• No results found

P9 factorization of Symmetric Complete Bipartite Digraph

N/A
N/A
Protected

Academic year: 2020

Share "P9 factorization of Symmetric Complete Bipartite Digraph"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

–Factorization of Symmetric Complete

Bipartite Digraph

U S Ra jput

Department of mathematics and astronomy, Lucknow University,

Bal Go vind Shukla

Department of mathematics and astronomy, Lucknow University

,

ABSTRACT

In path factorization, Ushio [1] gave the necessary and sufficient conditions for -design when k is odd.

-factorization of a complete bipartite graph for an integer, was studied by Wang [2]. Further, Beiling [3] extended the work of Wang [2], and studied -factorization of complete bipartite multigraphs. For even value of in -factorization the spectrum problem is completely solved [1, 2, 3]. However, for odd value of k i.e. and , the path

factorization have been studied by a number of researchers [4, 5, 6, 7, 8]. The necessary and sufficient conditions for the existence of -factorization of symmetric complete bipartite digraph were given by Du B [9]. Earlier we have discussed the necessary and sufficient conditions for the existence of and -factorization of symmetric complete bipartite digraph [10, 11]. Now, in the present paper, we give the necessary and sufficient conditions for the existence of factorization of symmetric complete bipartite digraph, .

Mathemati cal

Clas sificati on

- 6 8 R 1 0 , 0 5 C 7 0 , 0 5 C 3 8 .

Key words

Complete bipartite Graph, Factorization of Graph, Spanning Graph.

Introdu cti on:

Let be a complete bipartite symmetric digraph with two partite sets having and vertices. A spanning sub graph of is called a path factor if each component of is a path of order at least two. In particular, a spanning sub graph of is called a factor if each component of is isomorphic to . If is expressed as an arc disjoint sum of factors, then this sum is called

factorization of . Here, we take path of order 9. A is the symmetric directed path on vertices.

Mathemati cal Analysis:

The necessary and sufficient conditions for the existence of factorization of complete bipartite symmetric digraph are given below in theorem 1.

Theorem 1:

Let be the positive integers. Then has a factorization iff:

1. 2.

3.

4. is an integer

Proof of n ecessi ty

Proof: Let be the number of factors in the

factorization, and be the number of copies of in a factor. Since any –factor spans , hence the

number of copies of in any factor,

. … (1 )

Since every –factor has symmetric

edges in a factorization, therefore total number of edges in symmetric complete bipartite digraph will be,

Also, since total number of edges in a symmetric complete bipartite digraph are therefore,

H e n c e ,

. … ( 2 )

Obviously, and will be integers. Thus conditions 3 and 4 in theorem 1 are necessary. In a particular

(2)

its end points in , and with end points in , then by simple arithmetic we can obtain,

and

From this, we can compute and , which are as follows:

… (3) ... (4). Since, by definition and are positive integers, therefore equations (3) and (4) imply,

and

This implies

and

Therefore, conditions 1 and 2 in theorem 1 are necessary.

This proves the necessity of theorem 1.

Proof of sufficien cy

Further, we need the following number theoretic result (lemma 1) to prove the sufficiency of theorem 1. The proof of lemma 1 can be found in any good text related to elementary number theory, one such is given in [12].

Lem m a 1:

If gcd then gcd

where and are positive integers. We prove the following result (lemma 2), which will be used further.

Lem m a 2:

If has -factorization, then

has a -factorization for every positive

integer .

Proof: Let is 1- factorable [13] and { }

be a 1- factorization of it. For each with replace every edge of by a to get a spanning subgraph of , such that the graphs

are pair wise edge disjoint, and there union is . Since has a -factorization, it

is clear that is also , and hence

is -

Now to prove the sufficiency of theorem 1, there are three cases to consider:

Case I: . In this case from lemma 2, has

-factorization. For instance (trivial case) has

-factorization. These factorizations are illustrated in figure from 1 to 5.

F i g ( 1 )

(3)

F i g ( 2 ) y1x2y2x3y3x4y4x5y5 , y5x5y4x4y3x3y2x2y1; y6x6y7x7y8x8y9x1y1 0, y1 0x1y9x8y8x7y7x6y6:

.

F i g ( 3 ) y1x3y2x4y3x5y4x6y5 , y5x6y4x5y3x4y2x3y1; y6x7y7x8y8x1y9x2y1 0, y1 0x2y9x1y8x8y7x7y6:

(4)

F i g ( 5 ) y1x4y2x5y3x6y4x7y5 , y5x7y4x6y3x5y2x4y1; y6x8y7x1y8x2y9x3y1 0, y1 0x3y9x 2 y8x1y7x8y6: .

C a s e I I : . O b v i o u s l y , h a s

-f a c t o r i z a t i o n .

C a s e I I I : a n d . I n t h i s c a s e , l e t

,

a n d

T h e n f r o m c o n d i t i o n s 1 - 4 o f t h e o r e m ( 1 ) ,

a r e i n t e g e r s a n d , . A s o b t a i n e d p r e v i o u s l y

a n d

. H e n c e ,

S i n c e i s a p o s i t i v e i n t e g e r , t h e r e f o r e ,

( s a y )

mu s t b e p o s i t i v e i n t e g e r .

A g a i n l e t t h e n a n d

w h e r e a r e i n t e g e r s a n d g c d . T h e n b e c o m e s

T h e s e e q u a l i t i e s i mp l y t h e f o l l o w i n g e q u a l i t i e s

T o c o mp u t e a l l p o s s i b l e v a l u e s o f a n d f o r c a s e ( I I I ) , w e e s t a b l i s h t h e f o l l o w i n g l e m m a , l e m m a 3 .

Lem m a 3:

C a s e ( 1 ) : I f g c d a n d g c d t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

(5)

a n d

C a s e ( 2 ) : I f g c d a n d g c d a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

a n d

C a s e ( 3 ) : I f g c d a n d g c d

a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r , s u c h t h a t

a n d

C a s e ( 4 ) : I f g c d a n d g c d a n d l e t t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

a n d

.

C a s e ( 5 ) : I f g c d a n d g c d (q, 2 5 ) = 5 , a n d l e t t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

a n d

C a s e ( 6 ) : I f g c d a n d g c d a n d l e t t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

a n d

C a s e ( 7 ) : I f g c d a n d g c d a n d l e t t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

a n d

C a s e ( 8 ) : I f g c d g c d a n d l e t t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

a n d

C a s e ( 9 ) : I f g c d g c d a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r , s u c h t h a t

a n d

C a s e ( 1 0 ) : I f g c d g c d a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r , s u c h t h a t

a n d

C a s e ( 1 1 ) : I f g c d g c d a n d l e t t h e n t h e r e e x i s t s a

p o s i t i v e i n t e g e r , s u c h t h a t

(6)

a n d

C a s e ( 1 2 ) : I f g c d g c d a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r , s u c h t h a t

a n d

C a s e ( 1 3 ) : I f g c d g c d a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r , s u c h t h a t

a n d C a s e ( 1 4 ) : I f g c d g c d

a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r , s u c h t h a t

a n d

C a s e ( 1 5 ) : I f g c d g c d a n d l e t , t h e n t h e r e e x i s t s a p o s i t i v e i n t e g e r s u c h t h a t

a n d

P r o o f : L e t g c d g c d a n d g c d h o l d .

T h e n g c d = g c d .

S i n c e g c d a n d g c d ,

h e n c e

g c d a n d g c d .

S i n c e

i s a p o s i t i v e i n t e g e r . T h e r e f o r e b y l e m m a 2 . 2 , w e s e e t h a t

g c d = g c d .

H e n c e mu s t b e a n i n t e g e r , w h e r e :

.

T h e r e f o r e , w i l l b e a p o s i t i v e i n t e g e r , w h e r e :

S i mi l a r l y a l l v a l u e s o f a n d r a r e p o s i t i v e i n t e g e r s i n c a s e ( 1 ) o f l e m m a 3 .

T h e p r o o f s o f o t h e r e q u a l i t i e s i n l e m m a 3 a r e s i m i l a r t o c a s e ( 1 ) .

T h i s p r o v e s l e m m a 3 .

B e l o w i n l e m m a 4 , w e g i v e t h e c o n s t r u c t i o n o f

-f a c t o r o f c o m p l e t e b i p a r t i t e s y m m e t r i c d i g r a p h ( f o r c a s e I I I o n l y ) , b y t a k i n g t h e v a l u e s o f a n d f r o m c a s e 1 o f l e m m a 3 a t

.

Lem m a (4 ) : -

L e t , a n d

b e p o s i t i v e i n t e g e r s , t h e n

h a s -f a c t o r i z a t i o n .

P r o o f : - F o r g i v e n v a l u e s o f a n d w e h a v e

n u mb e r o f c o p i e s o f , w i t h i t s e n d p o i n t s i n Y i n a p a r t i c u l a r - f a c t o r , a n d

n u mb e r o f c o p i e s o f , w i t h i t s e n d p o i n t s i n X i n a p a r t i c u l a r - f a c t o r .

H e n c e t o t a l n u m b e r o f c o p i e s o f

a n d t h e n u mb e r o f - f a c t o r s

(7)

w h e r e

a n d

H e r e X , Y a r e t w o p a r t i t e s e t s o f a s ,

a n d

w i t h

a n d

N o w f o r e a c h l e t b e t h e s e t o f g r a p h s w i t h e n d p o i n t s i n Y , s u c h t h a t

w h e r e

F o r e a c h l e t b e a s e t o f g r a p h s

w i t h e n d p o i n t s i n X , s u c h t h a t

= { x5p + 5 ( i - 1 ) + 2 ( u - 1 ) + v , j + 2 ( 5p + 4q) v + 3 ( 5 p + 4 q ) w + ( 5 p + 4 q ) t y2 5p + 1 6 ( i - 1 ) + 4 u + 2 v + w + 1 , j + 1 0p+ 8 ( i - 1 ) + 2 u + v + w} ,

w h e r e

1 ≤ j ≤ 2 ( 5p + 4q), 1 ≤ u ≤3 , 0 ≤ v, w, t ≤1 . L e t O b v i o u s l y c o n t a i n s t

n u mb e r o f v e r t e x d i s j o i n t a n d e d g e d i s j o i n t c o mp o n e n t s s u c h t h a t

t = a + b

= 2 ( 5p + 4q) 2 = ( 5p + 4q) n

0 ,

A l s o s p a n s T h e n t h e g r a p h i s a -

f a c t o r o f . F u r t h e r , i n t h e g r a p h , e a c h o f t h e s e c o n d s u b s c r i p t o f s m e e t s

e a c h o f t h e s e c o n d s u b s c r i p t s o f s o n c e a n d

o n l y o n c e . Al s o i n g r a p h , t h e

s e c o n d s u b s c r i p t o f s m e e t s e a c h o f t h e

s e c o n d s u b s c r i p t s o f s o n c e a n d o n l y o n c e ,

F u r t h e r , i n t h e g r a p h , w e s e e t h a t e a c h o f t h e s e c o n d s u b s c r i p t o f s

c o n n e c t e a c h o f t h e s e c o n d s u b s c r i p t s o f s

o n c e a n d o n l y o n c e . H e n c e w e d e f i n e a b i j e c t i o n s u c h t h a t

:

onto

XUY

XUY



wi t h

a n d

f o r e a c h a n d e a c h

L e t

Fξ , η = { ξ( x) η( y ) ; x

X , y

Y , x y

F } b e t h e s e t o f g r a p h s , t h e n i t i s s h o w n t h a t t h e g r a p h s Fξ , η { 1 ≤ ξ ≤ r1, 1 ≤ ≤ r2} , a r e e d g e d i s j o i n t -f a c t o r s o f a n d t h e r e u n i o n i s

.

T h u s { Fξ , η: 1 ≤ ξ ≤r1, 1 ≤ η ≤r2} i s a -f a c t o r i z a t i o n o -f .T h i s p r o v e s l e m m a ( 4 ) .

P roof of t heorem ( 1) :

C o mb i n i n g l e m m a s 2 t o 4 , i t c a n b e s e e n t h a t w h e n t h e p a r a m e t e r s a n d s a t i s f y c o n d i t i o n s ( 1 ) - ( 4 )

i n t h e o r e m 1 , t h e g r a p h h a s -f a c t o r i z a t i o n .

Con clusion :

I n t h i s p a p e r , w e h a v e o b t a i n e d t h e c o n d i t i o n f o r p a t h f a c t o r i z a t i o n o f c o mp l e t e b i p a r t i t e s y m m e t r i c d i g r a p h w i t h 9 n u mb e r o f v e r t i c e s h a v i n g s y m m e t r i c d i s j o i n t e d g e s .

R e f e r e n c e s

[ 1 ] U s h i o K : G - d e s i g n s a n d r e l a t e d d e s i g n s , D i s c r e t e M a t h . , 1 1 6 ( 1 9 9 3 ) , 2 9 9 - 3 1 1 . [ 2 ] W a n g H : - f a c t o r i z a t i o n o f a c o mp l e t e

b i p a r t i t e g r a p h , d i s c r e t e m a t h . 1 2 0 ( 1 9 9 3 ) 3 0 7 - 3 0 8 .

[ 3 ] B e i l i n g D u : - f a c t o r i z a t i o n o f c o m p l e t e

b i p a r t i t e m u l t i g r a p h . A u s t r a l a s i a n J o u r n a l o f C o m b i n a t o r i c s 2 1 ( 2 0 0 0 ) , 1 9 7 - 1 9 9 .

(8)

[ 5 ] W a n g J a n d D u B :

P

5 - f a c t o r i z a t i o n o f c o mp l e t e b i p a r t i t e g r a p h s . D i s c r e t e m a t h . 3 0 8 ( 2 0 0 8 ) 1 6 6 5 – 1 6 7 3 .

[ 6 ] W a n g J :

P

7 - f a c t o r i z a t i o n o f c o mp l e t e b i p a r t i t e g r a p h s . Au s t r a l a s i a n J o u r n a l o f C o mb i n a t o r i c s , v o l u m e 3 3 ( 2 0 0 5 ) , 1 2 9 -1 3 7 .

[ 7 ] U . S . R a j p u t a n d B a l Go v i n d S h u k l a :

9

P

f a c t o r i z a t i o n o f c o mp l e t e b i p a r t i t e g r a p h s . A p p l i e d M a t h e m a t i c a l S c i e n c e s , v o l u m e 5 ( 2 0 1 1 ) , 9 2 1 - 9 2 8 .

[ 8 ] D u B a n d W a n g J : - f a c t o r i z a t i o n o f

c o mp l e t e b i p a r t i t e g r a p h s . S c i e n c e i n C h i n a S e r . A M a t h e m a t i c s 4 8 ( 2 0 0 5 ) 5 3 9 – 5 4 7 .

[ 9 ] D u B : - f a c t o r i z a t i o n o f c o mp l e t e b i p a r t i t e s y m m e t r i c d i g r a p h s .

Au s t r a l a s i a n J o u r n a l o f C o mb i n a t o r i c s , v o l u m e 1 9 ( 1 9 9 9 ) , 2 7 5 - 2 7 8 .

[ 1 0 ] U . S . R a j p u t a n d B a l G o v i n d S h u k l a :

f a c t o r i z a t i o n o f c o mp l e t e b i p a r t i t e s y m m e t r i c d i g r a p h . N a t i o n a l S e m i n a r o n “Cu rr en t Tr en d s in Mat h e mati cs wi th Sp eci al Fo cu s o n O.R. an d Co mp u t er s” , D . R . M . L . A . U . F a i z a b a d , I n d i a , ( 2 0 1 0 ) .

[ 1 1 ] U . S . R a j p u t a n d B a l G o v i n d S h u k l a :

f a c t o r i z a t i o n o f c o mp l e t e b i p a r t i t e s y m m e t r i c d i g r a p h . I n t e r n a t i o n a l M a t h e m a t i c a l F o r u m, v o l . 6 ( 2 0 1 1 ) , 1 9 4 9 -1 9 5 4 .

[ 1 2 ] D a v i d M . B u r t o n : E l e m e n t a r y N u mb e r T h e o r y . U B S P u b l i s h e r s N e w D e l h i , 2 0 0 4 .

References

Related documents

As there was no strong correlation between AMF spore density and dominant soil characteristics (pH, EC, soil elements), nor all plant species occurred in all stations

We note that this, along with Theorem 2 gives the following relationship between weak saturation numbers of complete balanced bipartite graphs in the clique and in complete

The result was the creation of the certificates of proficiency in Computer Science, Information Technology and Digital Media to provide the high school students at the ALC a

The information in this section contains generic advice and guidance. Information is provided based on typical anticipated uses of the product. Additional measures might be

56 The rights of access to information (section 32) and just administrative action (section 33) similarly play a critical role in societal transformation in that they seek to keep

(d) If the animal implicated in the potential exposure is a low-risk animal, neither quarantine nor rabies testing will be required unless the local rabies control authority has cause

Problem 1.1 Determine the necessary and sufficient conditions on m and n for the complete symmetric digraph K n ∗ to admit a resolvable decomposition into directed m-cycles.. In

constructed the orthogonal double cover of complete bipartite graphs by a complete bipartite graph and the disjoint union of complete bipartite graphs with the cartesian product