2B—C3B—C4B 1.3 (5) C2A—C3A—C4A—C5A 1.1 (5) C2B—C3B—C4B—C5B −1.3 (5) C1A—N1A—C5A—C4A −0.2 (5) C1B—N1B—C5B—C4B 0.6 (4) C1A—N1A—C5A—C6A −179.9 (3) C1B—N1B—C5B—C6B −178.9 (2) C3A—C4A—C5A—N1A −0.6 (5) C3B—C4B—C5B—N1B 0.3 (5) C3A—C4A—C5A—C6A 179.1 (3) C3B—C4B—C5B—C6B 179.7 (3) N1A—C5A—C6A—C7A −46.9 (4) N1B—C5B—C6B—C7B 11.8 (4) C4A—C5A—C6A—C7A 133.4 (3) C4B—C5B—C6B—C7B −167.7 (3) C7B—N2—C7A—C6A 178.5 (2) C5B—C6B—C7B—N2 −67.3 (3) C5A—C6A—C7A—N2 67.8 (3) C7A—N2—C7B—C6B −178.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

References

Related documents

We observed the phenome- non of sub-millimeter-wave transmission and reflection of the silk fabric, and concluded that with the number of silk fabric layers increasing, effect of

Our results confirm a distinct improvement in accuracy and variance of the present optimization scheme for linear regis- tration of structural MR imaging data into MNI

gender wage gap is higher in the lower deciles of the wage distribution; women earn. about 10.2 per cent less wage than men at the

The description of an unseen image is generated using a template- based generation model that leverages the VDR predicted over the top-N objects extracted from an object detector..

In predominant sense acquisition, the task is to learn, for each target lemma, the most frequently occurring word sense in a particular domain or corpus, relative to a predefined

In particular, the phrase annotations allow our best model to detect bias accurately in complex sentences that the baseline models cannot handle.. Initializing the RNN W e matrix

The main aim of this paper is to discuss the cultural dimensions of international trade in case of AGADIR agreement countries. The main finding is that

With the help of the six WGI indicators the effect of the institutional system on the capital inflows can be detected between Latin American countries as target