# 2. Local fractional variational iteration Transform Method

N/A
N/A
Protected

Share "2. Local fractional variational iteration Transform Method"

Copied!
6
0
0

Full text

(1)

Journal homepage:www.ijaamm.com

## Local fractional variational iteration transform method to solve partialdifferential equations arising in mathematical physics

Research Article

Hassan Kamil Jassimâˆ—

Department of Mathematics, Faculty of Education for Pure Sciences, University of Thi-Qar, Nasiriyah, Iraq

Received 06 June 2015; accepted (in revised version) 16 August 2015

Abstract: In this paper, we investigate solutions of one-dimensional and two-dimensional diffusion and wave equations on Cantor sets within the local fractional derivatives by using local fractional variational iteration transform method.

This method is coupled by the Yang-Laplace transform and variational iteration method. Illustrative examples are included to demonstrate the validity and applicability of the presented method.

MSC: 26A33 â€¢ 34A12 â€¢ 35R11

Keywords:Diffusion equation â€¢ Wave equation â€¢ Local fractional variational iteration method â€¢ Yang-Laplace transform â€¢ Local fractional derivative

### 1. Introduction

The local fractional calculus was successfully applied to describe the non-differentiable problems arising in mathematical physics [1,2], such as the diffusion and wave equations on Cantor sets. These problems were studied by several authors by using local fractional decomposition method [3â€“5], local fractional variational iteration method [5â€“

7], local fractional series expansion method [8], local fractional functional decomposition method [9], local fractional Laplace variational iteration method [10], and local fractional Laplace decomposition method [11]. In this paper, our aims are to present the coupling method of local fractional Laplace transform and variational iteration method, which is called as the local fractional variational iteration transform method, and to use it to solve diffusion and wave equations with local fractional derivative.

### 2. Local fractional variational iteration Transform Method

To illustrate the basic idea of the LFVITM for the local fractional partial differential equation as:

LÎ±u(x, t ) + RÎ±u(x, t ) = g (x, t), (1)

where LÎ±= âˆ‚nÎ±

âˆ‚tnÎ±, n âˆˆ N is the linear local fractional derivative operator, RÎ±denotes a lower order local fractional derivative operator and g (x, t ) is the nondifferentiable source term.

Applying the Yang-Laplace transform on both sides of (1), we get

eLÎ±{LÎ±u(x, t )} + eLÎ±{RÎ±u(x, t )} = eLÎ±Â©g (x, t)Âª. (2)

Using the property of the Yang-Laplace transform, we have

snÎ±LeÎ±{u(x, t )} âˆ’ s(nâˆ’1)Î±u(x, 0) âˆ’ s(nâˆ’2)Î±u(Î±)(x, 0) âˆ’ Â·Â·Â· âˆ’ u((nâˆ’1)Î±)(x, 0) + eLÎ±{RÎ±u(x, t )} = eLÎ±{g (x, t )}, (3)

(2)

or

eLÎ±{u(x, t )} = 1

sÎ±u(x, 0) + 1

s2Î±u(Î±)(x, 0) + Â·Â·Â· + 1

snÎ±u((nâˆ’1)Î±)(x, 0) + 1

snÎ±LeÎ±{g (x, t )} âˆ’ 1

snÎ±LeÎ±{RÎ±u(x, t )} . (4) Operating with the Yang-Laplace inverse on both sides on Eq. (4) gives

u(x, t ) = u(x,0) + Â·Â·Â· + t(nâˆ’1)Î±

Î“(1 + (n âˆ’ 1)Î±)u((nâˆ’1)Î±)(x, 0) + eLâˆ’1Î± Âµ 1

snÎ±LeÎ±Â©g (x, t) âˆ’ RÎ±u(x, t )Âª

Â¶

. (5)

Derivative by âˆ‚Î±

âˆ‚tÎ± both side Eq. (5), we have

âˆ‚Î±u(x, t )

âˆ‚tÎ± = u(Î±)(x, 0) + Â·Â·Â· + t(nâˆ’2)Î±

Î“(1 + (n âˆ’ 2)Î±)u((nâˆ’1)Î±)(x, 0) + âˆ‚Î±

âˆ‚tÎ±eLâˆ’1Î± Âµ 1

snÎ±eLÎ±Â©g (x, t) âˆ’ RÎ±u(x, t )Âª

Â¶

(6)

We now structure the correctional local fractional function in the form

um+1(x, t ) = um(x, t ) + 1 Î“(1 + Î±)

Z t 0

Î»(Î¾)Î± Î“(1 + Î±)

ï£±

ï£´ï£´

ï£´ï£²

ï£´ï£´

ï£´ï£³

âˆ‚Î±um(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Lâˆ’1Î± Âµ 1

Â¶

u(mÎ±)(x, 0) + Â·Â·Â· + Î¾(nâˆ’2)Î±

Î“(1 + (n âˆ’ 2)Î±)u((nâˆ’1)Î±)m (x, 0)

ï£¼

ï£´ï£´

ï£´ï£½

ï£´ï£´

ï£´ï£¾

(dÎ¾)Î±. (7)

Making the local fractional variation, we get

Î´Î±um+1(x, t ) = Î´Î±um(x, t )+Î´Î± 1 Î“(1 + Î±)

Z t 0

Î»(Î¾)Î± Î“(1 + Î±)

ï£±

ï£´ï£´

ï£´ï£²

ï£´ï£´

ï£´ï£³

âˆ‚Î±um(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Lâˆ’1Î± Âµ 1

Â¶

âˆ’u(mÎ±)(x, 0) + Â·Â·Â· + Î¾(nâˆ’2)Î±

Î“(1 + (n âˆ’ 2)Î±)u((nâˆ’1)Î±)m (x, 0)

ï£¼

ï£´ï£´

ï£´ï£½

ï£´ï£´

ï£´ï£¾

(dÎ¾)Î±. (8)

The extremum condition of um+1(x, t ) is given by

Î´Î±um+1(x, t ) = 0. (9)

In view of (9), we have the following stationary conditions:

1 + Î»(Î¾)Î±

Î“(1 + Î±|Î¾=t= 0,

Â· Î»(Î¾)Î± Î“(1 + Î±

Â¸(Î±)

|Î¾=t= 0. (10)

This is turn gives Î»(Î¾)Î±

Î“(1 + Î±= âˆ’1 (11)

Substituting (11) into (7), we obtained

um+1(x, t ) = um(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

ï£±

ï£´ï£´

ï£´ï£²

ï£´ï£´

ï£´ï£³

âˆ‚Î±um(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Lâˆ’1Î± Âµ 1

Â¶

âˆ’u(mÎ±)(x, 0) + Â·Â·Â· + Î¾(nâˆ’2)Î±

Î“(1 + (n âˆ’ 2)Î±)um((nâˆ’1)Î±)(x, 0)

ï£¼

ï£´ï£´

ï£´ï£½

ï£´ï£´

ï£´ï£¾

(dÎ¾)Î±. (12)

Finally, the solution u(x, t ) is given by u(x, t ) = lim

mâ†’âˆžum(x, t ) (13)

### 3. Illustrative examples

In this section several examples for diffusion and wave equations on Cantor sets is presented in order to demon- strate the simplicity and the efficiency of the above method.

Example 3.1.

Let us consider the following one-dimensional diffusion equation with local fractional derivative in the form

âˆ‚Î±u(x, t )

âˆ‚tÎ± âˆ’âˆ‚2Î±u(x, t )

âˆ‚x2Î± = 0, (14)

(3)

subject to the initial value

u(x, 0) = xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±). (15)

In view of (12) and (14) the local fractional iteration algorithm can be written as follows:

um+1(x, t ) = um(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±um(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±eLâˆ’1Î± Âµ 1 sÎ±eLÎ±

Â½âˆ‚2Î±um(x,Î¾)

âˆ‚x2Î±

Â¾Â¶Â¸

(dÎ¾)Î±, m â‰¥ 0. (16)

We can use the initial condition to select u0(x, t ) = xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±) . Using this selection into the correction func- tional (16) gives the following successive approximations

u0(x, t ) = xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±), (17)

u1(x, t ) = u0(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±u0(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1 sÎ±LeÎ±

Â½âˆ‚2Î±u0(x,Î¾)

âˆ‚x2Î±

Â¾Â¶Â¸

(dÎ¾)Î±

= xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±)

Â·

1 âˆ’ tÎ± Î“(1 + Î±)

Â¸

, (18)

u2(x, t ) = u1(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±u1(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1 sÎ±LeÎ±

Â½âˆ‚2Î±u1(x,Î¾)

âˆ‚x2Î±

Â¾Â¶Â¸

(dÎ¾)Î±

= xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±)

Â·

1 âˆ’ tÎ±

Î“(1 + Î±)+ t2Î± Î“(1 + 2Î±)

Â¸

, (19)

u3(x, t ) = u2(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±u2(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1 sÎ±LeÎ±

Â½âˆ‚2Î±u2(x,Î¾)

âˆ‚x2Î±

Â¾Â¶Â¸

(dÎ¾)Î±

= xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±)

Â·

1 âˆ’ tÎ±

Î“(1 + Î±)+ t2Î±

Î“(1 + 2Î±)âˆ’ t3Î± Î“(1 + 3Î±)

Â¸

, (20)

...

um(x, t ) = xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±)

"

m

X

k=0

(âˆ’1)k tkÎ± Î“(1 + kÎ±)

#

(21)

Finally, the solution is u(x, t ) = limmâ†’âˆžum(x, t )

= xÎ±

Î“(1 + Î±)+ cosÎ±(xÎ±)

"âˆž X

k=0

(âˆ’1)k tkÎ± Î“(1 + kÎ±)

#

= xÎ±

Î“(1 + Î±)+ EÎ±(âˆ’tÎ±)cosÎ±(xÎ±). (22)

Example 3.2.

Consider the following two-dimensional diffusion equation with local fractional derivative in the form

âˆ‚Î±u(x, , y, t )

âˆ‚tÎ± âˆ’1 2

Âµâˆ‚2Î±u(x, y, t )

âˆ‚x2Î± +âˆ‚2Î±u(x, y, t )

âˆ‚y2Î±

Â¶

= 0, (23)

and the initial condition

u(x, y, 0) = EÎ±(xÎ±+ yÎ±). (24)

Applying Eqs. (12) and (23), we obtain the correction function can be written as follows:

um+1(x, y, t ) =um(x, y, t )

âˆ’ 1

Î“(1 + Î±) Z t

0

Â·âˆ‚Î±um(x, y,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1 sÎ±LeÎ±Â½ 1

2

Âµâˆ‚2Î±um(x, y,Î¾)

âˆ‚x2Î± +âˆ‚2Î±um(x, y,Î¾)

âˆ‚y2Î±

Â¶Â¾Â¶Â¸

(dÎ¾)Î±. (25)

(4)

We can use the initial condition to select u0(x, y, t ) = EÎ±(xÎ±+ yÎ±) . Using this selection into the correction functional (25) gives the following successive approximations

u0(x, y, t ) = EÎ±(xÎ±+ yÎ±), u1(x, y, t ) = u0(x, y, t ) âˆ’ 1

Î“(1 + Î±) Z t

0

Â·âˆ‚Î±u0(x, y,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1 sÎ±LeÎ±Â½ 1

2

Âµâˆ‚2Î±u0(x, y,Î¾)

âˆ‚x2Î± +âˆ‚2Î±u0(x, y,Î¾)

âˆ‚y2Î±

Â¶Â¾Â¶Â¸

(dÎ¾)Î±

= EÎ±(xÎ±+ yÎ±)

Â·

1 + tÎ± Î“(1 + Î±)

Â¸ ,

u2(x, y, t ) = u1(x, y, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±u1(x, y,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1 sÎ±LeÎ±Â½ 1

2

Âµâˆ‚2Î±u1(x, y,Î¾)

âˆ‚x2Î± +âˆ‚2Î±u1(x, y,Î¾)

âˆ‚y2Î±

Â¶Â¾Â¶Â¸

(dÎ¾)Î±

= EÎ±(xÎ±+ yÎ±)

Â·

1 + tÎ±

Î“(1 + Î±)+ t2Î± Î“(1 + 2Î±)

Â¸ ,

u3(x, y, t ) = u2(x, y, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±u2(x, y,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1 sÎ±LeÎ±Â½ 1

2

Âµâˆ‚2Î±u2(x, y,Î¾)

âˆ‚x2Î± +âˆ‚2Î±u2(x, y,Î¾)

âˆ‚y2Î±

Â¶Â¾Â¶Â¸

(dÎ¾)Î±

= EÎ±(xÎ±+ yÎ±)

Â·

1 + tÎ±

Î“(1 + Î±)+ t2Î±

Î“(1 + 2Î±)+ t3Î± Î“(1 + 3Î±)

Â¸ , ...

um(x, y, t ) = EÎ±(xÎ±+ yÎ±)

"

m

X

k=0

tkÎ± Î“(1 + kÎ±)

# .

Finally, the solution is

u(x, y, t ) = limmâ†’âˆžum(x, y, t )

=EÎ±(xÎ±+ yÎ±)

"

Xâˆž k=0

tkÎ± Î“(1 + kÎ±)

#

=EÎ±(xÎ±+ yÎ±) + tÎ±). (26)

Example 3.3.

Let us consider the one-dimensional wave equation involving local fractional operator

âˆ‚Î±u(x, t )

âˆ‚t2Î± âˆ’âˆ‚2Î±u(x, t )

âˆ‚x2Î± = 0, (27)

subject to the initial value

u(x, 0) = 0,âˆ‚Î±u(x, 0)

âˆ‚tÎ± = EÎ±(xÎ±). (28)

In view of (12) and (27) the local fractional iteration algorithm can be written as follows:

um+1(x, t ) = um(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±um(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±eLâˆ’1Î± Âµ 1

s2Î±LeÎ±

Â½âˆ‚2Î±um(x,Î¾)

âˆ‚x2Î±

Â¾Â¶

âˆ’ EÎ±(xÎ±)

Â¸

(dÎ¾)Î±. (29)

We can use the initial condition to select u0(x, t ) = tÎ±

Î“(1 + Î±)EÎ±(xÎ±) . Using this selection into the correction functional

(5)

(29) gives the following successive approximations u0(x, t ) = tÎ±

Î“(1 + Î±)EÎ±(xÎ±), u1(x, t ) = u0(x, t ) âˆ’ 1

Î“(1 + Î±) Z t

0

Â·âˆ‚Î±u0(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1

s2Î±eLÎ±

Â½âˆ‚2Î±u0(x,Î¾)

âˆ‚x2Î±

Â¾Â¶

âˆ’ EÎ±(xÎ±)

Â¸ (dÎ¾)Î±

= EÎ±(xÎ±)

Â· tÎ±

Î“(1 + Î±)+ t3Î± Î“(1 + 3Î±)

Â¸ ,

u2(x, t ) = u1(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t

0

Â·âˆ‚Î±u1(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1

s2Î±eLÎ±

Â½âˆ‚2Î±u1(x,Î¾)

âˆ‚x2Î±

Â¾Â¶

âˆ’ EÎ±(xÎ±)

Â¸ (dÎ¾)Î±

= EÎ±(xÎ±)

Â· tÎ±

Î“(1 + Î±)+ t3Î±

Î“(1 + 3Î±)+ t5Î± Î“(1 + 5Î±)

Â¸ ,

u3(x, t ) = u2(x, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±u1(x,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1

s2Î±eLÎ±

Â½âˆ‚2Î±u2(x,Î¾)

âˆ‚x2Î±

Â¾Â¶

âˆ’ EÎ±(xÎ±)

Â¸ (dÎ¾)Î±

= EÎ±(xÎ±)

Â· tÎ±

Î“(1 + Î±)+ t3Î±

Î“(1 + 3Î±)+ t5Î±

Î“(1 + 5Î±)+ t7Î± Î“(1 + 7Î±)

Â¸ , ...

um(x, t ) = EÎ±(xÎ±)

"

m

X

k=0

t(2k+1)Î± Î“(1 + (2k + 1)Î±)

# .

Finally, the solution is u(x, t ) = limmâ†’âˆžum(x, t )

=EÎ±(xÎ±)

"

Xâˆž k=0

t(2k+1)Î± Î“(1 + (2k + 1)Î±)

#

=EÎ±(xÎ±) sinhÎ±(tÎ±). (30)

Example 3.4.

Consider the following two-dimensional wave equation with local fractional derivative in the form

âˆ‚Î±u(x, , y, t )

âˆ‚t2Î± âˆ’ 2

Âµâˆ‚2Î±u(x, y, t )

âˆ‚x2Î± +âˆ‚2Î±u(x, y, t )

âˆ‚y2Î±

Â¶

= 0, (31)

and the initial condition

u(x, y, 0) = sinÎ±(xÎ±) sinÎ±(yÎ±),âˆ‚Î±u(x, y, 0)

âˆ‚tÎ± = 0. (32)

Applying Eqs. (12) and (31), we obtain the correction function can be written as follows:

um+1(x, y, t ) =um(x, y, t )

âˆ’ 1

Î“(1 + Î±) Z t

0

Â·âˆ‚Î±um(x, y,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1

s2Î±eLÎ±

Â½ 2

Âµâˆ‚2Î±um(x, y,Î¾)

âˆ‚x2Î± +âˆ‚2Î±um(x, y,Î¾)

âˆ‚y2Î±

Â¶Â¾Â¶Â¸

(dÎ¾)Î±. (33) We can use the initial condition to select u0(x, y, t ) = sinÎ±(xÎ±) sinÎ±(yÎ±) . Using this selection into the correction func- tional (33) gives the following successive approximations

u0(x, y, t ) = sinÎ±(xÎ±) sinÎ±(yÎ±), u1(x, y, t ) = u0(x, y, t ) âˆ’ 1

Î“(1 + Î±) Z t

0

Â·âˆ‚Î±u0(x, y,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1

s2Î±LeÎ±

Â½ 2

Âµâˆ‚2Î±u0(x, y,Î¾)

âˆ‚x2Î± +âˆ‚2Î±u0(x, y,Î¾)

âˆ‚y2Î±

Â¶Â¾Â¶Â¸

(dÎ¾)Î±

= sinÎ±(xÎ±) sinÎ±(yÎ±)

Â·

1 âˆ’ 4t2Î± Î“(1 + 2Î±)

Â¸ ,

u2(x, y, t ) = u1(x, y, t ) âˆ’ 1 Î“(1 + Î±)

Z t 0

Â·âˆ‚Î±u1(x, y,Î¾)

âˆ‚Î¾Î± âˆ’ âˆ‚Î±

âˆ‚Î¾Î±Leâˆ’1Î± Âµ 1

s2Î±LeÎ±

Â½ 2

Âµâˆ‚2Î±u1(x, y,Î¾)

âˆ‚x2Î± +âˆ‚2Î±u1(x, y,Î¾)

âˆ‚y2Î±

Â¶Â¾Â¶Â¸

(dÎ¾)Î±

= sinÎ±(xÎ±) sinÎ±(yÎ±)

Â·

1 âˆ’ 4t2Î±

Î“(1 + 2Î±)+ 8t4Î± Î“(1 + 4Î±)

Â¸ , ...

um(x, y, t ) = sinÎ±(xÎ±) sinÎ±(yÎ±)

"

m

X

k=0

(âˆ’1)k 22kt2kÎ± Î“(1 + 2kÎ±)

# .

(6)

Finally, the solution is

u(x, y, t ) = limmâ†’âˆžum(x, y, t )

= sinÎ±(xÎ±) sinÎ±(yÎ±)

"

Xâˆž k=0

(âˆ’1)k 22kt2kÎ± Î“(1 + 2kÎ±)

#

= sinÎ±(xÎ±) sinÎ±(yÎ±) cosÎ±(2tÎ±). (34)

### 4. Conclusions

In this work the diffusion and wave equations on Cantor sets within the local fractional differential operators had been analyzed using the local fractional variational iteration transform method. The non-differentiable solutions are obtained. The present method is a powerful tool for solving many differential equations on Cantor sets within the local fractional derivative.

### Acknowledgments

The author acknowledges Ministry of Higher Education and Scientific Research in Iraq for its support this work.

### References

[1] X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, 2011.

[2] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012.

[3] X. J. Yang, D. Baleanu, W. P. Zhong, Approximation solutions for diffusion equation on Cantor time-space, Pro- ceeding of the Romanian Academy A, vol.14, no.2 (2013) 127â€“133.

[4] Z. P. Fan, H. K. Jassim, R. K. Rainna, and X. J. Yang, Adomian Decomposition Method for Three-Dimensional Diffusion Model in Fractal Heat Transfer Involving Local Fractional Derivatives, Thermal Science 19(1) (2015) 137â€“141.

[5] D. Baleanu, J. A. Machado, C. Cattani, M. C. Baleanu, X. J. Yang, Local fractional variational iteration and de- composition methods for wave equation on Cantor sets within local fractional operators, Abstract and Applied Analysis, vol. 2014, Article ID 535048 (2014) 1â€“6

[6] X. J. Yang, et al., Local Fractional Variational Iteration Method for Diffusion and Wave Equations on Cantor Sets, Romanian Journal of Physics 59(1-2) (2014)36â€“48.

[7] S. Xu, X. Ling, Y. Zhao, H. K. Jassim, A Novel Schedule for Solving the Two-Dimensional Diffusion in Fractal Heat Transfer, Thermal Science 19(1) (2015) 99â€“103.

[8] A. M. Yang, X. J. Yang, Z. B. Li, Local fractional series expansion method for solving wave and diffusion equations on Cantor sets. Abstract and Applied Analysis, vol. 2013, Article ID 351057 (2013) 1â€“5.

[9] Y. Cao, W. G. Ma, L. C. Ma, Local fractional functional method for solving diffusion equations on Cantor sets, Abstract and Applied Analysis, vol. 2014, Article ID 803693 (2014) 1â€“6.

[10] H. K. Jassim, C. Unlu, S. P. Moshokoa, C. M. Khalique, Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators, Mathematical Problems in Engineering, vol. 2015, Article ID 309870 (2015) 1â€“9.

[11] H. K. Jassim, Local Fractional Laplace Decomposition Method for Nonhomogeneous Heat Equations Arising in Fractal Heat Flow with Local Fractional Derivative, International Journal of Advances in Applied Mathematics and Mechanics 2(4) (2015) 1â€“7.

References

Related documents

Nucleotide sequences of the entire V3 region of 16S rDNA for the nine Lactobacillus strains obtained from normal vaginal flora in women undergoing IVF treatment..

Paper presented in the Two-Day State Level Seminar on Perspectives in Intellectual Property Rights, 13-14 August 2005, SDM Dental College, Dharwar. JSS Sakri Law College,

Under this factor, different elements, like, inequality, organizational dependency and job esteem (in negative sense) and employment alternative (in positive sense) can be seen

Compared with Northern Taiwan (which has the lowest PM 2.5 levels), living in North-Central, Central, and Southern Taiwan was associated with lower blood AHRR methylation levels

Using a simple model of international lending, we show that as long as the IMF lends at an actuarially fair interest rate and debtor governments maximize the welfare of their

The aim of the study was to assess the possibility of developing sheep breeding sector in the organic system, in the terms of the consumerâ€™s behavior towards sheep meat obtained

So, this study was conducted in order to analyze a nutraceutical curd, obtained from low cholesterol buffalo milk, considering the microbiological point of view..

Conclusions: We were able to identify that sugarcane bagasse modification under acid and basic pretreatments change the water accessibility to different sites of the sample,