• No results found

Solving linear and nonlinear Abel fuzzy integral equations by homotopy analysis method

N/A
N/A
Protected

Academic year: 2021

Share "Solving linear and nonlinear Abel fuzzy integral equations by homotopy analysis method"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

JournalofTaibahUniversityforScience9(2015)104–115

Availableonlineatwww.sciencedirect.com

ScienceDirect

Solving

linear

and

nonlinear

Abel

fuzzy

integral

equations

by

homotopy

analysis

method

Farshid

Mirzaee

a,

,

Mohammad

Komak

Yari

a

,

Mahmoud

Paripour

b

aDepartmentofMathematics,FacultyofScience,MalayerUniversity,Malayer65719-95863,Iran

bDepartmentofMathematics,HamedanUniversityofTechnology,Hamedan65155-579,Iran

Availableonline1July2014

Abstract

ThemainpurposeofthisarticleistopresentanapproximationmethodforsolvingAbelfuzzyintegralequationinthemost generalform.Theproposedapproachisbasedonhomotopyanalysismethod.ThismethodtransformslinearandnonlinearAbel fuzzyintegralequationsintotwocrisplinearandnonlinearintegralequations.Theconvergenceanalysisfortheproposedmethod isalsointroduced.Wegivesomenumericalapplicationstoshowefficiencyandaccuracyofthemethod.Allofthenumerical computationshavebeenperformedonacomputerwiththeaidofaprogramwritteninMatlab.

©2014TaibahUniversity.ProductionandhostingbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Keywords:Fuzzynumber;Fuzzyintegralequation;Abelfuzzyintegralequations;Homotopyanalysismethod

1. Introduction

Fuzzyintegralequationsareimportantinstudyingandsolvingalargeproportionoftheproblemsinmanytopicsin appliedmathematics,inparticularinrelationtophysics,geographic,medicalandbiology.Usuallyinmanyapplications, someoftheparametersinourproblemsarerepresentedbyfuzzynumberratherthancrisp,andhenceitisimportantto developmathematicalmodelsandnumericalproceduresthatwouldappropriatelytreatgeneralfuzzyintegralequations andsolvethem.

TheconceptofintegrationoffuzzyfunctionswasfirstintroducedbyDuboisandPrade[1].Alternativeapproaches werelatersuggestedbyGoetschelandVoxman[2],Kaleva[3],Nanda[4]andothers.WhileGoetschelandVoxman[2]

preferredaRiemannintegraltypeapproach,Kalva[3]definedtheintegraloffuzzyfunction,usingtheLebesguetype conceptforintegration.OneofthefirstapplicationsoffuzzyintegrationwasgivenbyWuandMa[5],whoinvestigated thefuzzyFredholmintegralequationofthesecondkind(FFIE-2).Thisworkwhichestablishedtheexistenceofaunique solutionfor(FFIE-2)wasfollowedbyotherworkssuchasMirzaeeetal.[6]andNguyen[7]whereanoriginalfuzzy

Correspondingauthor.Tel.:+988132355466;fax:+988132355466.

E-mailaddresses:f.mirzaee@malayeru.ac.ir,f.mirzaee@iust.ac.ir(F.Mirzaee).

PeerreviewunderresponsibilityofTaibahUniversity

http://dx.doi.org/10.1016/j.jtusci.2014.06.006

1658-3655©2014TaibahUniversity.ProductionandhostingbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/3.0/).

CORE Metadata, citation and similar papers at core.ac.uk

(2)

differentialequation isreplacedbyafuzzy integralequation. RecentlyLiao,inhis Ph.D.thesis[8],hasproposed thehomotopy analysismethod(HAM)tosolvesomeclassesofnonlinearequations.Stepbystep,themethodwas developedanditseffectivenesswasprovedinhandlingnonlinearequations[8–11].

Abelintegralequationsoccurinmanybranchesofscientificfields,suchasmicroscopy,seismology,radioastronomy, electronemission,atomicscattering,radarranging,plasmadiagnostics,X-rayradiography,andopticalfiberevaluation

[12].

Recently,Mirzaeeetal.[13–15]havestudiedthenumericalsolutionsoftheFredholmfuzzyintegral equations. Since thehomotopy analysismethodisapowerfuldevicefor solvingawidevarietyof problemsarisinginmany scientificapplications,wewilldevelopthenumericalmethodsfortheapproximatesolutionsoflinearandnonlinear Abelfuzzyintegralequations.

Thestructureofthispaperisorganizedasfollows:inSection2,somebasicdefinitionsandresultswhichwillbeused lateraregiven.InSection3,Abelfuzzyintegralequationsareintroduced.InSection4,weapplyhomotopyanalysis methodtosolveAbelfuzzyintegralequations,thentheproposedmethodisimplementedforsolvingthreeillustrative examplesinSection5andfinally,conclusionisdrawninSection6.

2. Preliminaries

Wenowrecallsomedefinitionsneededthroughthepaper.

Definition1. (Kaleva[3]).Afuzzynumberisafuzzysetv:R1→I=[0,1]whichsatisfies • visuppersemicontinuous,

v(x)=0outsidesomeinterval[c,d],

• Therearerealnumbersa,b:cabdforwhich • v(x)ismonotonicincreasingon[c,a],

v(x)ismonotonicdecreasingon[b,d],

v(x)=1,axb.

ThesetofallsuchfuzzynumberisdenotedbyRF.

Definition2. (Kaleva[3]).LetVbeafuzzysetonR.Viscalledafuzzyintervalif: • Visnormal:thereexistsx0∈RsuchthatV(x0)=1.

Visconvex:forallx,tRand0≤λ≤1,itholdsthatV(λx+(1−λ)t)min{V(x),V(t)},Visuppersemi-continuous:foranyx0∈R,itholdsthatV(x0)≥ lim

x→0±

V(x),[V]α=Cl{xR|V(x)>0}isacompactsubsetofR.

Theα-cutofafuzzyintervalVwith0<α≤1isthecrispset[V]α={xR|V(x)>0}.ForafuzzyintervalV,itsα-cutare closedintervalsinR.Theywillbedenotedbythemby[V]α =[V(α),V(α)].Analternativedefinitionorparametric formofafuzzynumberwhichyieldsthesameRFisgivenbyKaleva[8]asfollows:

Definition3. (Maetal.[16]).Anarbitraryfuzzynumber˜uintheparametricformisrepresentedbyanorderedpair offunctions(u(r),u(r))whichsatisfythefollowingrequirements:

u(r)isaboundedleft-continuousnon-decreasingfunctionover[0,1], • u(r)isaboundedright-continuousnon-increasingfunctionover[0,1], • u(r)u(r),forall0≤r≤1.

Forarbitraryfuzzynumbers ˜v=(v(r),v(r)), ˜w=(w(r),w(r))andrealnumberλ,onemaydefinetheadditionandthe scalarmultiplicationofthefuzzynumbersbyusingtheextensionprincipleasfollows:

(3)

• ˜v = ˜w ifandonlyifv(r)=w(r)andv(r)=w(r), • ˜v⊕ ˜w=(v(r)+w(r),v(r)+w(r)),(λ ˜v)=  (λv(r),λv(r)) λ≥0 (λv(r),λv(r)) λ<0.

Definition4. (Ga[17]).Forarbitrarynumbers ˜v=(v(r),v(r))and ˜w=(w(r),w(r))

D(˜v, ˜w)=max{ sup

0≤r≤1|v(r)

w(r)|, sup

0≤r≤1|v(r)

w(r)|},

inthedistancebetween ˜vand ˜w.Itisprovedthat(RF,D)isacompletemetricspacewithfollowingproperties[5]

D( ˜u+ ˜w, ˜v+ ˜w)=D( ˜u, ˜v); ∀˜u, ˜v, ˜wRF,

D(k˜u,k ˜v)=|k|D(˜u, ˜v); ∀˜u, ˜vRF ∀kR,

D( ˜u⊕ ˜v, ˜w˜e)D( ˜u, ˜w)+D(˜v,˜e); ∀˜u, ˜v, ˜w,˜eRF.

Definition5. (Anastassiou[18]).Let ˜f,˜g:[a,b]→RF,befuzzyrealnumbervaluedfunctions.Theuniformdistance

between ˜f,˜gisdefinedby

D( ˜f ,˜g)=sup{D( ˜f (x),˜g(x))|x[a,b]},

InGoetschelandVoxman[2]theauthors provedthatif thefuzzyfunction ˜f(x) iscontinuousinthemetricD,its definiteintegralexistsandalso,

 b a f(x,r)dx=  b a f(x,r)dx,  b a f(x,r)dx=  b a f(x,r)dx.

Where(f(x,r),f(x,r))istheparametricformof ˜f(x).Itshouldbenotedthatthefuzzyintegralcanbealsodefined usingtheLebesgue-typeapproach[3].However,if ˜f(x)becontinuous,bothapproachesyieldthesamevalue.Moreover, therepresentationofthefuzzyintegralismoreconvenientfornumericalcalculations.Moredetailsabouttheproperties ofthefuzzyintegralaregivenin[6,8].

Definition6. (Wu[19]).Afuzzyrealnumbervaluedfunction ˜f :[a,b]→RF,issaidtobecontinuousinx0∈[a,b],

ifforeach>0thereisδ>0suchthatD( ˜f(x), ˜f(x0))<,wheneverx[a,b]and|xx0|<δ.Wesaythatfisfuzzy

continuouson[a,b]iffiscontinuousateachx0∈[a,b]anddenotethespaceofallsuchfunctionsbyCF([a,b]).

Lemma1. (Anastassiou[18]).If ˜f,˜g:[a,b]⊆RRF are fuzzycontinuousfunction,then thefunction F:[a,

b]R+by ˜F(x)=D( ˜f(x),˜g(x))iscontinuouson[a,b],and D  b a ˜ f(x)dx,  b a ˜g(x)dx  ≤  b a D( ˜f(x),˜g(x))dx.

Theorem1. (Hc[20]).Let ˜f(x)beafuzzyvaluefunctionon[a,∞)anditisrepresentedby(f(x,r),f(x,r)).For anyfixedr∈[0,1],assumethatf(x,r)andf(x,r)areRiemann-integrableon[a,b]foreverybaandassumethere aretwopositivefunctionsM(r)andM(r)suchthatab|f(x,r)|dxM(r)andab|f(x,r)|dxM(r)foreveryba. Then ˜f(x)isimproperfuzzyRiemann-integrableon[a,∞)andtheimproperfuzzyRiemann-integralisafuzzynumber. Further,wehave:  a ˜ f(x)dx=  a f(x,r)dx,  a f(x,r)dx  .

(4)

3. Abelfuzzyintegralequations TheAbelintegralequationis[21,22]

f(x)=  x

a

u(t)

(xt)αdt; axb, (1)

whereαisaknownconstantsuchthat0<α<1,f(x)isapredetermineddatafunctionandu(x)isunknownfunction thatwillbedetermined.Theexpression(xt)−αiscalledthekernelofAbelintegralequation,orsimplyAbelkernel, thatissingularastx.

Iff(x)isacrispfunction,thenthesolutionsof Eq.(1) arecrisptoo.However,iff(x)isafuzzyfunction,these equationsmayonlypossessfuzzysolutions.Inthispaper,theAbelfuzzyintegralequationsarediscussed.Introducing theparametricformsoff(x)andu(x),wehavetheparametricformoffuzzyAbleintegralequationasfollows:

(f(x,r),f(x,r))=  x a u(t,r) (xt)αdt,  x a u(t,r) (xt)αdt  , (2)

where0≤r≤1andαisaknownconstantsuchthat0<α<1, ˜f(x)=(f(x,r),f(x,r))isapredetermineddatafunction and˜u(x)=(u(x,r),u(x,r))isthesolutionthatwillbedetermined.

Byputtingα=1/2inEq.(2),weobtainthestandardformofthenonlinearAbelfuzzyintegralequationas

(f(x,r),f(x,r))=  x a F(u(t,r)) √ xt dt,  x a F(u(t,r)) √ xt dt  , (3)

wherethefunction(f(x,r),f(x,r))isagivenreal-valuedfunction,and(F (u(x,r)),F(u(x,r)))isanonlinearfunction of(u(x,r),u(x,r)).Recallthattheunknownfunction(u(x,r),u(x,r))occursonlyinsidetheintegralsignfortheAbel fuzzyintegralEq.(3).

4. ThehomotopyanalysismethodforsolvingAbelfuzzyintegralequations

LetusconsidertheAbelfuzzyintegralEq.(2).WefirstremarkthatEq.(2)isnotwritteninthecanonicalform ofHAM,necessaryforcalculatingthedecompositionsolutionseries.Furthermore,thelinearoperatordefinedbyEq.

(2) generallydoes nothaveaninverse so itis difficulttoobtain aprecisenumericalsolution byHAM.Forthese considerations,webeginouranalysisbyputtingα=1/2andwritingEq.(2)as:

(f(x,r),f(x,r))=  x a u(x,r)+u(t,r)−u(x,r) √ xt dt,  x a u(x,r)+u(t,r)−u(x,r) √ xt dt  , (4) thus (f(x,r),f(x,r))=  x a u(x,r) √ xtdt+  x a u(t,r)−u(x,r) √ xt dt,  x a u(x,r) √ xtdt+  x a u(t,r)−u(x,r) √ xt dt  , (5) so (f(x,r),f(x,r))=  2√xau(x,r)+  x a u(t,r)−u(x,r) √ xt dt,2 √ xau(x,r)+  x a u(t,r)−u(x,r) √ xt dt  , (6) therefore,itisclearthatEq.(2)canbereplacedbyasuitableequivalentexpression(6),whichiswritteninthecanonical formandthenitcanbesolvedbymeansoftheHAMdecompositionmethod.PriortoapplyingHAMforEq.(6)we rewriteEq.(6)inthefollowingform

(u(x,r),u(x,r))=  f(x,r) 2√xa− 1 2√xa  x a u(t,r)−u(x,r) √ xt dt, f(x,r) 2√xa− 1 2√xa  x a u(t,r)−u(x,r) √ xt dt  , (7)

(5)

Eq.(7)isasystemoflinearAbelintegralequationsincrispcaseforeach0≤r≤1.Tosolvesystem(7)byHAM,we constructthezero-orderdeformationequation

(1−p)L[U(x,p;r)−Z0(x;r)]=pc  U(x,p;r)− f(x,r) 2√xa + 1 2√xa  x a U(t,p;r)−U(x,p;r) √ xt dt  , [(1−p)L[U(x,p;r)−Z0(x;r)]=pc  U(x,p;r)− f(x,r) 2√xa + 1 2√xa  x a U(t,p;r)−U(x,p;r) √ xt dt  , (8)

wherep∈[0,1]istheembeddingparameter,cisnon-zeroauxiliaryparameter,Lisanauxiliarylinearoperator,Z0(x,r) andZ0(x,r)areinitialguessesofu(x,r)andu(x,r)respectivelyandU(x,p;r)andU(x,p;r)areunknownfunction

dependonthevariablep.Usingtheabovezero-orderdeformationequation,withassumptionL[u]=u,wehave

(1−p)[U(x,p;r)−Z0(x;r)]=pc  U(x,p;r)−√f(x,r) xa + 1 2√xa  x a U(t,p;r)−U(x,p;r) √ xa dt  , (1−p)[U(x,p;r)−Z0(x;r)]=pc  U(x,p;r)−√f(x,r) xa + 1 2√xa  x a U(t,p;r)−U(x,p;r) √ xa dt  . (9)

Obviously,whenp=0andp=1,itholds ⎧ ⎨ ⎩ U(x,0;r)=Z0(x;r) U(x,0;r)=Z0(x;r) , (10) and U(x,1;r)=  f (x;r) 2√xa − 1 2√xa  x a U(t,1;r)−U(x,1;r) √ xt dt  , U(x,1;r)=  f(x;r) 2√xa − 1 2√xa  x a U(t,1;r)−U(x,1;r) √ xt dt  . (11)

Thus,aspincreasesfrom0to1,thesolution(U(x,p;r),U(x,p;r))variesfrominitialguess(Z0(x;r),Z0(x;r))tothe

solution(u(x;r),u(x;r)).ExpandingU(x,p;r)andU(x,p;r)inTaylorserieswithrespectp,wehave

U(x,p;r)=Z0(x;r)+ ∞ m=1 um(x;r)pm, U(x,p;r)=Z0(x;r)+ ∞ m=1 um(x;r)pm, (12) where um(x;r)= 1 m! dmU(x,p;r) dpm |p=0, um(x;r)= 1 m! dmU(x,p;r) dpm |p=0. (13)

ItshouldbenotedthatU(x,0;r)=Z0(x;r)andU(x,0;r)=Z0(x;r).Differentiatingthezero-orderdeformationEq. (9)mtimeswithrespecttotheembeddingparameterpandthensettingp=0andfinallydividingthembym!,wehave

um(x;r)−χmum−1(x;r)=  um−1(x;r)+(χm−1) f(x;r) 2√xa+ 1 2√xa  x a um−1(t;r)−um−1(x;r) √ xt dt  , um(x;r)−χmum−1(x;r)=  um−1(x;r)+(χm−1) f(x;r) 2√xa+ 1 2√xa  x a um−1(t;r)−um−1(x;r) √ xt dt  . (14)

(6)

Wherem≥1and

χm=

0 m≤1

1 m≥2 , (15)

andu0(x;r)=Z0(x;r)andu0(x;r)=Z0(x;r).IfwetakeZ0(x;r)=Z0(x;r)=0,thenwehave

u1(x;r)=−c f(x;r) 2√xa, u1(x;r)=−c f(x;r) 2√xa, .. . um(x;r)=(1+c)um−1+c 1 2√xa  x a um−1(t;r)−um−1(x;r) √ xt dt, um(x;r)=(1+c)um−1+c 1 2√xa  x a um−1(t;r)−um−1(x;r) √ xt dt, (16)

wherem≥2.Usingthefact 1 2√xa  x a um−1(t;r)−um−1(x;r) √ xt dt= 1 2√xa  x a um−1(t;r) √ xt dt− 1 2√xa  x a um−1(x;r) √ xt dt, 1 2√xa  x a um−1(t;r)−um−1(x;r) √ xt dt= 1 2√xa  x a um−1(t;r) √ xt dt− 1 2√xa  x a um−1(x;r) √ xt dt, (17) and 1 2√xa  x a um−1(x;r) √ xt dt= um−1(x;r) 2√xa  x a 1 √ xtdt, 1 2√xa  x a um−1(x;r) √ xt dt= um−1(x;r) 2√xa  x a 1 √ xtdt, (18)

andusingthefact  x a 1 √ xtdt=2 √ xa, (19)

forEqs.(16)–(19),weobtain

u1(x;r)=−c f(x;r) 2√xa, u1(x;r)=−c f(x;r) 2√xa, .. . um(x;r)=um−1(x;r)+c 1 2√xa  x a um−1(t;r) √ xt dt, um(x;r)=um−1(x;r)+c 1 2√xa  x a um−1(t;r) xt dt (20) wherem≥2.

Proposition1. ConsiderthefollowingAbelfuzzyintegralequations

 2n+1Γ(n+1) 1×3×5···×(2n+1)g(r)x n+(1/2), 2n+1Γ(n+1) 1×3×5···×(2n+1)g(r)x n+(1/2)  =  x 0 ˜u(t)xtdt. (21)

(7)

and √ πΓ((n+2)/2) Γ((n+3)/2)g(r)x (n+1)/2,πΓ((n+2)/2) Γ((n+3)/2)g(r)x (n+1)/2  =  x 0 ˜u(t)xtdt, (22) Theexactsolutionsinthosecasesaregivenby

˜u(x)=(g(r)xn,g(r)xn), (23)

and

˜u(x)=(g(r)xn/2,g(r)xn/2), (24)

respectively.Forc=−1,inthosecasestheserieswillconvergetotheexactsolutions.

Proof. WeconsiderEq.(21),forn=1,wehave  4 3g(r)x 3/2,4 3g(r)x 3/2  =  x 0 ˜u(t)xtdt , (25)

theexactsolutioninthiscaseisgivenby

˜u(x)=(g(r)x,g(r)x). (26) Bysubstitutingc=−1in(20),wehave u1(x,r)=f(x,r) 2√x = 4/3g(r)x3/2 2√x = 2 3g(r)x, u2(x,r)=2 3g(r)x− 1 2√x  2 3g(r)  ⎛ ⎝4 3x 3 2 ⎞ ⎠ = 2 3g(r)  1−2 3  x, u3(x,r)=2 3g(r)  1−2 3 2 x, .. . un(x,r)= 2 3g(r)  1−2 3 n x. (27) Then u(x,r)= ∞ n=0 2 3g(r)  1−2 3 n x=g(r)x. Similarly,wehave u1(x,r)= f(x,r) 2√x = 4/3g(r)x 3 2 2√x = 2 3g(r)x, u2(x,r)= 2 3g(r)x− 1 2√x  2 3g(r)  4 3x 3/2  = 2 3g(r)  1−2 3  x, u3(x,r)= 2 3g(r)  1−2 3 2 x, .. . un(x,r)= 2 3g(r)  1−2 3 n x. (28)

(8)

Then u(x,r)= ∞ n=0 2 3g(r)  1−2 3 n x=g(r)x.

Whichistheexactsolutionis˜u(x)=(g(r)x,g(r)x).Now,weassumethatEq.(21)istrueforn=m−1.Weprovethe relationsforn=m.Weconsiderthefollowingequation

 2m+1Γ(m+1) 1×3×5···×(2m+1)g(r)x m+(1/2), 2m+1Γ(m+1) 1×3×5···×(2m+1)g(r)x m+(1/2)  =  x 0 u(t,r) √ xtdt, (29)

whichistheexactsolution

˜u(x)=(g(r)xm,g(r)xm), (30)

wheremisanintegernumber.Usingc=−1inEq.(20)wehave

u1(x,r)= 2 mΓ(m+1) 1×3×5×···×(2m+1)g(r)x m, u2(x,r)= 2 mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) 2 xm, u3(x,r)= 2 mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) 3 xm, .. . un(x,r)= 2 mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) n xm. (31) Then u(x,r)= ∞ n=0 2mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) n xm=g(r)xm. Similarly,wehave u1(x,r)= 2mΓ(m+1) 1×3×5×···×(2m+1)g(r)x m, u2(x,r)= 2mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) 2 xm, u3(x,r)= 2mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) 3 xm, .. . un(x,r)= 2mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) n xm. (32) Then u(x,r)= ∞ n=0 2mΓ(m+1) 1×3×5×···×(2m+1)g(r)  1− 2 mΓ(m+1) 1×3×5×···×(2m+1) n xm=g(r)xm.

(9)

5. Numericalexamples

Here,we considerthree examples to illustrate the homotopy analysis method for solving Abel fuzzy integral equations.

Example1. ConsiderthefollowingAbelfuzzyintegralequation

 4 3rx (3/2),4 3(2−r)x (3/2)  =  x 0 ˜u(t)xtdt.

Theexactsolutioninthiscaseisgivenby ˜u(x)=(rx,(2−r)x) and 0≤r1. Bysubstitutingc=−1inEq.(20) u1(x,r)=2 3rx, u2(x,r)=2 3r  1−2 3  x, u3(x,r)=2 3r  1−2 3 2 x, .. . un(x,r)= 2 3r  1−2 3 n x, andalso u1(x,r)= 2 3(2−r)x, u2(x,r)= 2 3(2−r)  1−2 3  x, u3(x,r)= 2 3(2−r)  1−2 3 2 x, .. . un(x,r)= 2 3(2−r)  1−2 3 n x. Thus, (u(x,r),u(x,r))=  n=0 2 3r  1−2 3 n x,n=0 2 3(2−r)  1−2 3 n x  ,

wheretheabovesummationyieldstotheexactsolution ˜u(x)=(rx,(2−r)x).

Example2. ConsiderthefollowingAbelfuzzyintegralequation

 5 16(r 2+r)πx3, 5 16(4−r 3r)πx3  =  x 0 ˜u(t)xtdt.

(10)

Theexactsolutioninthiscaseisgivenby ˜u(x)=((r2+r)x(5/2),(4−r3−r)x(5/2)) and 0≤r1. Bysubstitutingc=−1inEq.(20) u1(x,r)= 5 32(r 2+r )πx(5/2), u2(x,r)= 5 32(r 2+r )  1− 5 32π  πx(5/2), u3(x,r)= 5 32(r 2+r)  1− 5 32π 2 πx(5/2), .. . un(x,r)= 5 32(r 2+r )  1− 5 32π n πx(5/2), andalso u1(x,r)= 5 32(4−r 3r )πx(5/2), u2(x,r)= 5 32(4−r 3r )  1− 5 32π  πx(5/2), u3(x,r)= 5 32(4−r 3r)  1− 5 32π 2 πx(5/2), .. . un(x,r)= 5 32(4−r 3r )  1− 5 32π n πx(5/2). Thus, ˜u(x)=  n=0 5 32(r 2+r )  1− 5 32π n πx(5/2),n=0 5 32(4−r 3r )  1− 5 32π n πx(5/2)  ,

wheretheabovesummationyieldstotheexactsolution ˜u(x)=((r2+r)x(5/2),(4−r3−r)x(5/2)).

Example3. ConsiderthefollowingnonlinearAbelfuzzyintegralequation

 2043 3003(r 2+ 2r)3x(13/2),2043 3003(6−3r 3 )3x(13/2)  =  x 0 ˜u3(t)xtdt. (33)

Theexactsolutioninthiscaseisgivenby

˜u(x)=((r2+2r)x2,(6−3r3)x2) and 0≤r1. Thetransformation

˜v(x)=˜u3(x), ˜u(x)=3

˜v(x), (34)

carriesEq.(34)into  2043 3003(r 2+ 2r)x(13/2),2043 3003(6−3r 3 )x(13/2)  =  x 0 ˜v(t)xtdt. (35)

(11)

SubstitutingEq.(35)inEq.(20)gives: v1(x,r)=1024 3003(r 2+ 2r)3x6, v2(x,r)=1024 3003(r 2+2r)3  1−1024 3003  x6, v3(x,r)=1024 3003(r 2+ 2r)3  1−1024 3003 2 x6, .. . vn(x,r)= 1024 3003(r 2+ 2r)3  1−1024 3003 n x6, andalso v1(x,r)= 1024 3003(6−3r 3 )3x6, v2(x,r)= 1024 3003(6−3r 3)3  1−1024 3003  x6, v3(x,r)= 1024 3003(6−3r 3 )3  1−1024 3003 2 x6, .. . vn(x,r)= 1024 3003(6−3r 3 )3  1−1024 3003 n x6. Thus, ˜v(x)=(v(x,r),v(x,r))=  n=0 1024 3003(r 2+2r)3  1−1024 3003 n x6,n=0 1024 3003(6−3r 3)3  1−1024 3003 n x6  ,

wheretheabovesummationyieldstotheexactsolution ˜v(x)=((r2+2r)3x6,(6−3r3)3x6).

Then,byusingEq.(34),wehave: ˜u(x)=((r2+2r)x2,(6−3r3)x2).

6. Conclusion

Inthispaper,linearandnonlinearAbelfuzzyintegralequationswereconvertedintotwocrisplinearandnonlinear Abelintegralequationsbasedontheembeddingmethod.Then,weappliedhomotopyanalysismethodtoobtainthe uniquesolutionofAbelfuzzyintegralequations.Itwasshownthatthisnewtechniqueiseasytoimplementandproduces accurateresults.Aconsiderableadvantageofthemethodisthattheapproximatesolutionsarefoundveryeasilyby usingcomputerprogramssuchasMatlab.Themethodcanalsobeextendedtothesystemoflinearintegro-differential equationswithvariablecoefficients,butsomemodificationsareneeded.

Acknowledgement

(12)

References

[1]D.Dubois,H.Prade,Towardsfuzzydifferentialcalculus,FuzzySetsSyst.8(1982)1–7. [2]R.Goetschel,W.Voxman,Elementaryfuzzycalculus,FuzzySetsSyst.18(1986)31–43. [3]O.Kaleva,Fuzzydifferentialequations,FuzzySetsSyst.24(1987)301–317.

[4]S.Nanda,Onintegrationoffuzzymappings,FuzzySetsSyst.32(1989)95–101.

[5]C.Wu,M.Ma,Ontheintegralsseriesandintegralequationsoffuzzyset-valuedfunctions,J.HarbinInst.Technol.21(1990)11–19. [6]F.Mirzaee,M.Paripour,M.KomakYari,NumericalsolutionofFredholmfuzzyintegralequationsofthesecondkindviadirectmethodusing

triangularfunction,J.Hypertens.1(2)(2012)46–60.

[7]H.T.Nguyen,Anoteontheextensionprincipleforfuzzysets,J.Math.Anal.Appl.64(1978)369–380.

[8]S.J.Liao,ProposedHomotopyAnalysisTechniquefortheSolutionofNonlinearProblems,ShanghaiJiaoTongUniversity,1992(Ph.D. dissertation).

[9]S.J.Liao,BeyondPerturbation:AnIntroductiontoHomotopyAnalysisMethod,ChapmanHall/CRCPress,BocaRaton,2003.

[10]S.Abbasbandy,TheapplicationofhomotopyanalysismethodtosolveageneralizedHirotaSatsumacoupledKdVequation,Phys.Lett.A361 (2007)478–483.

[11]S.Abbasbandy,Theapplicationofhomotopyanalysismethodtononlinearequationsarisinginheattransfer,Phys.Lett.A360(2006)109–113. [12]V.Singh,R.Pandey,O.Singh,NewstablenumericalsolutionsofsingularintegralequationsofAbeltypebyusingnormalizedBernstein

polynomials,Appl.Math.Sci.3(2009)241–255.

[13]F.Mirzaee,NumericalsolutionofFredholmfuzzyintegralequationsofthesecondkindusinghybridofblock-pulsefunctionsandTaylor series,AinShamsEng.J.5(2014)631–636.

[14]F.Mirzaee,M.Paripour,M.KomakYari,ApplicationoftriangularanddeltabasisfunctionstosolvelinearFredholmfuzzyintegralequation ofthesecondkind,Arab.J.Sci.Eng.39(2014)3969–3978.

[15]F.Mirzaee,M.Paripour,M.KomakYari,ApplicationofhatfunctionstosolvelinearFredholmfuzzyintegralequationofthesecondkind,J. Intell.FuzzySyst.(2014)(inpress).

[16]M.Ma,M.Friedman,A.Kandel,Dualityinfuzzylinearsystems,FuzzySetsSyst.109(2000)55–58.

[17]S.Gal,Approximationtheoryinfuzzysetting,in:HandbookofAnalytic-computationalMethodsinAppliedMathematics,Chapman/CRC, BocaRaton,NewYork,2000.

[18]G.A.Anastassiou,FuzzyMathematics:ApproximationTheory,Springer,Heidelberg,2010. [19]H.Wu,ThefuzzyRiemannintegralanditsnumericalintegration,FuzzySetsSyst.110(2000)1–25. [20]Wu.Hc,TheimproperfuzzyRiemannintegralanditsnumericalintegration,Inform.Sci.11(1999)109–137. [21]A.D.Polyanin,A.V.Manzhirov,HandbookofIntegralEquations,CRCPress,BocaRaton,1998.

References

Related documents

Other reasons given include the provision of education on the effects of drugs, religious beliefs, observation of the effects of drug abuse on past users, personal discipline

This research is a first and critical attempt towards understanding the present and future of water demand and supply capacity of Istanbul and developing a time-series demand

&#34;Print monthly sales report&#34; should be as hard as &#34;sell soft drinks&#34;, so it is worth 4 story points and we have totally 17 story points:.. User story

GGBFS is the most valuable due to its cementitious properties and it is often mixed with Portland cement to produce slag cement The use of ground granulated blast furnace slag

the relationship between the colonial government and a colony’s press were the racial and. democratic practices of the colonial power on the one hand, and

PARTNERS FOR PREVENTION, http://www.partners4prevention.org/sites/default/files/preferred terminologyjfinal.pdf [http://perma.cc/UA9P-LCXY] (last visited Feb. This hierarchy

Configure and use driver filter and weighing for scheduler OpenStack Block Storage enables you to choose a volume back end based on back-end spe- cific properties by using

As a result, high annual rainfall amounts on the West Coast, South Island, during the last glacial period are inferred from stalagmite HW05-3 for periods coinciding with MIS 4