• No results found

(2E) 1 (3 Bromo­phen­yl) 3 (4 chloro­phen­yl)prop 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "(2E) 1 (3 Bromo­phen­yl) 3 (4 chloro­phen­yl)prop 2 en 1 one"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1844

Tehet al. C

15H10BrClO doi:10.1107/S160053680701166X Acta Cryst.(2007). E63, o1844–o1845

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(2

E

)-1-(3-Bromophenyl)-3-(4-chlorophenyl)-prop-2-en-1-one

Jeannie Bee-Jan Teh,aP. S. Patil,b Hoong-Kun Fun,a* Y. E.

Satheesh,bIbrahim Abdul Razaka and S. M. Dharmaprakashb

aX-ray Crystallography Unit, School of Physics,

Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, andbDepartment of Studies in Physics, Mangalore University,

Mangalagangotri, Mangalore 574 199, India

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T= 100 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.032 wRfactor = 0.096

Data-to-parameter ratio = 33.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 9 March 2007 Accepted 12 March 2007

#2007 International Union of Crystallography All rights reserved

In the title compound, C15H10BrClO, the dihedral angle between the benzene rings is 46.70 (5). The crystal structure

is stabilized by Br Br and Cl Cl contacts and C—H

interactions.

Comment

We report here the details of the crystal structure of the title compound, (I) (Fig. 1), which crystallizes in a centrosymmetric space group and hence precludes second-order non-linear optical propreties.

Bond lengths and angles in (I) have normal values (Allenet al., 1987), and are comparable with a related structure (Tehet al., 2006). The least-squares plane through the enone group (C7–C9/O1) makes dihedral angles of 26.19 (8) and 23.10 (8)

with the C1–C6 and C10–C15 benzene rings, respectively. The dihedral angle between the benzene rings is 46.70 (5).

An intramolecular C9—H9A O1 hydrogen bond gener-ates anS(5) ring motif (Bernsteinet al., 1995). The relatively short distances Br1 Br1i 3.5398 (3) A˚ and Cl1 Cl1ii 3.3017 (7) A˚ [symmetry codes: (i) 2 x, 1y,1z; (ii)

[image:1.610.218.447.304.400.2] [image:1.610.208.459.607.710.2]

1x, y, 1z] indicate the presence of intermolecular Br Br and Cl Cl interactions which, together with the C—H interactions, contribute to the stabilization of the crystal packing (Fig. 2 and Table 1).

Figure 1

(2)

Experimental

4-Chlorobenzaldehyde (0.01 mol) and 3-bromoacetophenone (0.01 mol) were stirred in 60 ml of methanol at room temperature. 5 g of a 10% aqueous solution of NaOH was added and the mixture was stirred for 2 h. The precipitate was filtered off, washed with water, dried and the crude product recrystallized from acetone. Crystals suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Crystal data

C15H10BrClO

Mr= 321.59 Triclinic,P1

a= 5.9155 (2) A˚

b= 7.2642 (2) A˚

c= 14.6629 (5) A˚

= 86.452 (2)

= 83.241 (2)

= 87.863 (2)

V= 624.22 (3) A˚3

Z= 2

MoKradiation

= 3.49 mm1

T= 100.0 (1) K 0.460.300.28 mm

Data collection

Bruker SMART APEX2 CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2005)

Tmin= 0.285,Tmax= 0.370

17416 measured reflections 5457 independent reflections 4586 reflections withI> 2(I)

Rint= 0.029

Refinement

R[F2> 2(F2)] = 0.032

wR(F2) = 0.096

S= 1.11 5457 reflections

163 parameters

H-atom parameters constrained

max= 1.06 e A˚

3

min=0.63 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C9—H9A O1 0.93 2.50 2.826 (2) 101 C1—H1A Cg2i

0.93 2.87 3.523 (2) 128 C4—H4A Cg2ii

0.93 2.72 3.367 (2) 128 C9—H9A Cg1iii

0.93 3.30 3.776 (2) 114 C12—H12A Cg1iv

0.93 2.87 3.543 (2) 130 C15—H15A Cg1iii 0.93 3.04 3.690 (2) 129

Symmetry codes: (i)xþ1;y;z; (ii)x;yþ1;z; (iii)xþ1;yþ1;z; (iv) x;y;z. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 A˚ andUiso(H)= 1.2Ueq(C). The highest residual electron

density peak is located 0.69 A˚ from atom Br1.

Data collection:APEX2(Bruker, 2005); cell refinement:APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL,PARST(Nardelli, 1995) andPLATON(Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No.304/PFIZIK/653003/A118 and the Fundamental Research Grant Scheme (FRGS) grant No.203/PFIZIK/671064. PSP thanks DRDO, the Government of India for a Junior Research Fellowship (JRF).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Bruker (2005).APEX2(Version 1.27),SAINT(Version 7.12A) andSADABS

(Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Sheldrick, G. M. (1998).SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

[image:2.610.316.564.68.221.2]

Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006).Acta Cryst.E62, o4380–o4381.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o1844–o1845

supporting information

Acta Cryst. (2007). E63, o1844–o1845 [https://doi.org/10.1107/S160053680701166X]

(2

E

)-1-(3-Bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one

Jeannie Bee-Jan Teh, P. S. Patil, Hoong-Kun Fun, Y. E. Satheesh, Ibrahim Abdul Razak and S. M.

Dharmaprakash

(2E)-1-(3-bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one

Crystal data

C15H10BrClO

Mr = 321.59

Triclinic, P1

Hall symbol: -P 1

a = 5.9155 (2) Å

b = 7.2642 (2) Å

c = 14.6629 (5) Å

α = 86.452 (2)°

β = 83.241 (2)°

γ = 87.863 (2)°

V = 624.22 (3) Å3

Z = 2

F(000) = 320

Dx = 1.711 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 7892 reflections

θ = 1.4–35.0°

µ = 3.49 mm−1

T = 100 K

Block, yellow

0.46 × 0.30 × 0.28 mm

Data collection

Bruker SMART APEX2 CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.33 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2005)

Tmin = 0.285, Tmax = 0.370

17416 measured reflections 5457 independent reflections 4586 reflections with I > 2σ(I)

Rint = 0.029

θmax = 35.0°, θmin = 1.4°

h = −9→9

k = −11→11

l = −23→23

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.096

S = 1.11

5457 reflections 163 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0478P)2 + 0.385P]

where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 1.06 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 0.80012 (3) 0.39433 (3) −0.415341 (12) 0.02024 (6)

Cl1 −0.30162 (8) −0.04626 (7) 0.41489 (3) 0.02169 (9)

O1 0.7337 (2) 0.2822 (2) −0.04076 (10) 0.0217 (3)

C1 0.6370 (3) 0.3467 (2) −0.22493 (11) 0.0154 (3)

H1A 0.7811 0.2956 −0.2184 0.018*

C2 0.5799 (3) 0.4113 (2) −0.31093 (12) 0.0165 (3)

C3 0.3678 (3) 0.4912 (3) −0.32221 (12) 0.0182 (3)

H3A 0.3333 0.5342 −0.3802 0.022*

C4 0.2079 (3) 0.5061 (3) −0.24579 (13) 0.0182 (3)

H4A 0.0658 0.5610 −0.2525 0.022*

C5 0.2576 (3) 0.4400 (2) −0.15933 (12) 0.0171 (3)

H5A 0.1483 0.4487 −0.1086 0.021*

C6 0.4727 (3) 0.3603 (2) −0.14866 (11) 0.0156 (3)

C7 0.5344 (3) 0.2908 (2) −0.05638 (12) 0.0165 (3)

C8 0.3462 (3) 0.2311 (3) 0.01340 (12) 0.0178 (3)

H8A 0.2015 0.2187 −0.0039 0.021*

C9 0.3822 (3) 0.1948 (2) 0.10137 (12) 0.0163 (3)

H9A 0.5287 0.2109 0.1160 0.020*

C10 0.2126 (3) 0.1321 (2) 0.17650 (11) 0.0152 (3)

C11 0.0051 (3) 0.0594 (2) 0.16118 (12) 0.0164 (3)

H11A −0.0280 0.0497 0.1012 0.020*

C12 −0.1514 (3) 0.0019 (2) 0.23424 (12) 0.0167 (3)

H12A −0.2877 −0.0482 0.2237 0.020*

C13 −0.1017 (3) 0.0202 (2) 0.32399 (12) 0.0167 (3)

C14 0.1022 (3) 0.0901 (3) 0.34143 (12) 0.0178 (3)

H14A 0.1337 0.1008 0.4015 0.021*

C15 0.2592 (3) 0.1441 (2) 0.26723 (12) 0.0162 (3)

H15A 0.3981 0.1890 0.2782 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.01950 (9) 0.02548 (10) 0.01472 (8) −0.00018 (6) 0.00089 (6) 0.00125 (6)

Cl1 0.01928 (19) 0.0291 (2) 0.01580 (17) −0.00193 (15) 0.00153 (14) −0.00025 (15)

O1 0.0162 (6) 0.0293 (7) 0.0192 (6) −0.0010 (5) −0.0023 (5) 0.0014 (5)

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o1844–o1845

C2 0.0167 (7) 0.0172 (7) 0.0152 (6) −0.0008 (5) −0.0002 (5) −0.0001 (5)

C3 0.0184 (7) 0.0186 (8) 0.0180 (7) −0.0002 (6) −0.0048 (6) 0.0011 (6)

C4 0.0161 (7) 0.0171 (7) 0.0216 (7) 0.0006 (5) −0.0038 (6) −0.0011 (6)

C5 0.0162 (7) 0.0162 (7) 0.0187 (7) 0.0004 (5) −0.0011 (5) −0.0021 (5)

C6 0.0164 (7) 0.0153 (7) 0.0151 (6) −0.0007 (5) −0.0025 (5) −0.0007 (5)

C7 0.0172 (7) 0.0167 (7) 0.0156 (7) −0.0011 (5) −0.0019 (5) −0.0015 (5)

C8 0.0172 (7) 0.0198 (8) 0.0161 (7) −0.0025 (6) −0.0007 (5) −0.0006 (6)

C9 0.0166 (7) 0.0153 (7) 0.0167 (7) 0.0002 (5) −0.0009 (5) −0.0006 (5)

C10 0.0159 (7) 0.0157 (7) 0.0140 (6) 0.0005 (5) −0.0021 (5) −0.0007 (5)

C11 0.0176 (7) 0.0170 (7) 0.0147 (6) −0.0005 (5) −0.0021 (5) −0.0018 (5)

C12 0.0160 (7) 0.0175 (7) 0.0169 (7) −0.0006 (5) −0.0017 (5) −0.0029 (5)

C13 0.0166 (7) 0.0180 (7) 0.0149 (6) 0.0013 (5) −0.0003 (5) −0.0005 (5)

C14 0.0191 (7) 0.0208 (8) 0.0139 (6) 0.0017 (6) −0.0040 (5) −0.0010 (5)

C15 0.0168 (7) 0.0168 (7) 0.0156 (6) −0.0004 (5) −0.0042 (5) −0.0012 (5)

Geometric parameters (Å, º)

Br1—C2 1.8969 (17) C8—C9 1.341 (2)

Cl1—C13 1.7321 (18) C8—H8A 0.9300

O1—C7 1.226 (2) C9—C10 1.463 (2)

C1—C2 1.393 (2) C9—H9A 0.9300

C1—C6 1.398 (2) C10—C15 1.399 (2)

C1—H1A 0.9300 C10—C11 1.402 (2)

C2—C3 1.386 (2) C11—C12 1.385 (2)

C3—C4 1.386 (3) C11—H11A 0.9300

C3—H3A 0.9300 C12—C13 1.397 (2)

C4—C5 1.388 (3) C12—H12A 0.9300

C4—H4A 0.9300 C13—C14 1.383 (3)

C5—C6 1.400 (2) C14—C15 1.392 (2)

C5—H5A 0.9300 C14—H14A 0.9300

C6—C7 1.496 (2) C15—H15A 0.9300

C7—C8 1.479 (2)

C2—C1—C6 118.50 (15) C7—C8—H8A 119.7

C2—C1—H1A 120.7 C8—C9—C10 126.08 (17)

C6—C1—H1A 120.7 C8—C9—H9A 117.0

C3—C2—C1 121.83 (16) C10—C9—H9A 117.0

C3—C2—Br1 118.94 (13) C15—C10—C11 118.55 (16)

C1—C2—Br1 119.22 (13) C15—C10—C9 118.90 (16)

C4—C3—C2 118.99 (16) C11—C10—C9 122.55 (15)

C4—C3—H3A 120.5 C12—C11—C10 120.80 (16)

C2—C3—H3A 120.5 C12—C11—H11A 119.6

C3—C4—C5 120.69 (16) C10—C11—H11A 119.6

C3—C4—H4A 119.7 C11—C12—C13 119.12 (16)

C5—C4—H4A 119.7 C11—C12—H12A 120.4

C4—C5—C6 119.84 (16) C13—C12—H12A 120.4

C4—C5—H5A 120.1 C14—C13—C12 121.49 (16)

(6)

C1—C6—C5 120.13 (15) C12—C13—Cl1 118.80 (14)

C1—C6—C7 118.40 (15) C13—C14—C15 118.63 (16)

C5—C6—C7 121.46 (15) C13—C14—H14A 120.7

O1—C7—C8 122.18 (16) C15—C14—H14A 120.7

O1—C7—C6 120.63 (16) C14—C15—C10 121.39 (16)

C8—C7—C6 117.18 (15) C14—C15—H15A 119.3

C9—C8—C7 120.63 (16) C10—C15—H15A 119.3

C9—C8—H8A 119.7

C6—C1—C2—C3 1.3 (3) C6—C7—C8—C9 −169.51 (17)

C6—C1—C2—Br1 179.97 (13) C7—C8—C9—C10 −178.94 (17)

C1—C2—C3—C4 −0.4 (3) C8—C9—C10—C15 −164.21 (18)

Br1—C2—C3—C4 −179.08 (14) C8—C9—C10—C11 16.1 (3)

C2—C3—C4—C5 −0.8 (3) C15—C10—C11—C12 0.5 (3)

C3—C4—C5—C6 1.1 (3) C9—C10—C11—C12 −179.85 (16)

C2—C1—C6—C5 −1.0 (3) C10—C11—C12—C13 1.1 (3)

C2—C1—C6—C7 −179.98 (16) C11—C12—C13—C14 −1.6 (3)

C4—C5—C6—C1 −0.2 (3) C11—C12—C13—Cl1 178.27 (14)

C4—C5—C6—C7 178.77 (16) C12—C13—C14—C15 0.4 (3)

C1—C6—C7—O1 24.7 (3) Cl1—C13—C14—C15 −179.44 (13)

C5—C6—C7—O1 −154.26 (18) C13—C14—C15—C10 1.2 (3)

C1—C6—C7—C8 −154.29 (17) C11—C10—C15—C14 −1.7 (3)

C5—C6—C7—C8 26.7 (2) C9—C10—C15—C14 178.63 (16)

O1—C7—C8—C9 11.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C9—H9A···O1 0.93 2.50 2.826 (2) 101

C1—H1A···Cg2i 0.93 2.87 3.523 (2) 128

C4—H4A···Cg2ii 0.93 2.72 3.367 (2) 128

C9—H9A···Cg1iii 0.93 3.30 3.776 (2) 114

C12—H12A···Cg1iv 0.93 2.87 3.543 (2) 130

C15—H15A···Cg1iii 0.93 3.04 3.690 (2) 129

Figure

Figure 1The molecular structure of (I), showing 50% probability displacementellipsoids and the atomic numbering
Figure 2

References

Related documents

These results give a comprehensive explanation for why Pfaff ( 2013 ) and Binder and Coad ( 2010 ) find adaptation to income when using non-equivalized income, but fail to do so

where the encoder and decoder layers are initial- ized in an unsupervised pretraining phase using primary and secondary language monolingual cor- pora, followed by a joint supervised

The finger measurements recorded were Index Finger Length of Right hand (RIFL), Index Finger Length of Left hand (LIFL), Ring Finger Length of Right hand (RRFL) and Ring

We use semantic tex- tual similarity models that are trained with differ- ent datasets for this task; (b) We propose natural language abduction to generate queries for retriev-

Uncontrollable stress causes changes in feeding behaviour and is known to alter feeding responses in a bidirectional pattern, with both increased and decreased intake

Based on the results of analysis, it was obtained a regression equation that can be explained that the direction of the regression coefficient of independent variables

According to the results of the study, they have stated that developing countries such as Turkey should develop their R&amp;D activities to achieve a more efficient economic

We have presented an ILP based joint inference system for event coreference resolution that uti- lizes scores predicted by a pairwise event corefer- ence resolution classifier,