Reinforced Concrete Design Project of a 5 Story Residential Building-FINALI Rev(2)-02.03.2017

49 

Full text

(1)

EPOKA UNIVERSITY

FACULTY OF ARCHITECTURE AND ENGINEERING

CE 490 - SPECIAL TOPICS IN CIVIL

ENGINEERING

-

ASSIGNMENT

#1-DESIG OF A 5 SPAN CONTINUOUS BEAM THROUGH

EC-2

Submitted to: Enea MUSTAFARAJ, PhD Prepared by: Izet MEHMETAJ

ID: 42031603

(2)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 1 of 49 

CONTENTS 

INTRODUCTION ... 2 

MODELLING USING ETABS ... 3 

BEAM DESIGN ... 13 

COLUMN DESIGN ... 14 

STRUCTURE MODELLING USING SAP2000 ... 15 

DESIGN ANALYSIS... 16 

BILL OF QUANTITY ... 26 

APPENDIXES... 27 

(3)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 2 of 49 

Reinforced concrete design project of a 5

story residential building

INTRODUCTION

This report outlines the structural design of a real 5-storey reinforced concrete building through EN-2. The modeling and analysis of the structure is made using ETABS. The framing arrangement as well as column locations of the building were taken with the reference to the provided architectural drawings (Appendix I-VIII). The structure system of this residential building is a reinforced concrete frame where a shear wall encase the elevator shaft.

The details of the design include: - Beam sizes:  500x400 mm C25/30 - Column sizes:  500x500 mm C25/30 - Slab thickness:  200 mm C20/25 - Story height:  Ground floor: 3,3 m  Other floors: 3 m Characteristics of the values of actions include:

 Dead load

 Live load: q= 2 kN/m2 (EN 1, table 6.2, category A of loaded areas).

 Shtresat: weight of slab layers taken as 1,94 kN/m2 with ref. to “Material per Workshop, Endri

Zhuleku”; type: dead load.

 Muret 12 cm: weigh of internal partition walls of 12 cm thickness taken as 1,2 kN/m2 with ref.

to “Material per Workshop, Endri Zhuleku”. type: super dead.

 Muret 30 cm: weight of the external surrounding walls taken as 3,0 kN/m with ref. to “Material per Workshop, Endri Zhuleku”; type: super dead.

 EQX earthquake load in X direction; type seismic.  EQY earthquake load in Y direction; type seismic.

Earthquake parameters considered are:  ag/g = 0,25

 ground type C  behavior factor 4, 68

(4)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 3 of 49 

MODELLING USING ETABS

A step by step procedure for ETABS modeling is provided as below: 1. Open the ETABS program.

2. Click on the file menu →New model. A new table Model Idealization will appear and click on Use Saved User Default Settings

3. Then New Model Quick Templates will be displayed where the grid line and spacing between lines as well as story height are set.

4. After that the grid needs to be modified as per structural plan of the building. To do that click on Edit → Edit stores and grid systems. Than click on Modify/Show Story data→Refresh View to edit stores. Also click Modify/Show Grid data→OK to edit grid line spacings.

(5)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

5. Click the Define Menu → Material properties. Add new material C20/25 and C30/37 to define the concrete properties.

(6)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 5 of 49 

7. Then the model is generated. The beam is drawn using Draw Beam//Brace Command by defining the Properties of Object. The column is drawn using Draw Beam//Brace Command by defining the Properties of Object.

a. Draw the Slabs on the plan view: Draw → Draw Floor/Wall objects → Quick Draw Floor/Wall, then select the previously defined slab from the (Properties of Object).

b. Draw the Shear walls/base walls on the plan view: Draw → Draw Floor/Wall objects → Quick Draw Floor/Wall, then select the previously defined wall from the (Properties of Object).

8. Click on Define → Diaphragms

a. Diaphragms D0 → Modify/show diaphragm b. Rigidity → Rigid → OK

9. Define Loads: Go into (Define → Load patterns) a. The dead and live load are defined first.

b. The loads as shown are added as new kind of load by writing into the empty box (load name) and choose (load type) from the drop list → set weight multiplier to 0 or 1 as automatically set by the program → press Add/new Load. Press OK in order to close the window.

(7)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

10. To assign Live load it is checked the Eurocode 1 and depending on the category of building it is defined to be qk= 2kN/m2 (EN 1, table 6.2, category A of loaded areas). Then:

a. Select → Select → by Properties → Slab sections →Select SLAB→ close b. Assign → Shell Loads → Uniform

i. Load case: Live → Load = 2kN/m2 → Direction: Gravity

→ OK

11. To assign Muret 30 load 3,0 kN/m:

a. Select → Select → by Properties → Frame sections →Select B4.25→ close b. Assign → Frame Loads → Distributed

i. Load pattern name: Muret 30 → Load = 3,0 kN/m → Direction: Gravity → Add to existing loads → OK

12. To assign Muret 12 load 1,2 kN/m2:

a. Select → Select → by Properties → Slab sections →Select SLAB→ close b. Assign → Shell Loads → Uniform

i. Load pattern name: Muret 12 → Load = 1,2 kN/m2 → Direction: Gravity →

Add to existing loads → OK

13. To assign Shtresat load 1,94 kN/m2:

a. Select → Select → by Properties → Slab sections →Select SLAB→ close

b. Assign → Shell Loads → Uniform

i. Load pattern name: Shtresat → Load = 1,94  kN/m2 → Direction: Gravity →

(8)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 7 of 49  14. To assign EQX load

a. Turn back into Define → Load Patterns

b. Press on the EQX that was added into the list before→ Modify Lateral Load

c. Choose X Dir + Eccen Y

d. We do the same for EQY but choose Y Dir + Eccen X e.

15. We go to Define →Load cases and select EQX→ Load Case Type →Response Spectrum → Modify/ show case

a. Loads applied → Add → Load type: Acceleration → Load name U1 → Scale factor 9806, 65 → OK

b. We do the same for EQY but choose Load name U2 c. We do the same for EQY but choose Y Dir + Eccen X

16. Click on Define → Mass source

a. Mass Source Data → Mass Multipliers for Load Patterns → Load → Multiplier

17. Click on Define → Functions → Response Spectrum

a. Choose Function Type to Add → Eurocode 8 2004 → Add New Function i. Function name: Durres

ii. Function Damping Ratio = 0.05 iii. Country: CEN Default

iv. Horizontal Ground Acceleration ag/g: 0.25

v. Ground Type: C vi. Behavior Factor q: 4.68

(9)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

18. To add load combinations, preform the following steps:-a. Define → Load Combinations

i. Add a new combo.

ii. Name the combo, and select Add.

iii. Choose a case, and input the scale factor, and press add. iv. Another case, and input its scale factor, and press add.

v. OK.

b. In our case four main combination are considered 1. 1, 35gk + 1, 50qk (base combination)

2. Gk (Muret 30, Muret 12, Shtresat load combination)

3. COMBOX = 1, 35gk + 1, 50qk + 0,75EX

4. COMBOY = 1, 35gk + 1, 50qk + 0,75EY

19. Analysis: start running the analysis. a. Analyze → Run Analysis

b. Design → Concrete Frame Design → Start Design/Check

c. Detailing → Display detailed beam/column/shear wall/ slab reinforcement and rebar spacing.

(10)

Table 1 ‐ Base Reactions  Combo FX (kN) FY (kN) FZ (kN) MX (kN*m) MY (kN*m) MZ (kN*m) X Y Z Dead 0 0 32890.1099 177468.1237 -716955 0 0 0 0 Live 0 0 6565.61 35993.1328 -143573 0 0 0 0 EQX Max 62362.3019 597.7542 0 7124.5611 866093.9125 514197.1925 0 0 0 EQY Max 597.7481 69934.62 0 938904.6065 7313.3169 1528145 0 0 0 Muret30 0 0 1790.7 8292.7275 -37861.68 0 0 0 0 Muret12 0 0 7878.732 43191.7593 -172287 0 0 0 0 Shtresat 0 0 39258.7516 212381.4625 -856221 0 0 0 0 Table 2 ‐ Joint Reactions  Stor y Joint Label Combo FX (kN) FY (kN) FZ (kN) MX (kN*m) MY (kN*m) MZ (kN*m) Base 1 Dead 10.8497 -53.4382 246.7726 9.819 12.6398 0.0168 Base 1 Live 2.9464 -9.9575 36.8151 2.083 3.7343 0.0098 Base 1 EQX Max 1700.104 345.983 2248.522 86.3083 259.5427 5.5338 Base 1 EQY Max 3491.608 1848.298 10691.47 519.9154 978.3087 3.3383 Base 1 Muret30 0.5409 -7.0294 24.6014 1.2904 1.7091 0.0016 Base 1 Muret12 3.5356 -11.949 44.1781 2.4996 4.4812 0.0118 Base 1 Shtresat 13.7077 -63.0969 282.4832 11.8395 16.2621 0.0263

Table 3 ‐ Beam Forces 

Story Beam Combo Statio

n P (kN) V2 (kN) V3 (kN) T (kN*m) M2 (kN*m) M3 (kN*m)

Story6 B5 EQX Max 0.3 97.8631 220.8934 9.3848 73.4729 9.1058 508.0253 Story6 B5 EQX Max 0.612 97.8631 220.8934 9.3848 73.4729 6.5811 439.0013 Story6 B5 EQX Max 0.925 97.8631 220.8934 9.3848 73.4729 4.5726 369.9793 Story6 B5 EQY Max 0.3 23.7288 28.2066 15.7717 133.0357 5.642 40.498 Story6 B5 EQY Max 0.612 23.7288 28.2066 15.7717 133.0357 2.2448 32.248 Story6 B5 EQY Max 0.925 23.7288 28.2066 15.7717 133.0357 5.1797 24.396 Story6 B5 Muret30 0.3 -1.7657 -6.0506 0.1194 0.4815 0.0363 -3.3676 Story6 B5 Muret30 0.612 -1.7657 -5.1131 0.1194 0.4815 -0.001 -1.6232 Story6 B5 Muret30 0.925 -1.7657 -4.1756 0.1194 0.4815 -0.0384 -0.1718 Story6 B5 Muret12 0.3 -3.9197 -7.9209 0.3091 -3.2816 0.0979 -5.8342 Story6 B5 Muret12 0.612 -3.9197 -7.9209 0.3091 -3.2816 0.0013 -3.3589 Story6 B5 Muret12 0.925 -3.9197 -7.9209 0.3091 -3.2816 -0.0953 -0.8836 Story6 B5 Shtresat 0.3 -14.971 -33.6743 1.1701 -9.6269 0.3703 -23.5908 Story6 B5 Shtresat 0.612 -14.971 -32.1122 1.1701 -9.6269 0.0046 -13.3117 Story6 B5 Shtresat 0.925 -14.971 -30.5502 1.1701 -9.6269 -0.361 -3.5207 Page 9 of 49 

(11)

Table 4 ‐ Column Forces  Story Colu mn Combo Stat ion P (kN) V2 (kN) V3 (kN) T (kN*m) M2 (kN*m) M3 (kN*m)

Story6 C1 EQX Max 0 216.322 438.2562 205.476 37.1105 198.89 414.0628 Story6 C1 EQX Max 1.25 216.322 438.2562 205.476 37.1105 116.418 138.6292 Story6 C1 EQX Max 2.5 216.322 438.2562 205.476 37.1105 345.671 683.5219 Story6 C1 EQY Max 0 412.138 79.8164 409.572 16.0435 296.112 122.4189 Story6 C1 EQY Max 1.25 412.138 79.8164 409.572 16.0435 305.830 22.9904 Story6 C1 EQY Max 2.5 412.138 79.8164 409.572 16.0435 789.683 77.3242 Story6 C1 Muret30 0 -14.7088 -3.194 2.0462 0.0211 2.537 -3.8808 Story6 C1 Muret30 1.25 -14.7088 -3.194 2.0462 0.0211 -0.0207 0.1118 Story6 C1 Muret30 2.5 -14.7088 -3.194 2.0462 0.0211 -2.5784 4.1043 Story6 C1 Muret12 0 -24.9894 -11.1093 3.9404 0.0094 5.0264 -13.2774 Story6 C1 Muret12 1.25 -24.9894 -11.1093 3.9404 0.0094 0.1009 0.6092 Story6 C1 Muret12 2.5 -24.9894 -11.1093 3.9404 0.0094 -4.8247 14.4959 Story6 C1 Shtresat 0 -132.225 -39.3148 14.6255 0.0365 18.6273 -47.0365 Story6 C1 Shtresat 1.25 -120.978 -39.3148 14.6255 0.0365 0.3454 2.107 Story6 C1 Shtresat 2.5 -109.731 -39.3148 14.6255 0.0365 -17.9365 51.2506 Table 5 ‐ Joint Displacement 

Story Label Combo UX (mm) UY

(mm)

UZ (mm)

RX (rad) RY (rad) RZ (rad)

Story6 1 Dead 0.02341 0.3 -0.5 -1.4E-05 0.000163 1E-06 Story6 1 Live 0.006324 0.1 -0.1 -3E-06 5.1E-05 4.252E-07 Story6 1 EQX Max 128.5 76 3.4 0.002417 0.004101 0.003469 Story6 1 EQY Max 1.7 200.6 10.6 0.005449 0.000311 0.000552 Story6 1 Muret30 -0.001784 0.01825 -0.1 4E-06 1.8E-05 3.521E-07 Story6 1 Muret12 0.007589 0.1 -0.1 -3E-06 6.1E-05 1E-06 Story6 1 Shtresat 0.02954 0.3 -0.6 -1.7E-05 0.000212 1E-06 Story6 2 Dead 0.02557 0.3 -0.5 1E-05 0.000119 -3.685E-07 Story6 2 Live 0.007153 0.1 -0.1 3E-06 3.6E-05 1.873E-08 Story6 2 EQX Max 126.3 76 1.7 0.002482 0.004996 0.003415 Story6 2 EQY Max 1 200.6 3.5 0.005671 0.000185 0.000544 Story6 2 Muret30 -0.00124 0.01825 -0.1 6E-06 1.2E-05 1.861E-07 Story6 2 Muret12 0.008583 0.1 -0.1 3E-06 4.4E-05 2.247E-08 Story6 2 Shtresat 0.0325 0.3 -0.6 1.3E-05 0.000154 -3.503E-07

(12)

Table 6 ‐ Modal Periods and Frequencies 

Case Mode Period (sec) Frequency (cyc / sec) Circular Frequency Eigen Value (rad2 / sec2) Modal Shape

Modal 1 0.797 1.254 7.8815 62.1173 E-W Lateral

Modal 2 0.776 1.289 8.1004 65.6162 N-S Lateral

Modal 3 0.606 1.65 10.3681 107.4984 Squeezing

Modal 4 0.246 4.06 25.5115 650.8347 Torsional

Modal 5 0.235 4.255 26.7346 714.7366 Breathing

Table 7 ‐ Story Forces 

Story  Combo  Location  P (kN)  VX (kN)  VY (kN)  T (kN*m)  MX 

(kN*m) 

MY (kN*m) 

Story6  Dead  Top  3552.52 0 0 0 18920.22  ‐77622.68

Story6  Dead  Bottom  4513.74 0 0 0 24163.57  ‐98625.25

Story6  Live  Top  940.23 0 0 0 5095.25  ‐20544.02

Story6  Live  Bottom  1000.83 0 0 0 5616.41  ‐21868.13 Story6  EQX Max  Top  0 20027.30 207.46 165776.612 0  0 Story6  EQX Max  Bottom  0 20027.30 207.46 165776.612 622.40  60081.91 Story6  EQY Max  Top  0 263.27 20773.6 452004.612 0  0 Story6  EQY Max  Bottom  0 263.27 20773.6 452004.612 62320.95  789.8285

Story6  Muret30  Top  279.15 0 0 0 1288.99  ‐5466.87

Story6  Muret30  Bottom  279.15 0 0 0 1288.99  ‐5466.87 Story6  Muret12  Top  1128.27 0 0 0 6114.31  ‐24652.83 Story6  Muret12  Bottom  1200.99 0 0 0 6739.70  ‐26241.76 Story6  Shtresat  Top  4464.54 0 0 0 23862.62  ‐97550.39 Story6  Shtresat  Bottom  5484.54 0 0 0 29611.49  ‐119837

Story5 Dead Top 8046.273 0 0 0 42890.85 -175811

Story5 Dead Bottom 9007.489 0 0 0 48134.20 -196814 Story5 Live Top 1941.06 0 0 0 10711.67 -42412.161 Story5 Live Bottom 2001.66 0 0 0 11232.83 -43736.271 Story5 EQX Max Top 0 36665.33 333.1913 301486.76 622.40 60081.919 Story5 EQX Max Bottom 0 36665.33 333.1913 301486.76 1512.433 169383.01 Story5 EQY Max Top 0 342.956 38599.87 840796.33 62320.95 789.8285 Story5 EQY Max Bottom 0 342.956 38599.87 840796.33 177093.1 1704.7713 Story5 Muret30 Top 587.25 0 0 0 2717.68 -12198.855 Story5 Muret30 Bottom 587.25 0 0 0 2717.68 -12198.855 Story5 Muret12 Top 2329.272 0 0 0 12854.01 -50894.593 Story5 Muret12 Bottom 2401.992 0 0 0 13479.40 -52483.525 Story5 Shtresat Top 9929.101 0 0 0 53281.18 -216951 Story5 Shtresat Bottom 10949.09 0 0 0 59030.05 -239238

(13)

Table 8 ‐ Story Drifts 

Story Combo Label Item Drift X (m) Y (m) Z (m)

Story6 EQX Max 66 Max Drift X 0.00829 19.85 9.65 16.8 Story6 EQX Max 81 Max Drift Y 0.00357 0 2.475 18.3 Story6 EQY Max 143 Max Drift X 0.000488 40.925 0 18.3 Story6 EQY Max 31 Max Drift Y 0.011167 21.85 7.55 16.8 Story5 EQX Max 32 Max Drift X 0.009129 21.85 9.65 13.8 Story5 EQX Max 4 Max Drift Y 0.004983 0 4.95 15.3 Story5 EQY Max 22 Max Drift X 0.000349 43.7 0 15.3 Story5 EQY Max 66 Max Drift Y 0.013422 19.85 9.65 13.8 Story4 EQX Max 1 Max Drift X 0.009577 0 10.95 12.3 Story4 EQX Max 81 Max Drift Y 0.006008 0 2.475 12.3 Story4 EQY Max 5 Max Drift X 0.000557 0 0 12.3 Story4 EQY Max 5 Max Drift Y 0.015494 0 0 12.3 Story3 EQX Max 1 Max Drift X 0.009431 0 10.95 9.3 Story3 EQX Max 2 Max Drift Y 0.006418 0 9.65 9.3 Story3 EQY Max 5 Max Drift X 0.00091 0 0 9.3 Story3 EQY Max 2 Max Drift Y 0.017272 0 9.65 9.3 Story2 EQX Max 18 Max Drift X 0.007585 43.7 10.95 6.3 Story2 EQX Max 146 Max Drift Y 0.004624 43.7 2.475 6.3 Story2 EQY Max 6 Max Drift X 0.000356 5.55 0 6.3 Story2 EQY Max 22 Max Drift Y 0.013565 43.7 0 6.3

Table 9 ‐ Story Stiffness 

Story Case Shear X

(kN) Drift X (mm) Stiffness X (kN/m) Shear Y (kN) Drift Y (mm) Stiffness Y (kN/m) Story6 EQX 20027.3065 21.6 929087.769 207.4668 5.5 0 Story5 EQX 36665.3316 25.5 1440661.265 333.1913 7.6 0 Story4 EQX 48883.7795 27.3 1792748.425 408.8922 9.2 0 Story3 EQX 57332.4297 25.6 2236920.899 502.344 9.8 0 Story2 EQX 61904.7614 20.7 2991601.088 525.3456 7.1 0 Story1 EQX 62362.2998 2.4 26016013 597.7529 0.8 0 Story6 EQY 263.2762 0.8 0 20773.6527 28.7 722899.659 Story5 EQY 342.9562 0.6 0 38599.8732 38.2 1010085.453 Story4 EQY 452.5438 0.9 0 52323.5254 44.2 1183206.334 Story3 EQY 502.7734 1.4 0 62181.9088 45.2 1375045.435 Story2 EQY 576.6668 0.6 0 67867.4714 37.1 1827973.089 Story1 EQY 597.7456 1 0 69934.625 9.7 7243636.126 Page 8 of 49  Page 8 of 49  Page 8 of 49  Page 12 of 49 

(14)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 13 of 49 

BEAM DESIGN

The beam was designed for the max bending moment as well as max shear in X direction, Moment 3-3 (COMBy) for plane YZ (X=A) as well as Shear Force 2-2 (COMBy) for plane XZ (Y=1)..

In this section to illustrate the beam reinforcing a beam along B axes was considered.

The beam design was made with reference to Eurocode 2 (fig.1, fig.2) and all the necessary calculations were made using an excel spreadsheet. The beam design calculation and RC detailing are shown in Appendix IX, X.

Fig. 2‐ Procedure for defining flexural reinforcement

(15)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

COLUMN DESIGN

For the column design the maximum axial and moment load was generated using SAP2000 analysis for the combination (COMBy) for plane XZ (Y=1) and the reinforcement was found with reference to Eurocode 2. All the necessary calculations were made using an excel spreadsheet. The column design calculation as well as RC detailing are shown in Appendix XII.

For the slab design the moment M22 generated using SAP2000 analysis for the combination COMBOY (1, 35gk + 1, 50qk + 0,75EY) and the reinforcement was found with reference to Eurocode 2. All the necessary calculations were made using an excel spreadsheet. The column design calculation and RC detailing are shown in Appendix XIII.

(16)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 15 of 49 

STRUCTURE MODELLING USING SAP2000

The step-by-step process of structure modelling using SAP2000 is very similar to the one using ETABS, which is described in the section above. Also the physical parameters of the structure and its elements, as well as the materials used, loads and their respective combinations are applied in the design analysis process.

(17)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

DESIGN ANALYSIS

Once the modelling has finished, we run design analysis. We can do that by clicking:

Main Menu → Run Analysis → Display → Show Deformed Shape → Case/Combo Name → COMBy → OK.

Deformed Shape (COMBy)

Main Menu → Run Analysis → Display → Show Deformed Shape → Case/Combo Name → MODAL → OK.

Modal 1

(18)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 17 of 49 

Modal 4 Modal 5

Display → Show Forces/Stresses → Joints → COMBy → Display Types → Tabulated → OK.

Joint Reactions (COMBy) in plan YZ

(19)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

 S11: Direct stress (force per unit area) acting on the positive and negative 1 faces in the 1-axis direction.

 S22: Direct stress (force per unit area) acting on the positive and negative 2 faces in the 2-axis direction.

S12: Shearing stress (force per unit area) acting on the positive and negative 1 faces in the

2-axis direction and acting on the positive and negative 2 faces in the 1-2-axis direction.

 Smax: Maximum principal stress (force per unit area). Note that by definition principal stresses

are oriented such that the associated shearing stress is zero.

 Smin: Minimum principal stress (force per unit area). Note that by definition principal stresses

are oriented such that the associated shearing stress is zero.  SVM: Von Moses principal stress (force per unit area).

 S13: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 1 faces in the 3-axis direction.

 S23: Out-of-plane shearing stress (force per unit area) acting on the positive and negative 2 faces in the 3-axis direction.

SmaxV: Maximum principal shearing stress (force per unit area). Note that by definition principal shearing

stresses are oriented on faces of the element such that the associated shears per unit length on perpendicular faces are zero

(20)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 19 of 49 

S11 of Foundation slab (COMBy).

S11 of 6th floor slab (COMBy).

(21)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

S22 of 6th floor slab (COMBy).

S12 foundation (COMBy).

(22)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 21 of 49 

Smax foundation (1.35GK + 1.5QK).

Smax 6th floor (1.35GK + 1.5QK).

(23)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Smin 6th floor (1.35GK + 1.5QK).

SVM foundation (1.35GK + 1.5QK).

(24)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 23 of 49 

S13 foundation (COMBy).

S13 6th floor (COMBy).

(25)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

S23 6th floor (COMBx).

SMaxV foundation (1.35GK + 1.5QK).

(26)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 25 of 49 

Stresses: Axial stress S11 is available for all frame and cable sections. The shear stresses S12 and S13 are available for certain types of frame sections. When shear stresses are available, principal stresses Smax and Smin and von Moses stress SVM are also available for algebraic (non-envelope) load cases and

combinations.

Main Menu → Run Analysis →Display → Show Forces/Stresses → Frames/Cables/Tendons → Display Type → Force

Axial Force (COMBy) for plane XZ (Y=1).

(27)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Shear Force 3-3 (COMBx) for plane YZ (X=A).

Torsion (COMBx) for plane XZ (Y=1).

(28)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 27 of 49 

Moment 3-3 (COMBy) for plane YZ (X=A).

Main Menu → Run Analysis →Display → Show Forces/Stresses → Frames/Cables/Tendons → Display Type → Stress

S11 (1.35GK + 1.5QK) for plane XZ (Y=1).

(29)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

S13 (1.35GK + 1.5QK) for plane XZ (Y=1).

SMax (1.35GK + 1.5QK) for plane XZ (Y=1).

(30)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

Page 29 of 49 

(31)

CE 401 - SUPERVISED GROUP STUDY AND RESEARCH

BILL OF QUANTITY

The bill of quantity (BOQ) reflects the full value of the building or construction to be implemented. It is the main document for the implementation of works which provides the necessary funds for the execution of works.

BOQ is giving some cost orientation of the building to be constructed and it is calculated using given building cost data (Manuali teknik i cmimeve te punimeve te ndertimit dhe analizat teknike te tyre

2010).

BOQ is a schedule which categories, details and quantifies the materials and other cost items to be used in construction project. Also, direct costs and indirect costs are to be considered for complete cost of the project which are covered in different parts of the BOQ.

Generally BOQ is in tabular form which contents description, unit, quantity, rate & amount in different columns.

No .: Descriptio n o f the wo rking activity Unit QTY Price/Unit (ALL) AMOUNT (ALL)

1 Earthworks with excavator m3 2000,00 400,00Lek 800.000,00Lek 2 Earthworks with labor force m3 600,00 300,00Lek 180.000,00Lek 3 Electro-pump wh 130,00 80,00Lek 10.400,00Lek 4 Soil fills m3 700,00 100,00Lek 70.000,00Lek 5 Mat foundation RC M250 m3 196,00 9.000,00Lek 1.764.000,00Lek 6

RC concrete slab layer

underground M250 m3 72,00 9.000,00Lek 648.000,00Lek 7

RC shear wall underground

M200 m3 62,00 12.000,00Lek 744.000,00Lek 8

Wall hydroisolation using

bitumen m2 300,00 600,00Lek 180.000,00Lek 9 Columns RC M250 m3 122,00 13.000,00Lek 1.586.000,00Lek 10 Beams RC M250 m3 220,00 13.000,00Lek 2.860.000,00Lek 11 Shear wall RC M250 m3 35,00 14.000,00Lek 490.000,00Lek 12

Ribbed slab h=25 cm with

polysterol fill m2 2630,00 2.600,00Lek 6.838.000,00Lek 13 RC stairs M250 m3 12,00 14.000,00Lek 168.000,00Lek 14 RC lintel for window/door m3 30,00 12.000,00Lek 360.000,00Lek 15 Concrete M200 for sublayer m3 27,00 6.400,00Lek 172.800,00Lek 16 Steel 500 >ø10 kg 36000,00 90,00Lek 3.240.000,00Lek 17 Steel 500 <ø10 kg 90000,00 82,00Lek 7.380.000,00Lek 27.491.200,00Lek

BILL OF QUANTITY

OBJECT: 5 sto ry residential building + 1 undergro und sto ry

(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)

Section design to Eurocode 2 (BS EN 1992-1)

RECTANGULAR BEAMS

INPUT

Location1st Floor, Span 4

Beam type

INTERIOR SPAN

M kNm

587.0

fck

25

N/mm² γc =

1.50

δ

0.85

fyk

500

N/mm² γs =

1.15

span mm

8000

Steel class

A

∆cdev

10

h mm

500

REBAR Ø COVER to main bars

b mm

400

Tension

32

42

gk kN/m

25.80

Comp'n

20

35

qk kN/m

27.00

Side

--

42

ψ2 =

0.3

Dwelling

brittle partitions?

YES

OUTPUT

1st Floor, Span

.

Effective depth,

d = 500 - 42 - 32/2 = 442.0 mm

Neutral axis,

x = [442-√(442² -2E6x587x1.5/0.85/400/25)]/0.8 = 10000.0 mm

(x/d) limit = 0.450 x/d actual = 22.624 > 0.450, x = 198.9 mm

Lever arm,

z = 442 - 0.4 x 198.9 = 362.4 mm

d2 = 35 + 20/2 = 45 mm

Gross fsc = 434.8 N/mm² from strain diagram

Net fsc = 434.8 - 0.85 x 25 /1.5 = 420.6 N/mm²

Excess M = 587 - 326.8 = 260.2 kNm

Compession steel,

As2 = 260.2E6 /420.6 /(442 - 45) = 1558 mm²

PROVIDE 5H20 COMPRESSION STEEL = 1571 mm²

Steel stress,

fyd = 434.8 N/mm² from strain diagram

 319 N/mm²

Tension steel,

As = 326.8E6/362.4/434.8 + 1558.2 x 420.6/434.8 = 3581 mm²

9.2.1.1 (1)

As min = 1.3 x 400 x 500 = 236 mm²

7.3.2 (1)

As crack = 400 x 0.86 x 2.565 x 92.5/500 = 163 mm

.

7.4.2

As def = 3757 mm²

PROVIDE 5H32 TENSION STEEL = 4021 mm²

DEFLECTION

SLS M =587 x 52.8 /75.3 = 484.0 kNm

σs = 319 N/mm²

7.4.2 (2)

Modification factor = 310 /319.3 = 0.971

Permissible L/d = 0.971 x 0.875 x 22.246 = 18.90

Actual L/d = 8000 /442 = 18.10 ok

.

(41)
(42)

Section design to Eurocode 2 (BS EN 1992-1)

BEAM SHEAR

INPUT

Location 1st Floor, Span 4

fck N/mm²

25

γc =

1.50

d bw

fywk N/mm²

500

γs =

1.15

500

400

Main Steel Link Ø Legs Side cover VEd n

Ø

25

10

2

30

45.5

70.91

No

2

mm No mm kN at face kN/m

OUTPUT

1st Floor, Span 4

6.2.2 (1)

A

sL

= 982 mm² = 0.491%

f

cd

= 16.7 N/mm²

equation (6.6)

 = 0.6(1 - 25/250) = 0.540 .

cotθ = 2.50

equation (6.9)

V

Rd,max

= 1 x 400 x 450.0 x 0.540 x 16.7 /2.90 /1000 = 558.6

ok 6.2.1 (8)

V

Ed

@ d = 45.52 - 70.91 x 0.5 = 10.1 kN

6.2.2 (1)

k = 1 + √(200 /500) = 1.632 .

equation (6.2)

V

Rd,c

= 0.12 x 1.632 cube root(0.491 x 25) = 90.4 kN

nominal links 9.2.2 (5)

A

sw

/s

(min)

= 0.08 x 400 /500 x √25 = 0.320 mm

equation (6.9)

A

sw

/s

(max)

= 0.5 x 400 /500 x 1.15 x 0.540 x 16.7 = 4.140 mm

ok equation (6.7)

A

sw

/s = 10.1E3 /(450.0 x 434.8 x 2.50) = 0.021 < 0.320

9.2.2 (6)

s

max,L

= 375 mm

s

max,T

= 375 mm

9.2.2 (8) ok

PROVIDE 2 legs T10 @ 375

Throughout

.

APPENDIX X

(43)

Section design to Eurocode 2 (BS EN 1992-1)

COLUMN DESIGN

INPUT

Location

Column 6, span 5,

fck

25

MPa

Axial load, NEd

446

kN fyk

500

MPa

Moment, MEd

177.5

kNm Main bar Ø

28

mm

height, h

500

mm Link Ø

8

mm

breadth, b

400

mm γc =

1.50

concrete

cover (to link )

25

mm γs =

1.15

steel

CALCULATIONS

from M

ED

As = [M - f

ck

.b.d

c

(h/2 - d

c

/2)] / [(h/2-d

2

).(

sc

+

st

).

c

]

from N

Ed

A

s

= (N - f

ck

.b.d

c

) / [(

sc

- 

st

).

c

]

Asc = Ast = As dc = min(h, x)

d

2

=

47

mm

f

ck

/

c

= 14.2

MPa

d =

453

mm

f

yk

/

s

= 434.8

MPa

from iteration, neutral axis depth, x =

105.0

mm

dc = 84.0

mm

αηf

ck

.b.d

c

c

=

475.9

kN

Steel comp strain = 0.00193

Steel tens strain = 0.01160

sc

=

386.6

MPa

(Comp. stress in rein

372 net

st

=

434.8

MPa

(Tensile stress in rein

435 net

from M, As =

479

mm²

rom N, As =

479

mm²

OUTPUT

ok but check cracking

Column 6, span 5, first floor

Requires 479mm² T&B:-

Links :

-PROVIDE 4T28

(ie 2T28 T&B = 1232mm² T&B - 1.23% o/a, @306

PROVIDE T8 @ 400

see clause 9.5.2 (4)

14.2 MPa

Notes Stresses in MPa Compression +ve

- - - Neutral axis

SYMMETRICAL RECTANGULAR COLUMN DESIGN MOMENTS ABOUT X AXIS ONLY

387 -435

Stress diagram

-0.01160 0.00193 0.00350

Strain diagram

APPENDIX XII

(44)
(45)

Section design to Eurocode 2 (BS EN 1992-1)

SOLID SLABS

INPUT

Location Monolithic slab

M kNm/m

45

fck N/mm²

25

γc =

1.50

δ

1.00

fyk N/mm²

500

γs =

1.15

span mm

5000

gk kN/m2

7.50

h mm

250

qk kN/m2

5.94

Bar Ø mm

10

Steel class

A

cover, Cnom mm

20

to this steel

Usage

Dwelling

∆cdev mm

10

Section location

INTERIOR SPAN

brittle partitions?

YES

OUTPUT

Monolithic slab

.

d = 250 - 20 - 10/2 = 225.0 mm

3.1.7 (3)

x = [225 - √(225² - 2000/0.85 x 45 x 1.5/25)]/0.8 = 18.2 mm

5.5 (4)

(x/d) limit = 0.600

x/d actual = 0.081 < 0.600 ok

Fig 3.5

z = 225 - 0.4 x 18.2 = 217.7 > 0.95d = 213.8

.

As = 45E6/500/213.8 x 1.15 = 484 > As min = 300 mm²/m

9.2.1.1 (1)

As min = 1.33 x 225 = 300 mm²/m

As def = 484 mm²/m

Provide H10 @ 150

= 524 mm²/m

Table A1.1 EN199

ψ

2

= 0.3 (Dwelling)

SLS udl = 7.5 + 1 x 5.94 = 13.44 kN/m², n = 7.5 x 1.35 + 5.94 x 1

SLS M = 45 x 13.44/19.04 = 31.77 k

s = 292.3 N/mm²

7.4.2 (2)

Modification factor = 310/292.3 = 1.061

Table 7.4

Permissible L/d = 1.061 x 106.39 = 112.85

(46)
(47)

No.: Description of the working

activity Unit QTY Price/Unit (ALL) AMOUNT (ALL)

1 Earthworks with excavator m3 2000.00 400.00Lek 800,000.00Lek

2 Earthworks with labor force m3 600.00 300.00Lek 180,000.00Lek

3 Electro-pump wh 130.00 80.00Lek 10,400.00Lek

4 Soil fills m3 700.00 100.00Lek 70,000.00Lek

5 Mat foundation RC M250 m3 196.00 9,000.00Lek 1,764,000.00Lek

6

RC concrete slab layer

underground M250 m3 72.00 9,000.00Lek 648,000.00Lek

7

RC shear wall underground

M200 m3 62.00 12,000.00Lek 744,000.00Lek

8

Wall hydroisolation using

bitumen m2 300.00 600.00Lek 180,000.00Lek

9 Columns RC M250 m3 122.00 13,000.00Lek 1,586,000.00Lek

10 Beams RC M250 m3 220.00 13,000.00Lek 2,860,000.00Lek

11 Shear wall RC M250 m3 35.00 14,000.00Lek 490,000.00Lek

12

Ribbed slab h=25 cm with

polysterol fill m2 2630.00 2,600.00Lek 6,838,000.00Lek

13 RC stairs M250 m3 12.00 14,000.00Lek 168,000.00Lek

14 RC lintel for window/door m3 30.00 12,000.00Lek 360,000.00Lek

15 Concrete M200 for sublayer m3 27.00 6,400.00Lek 172,800.00Lek

16 Steel 500 >ø10 kg 36000.00 90.00Lek 3,240,000.00Lek

17 Steel 500 <ø10 kg 90000.00 82.00Lek 7,380,000.00Lek

27,491,200.00Lek

Masonry working activities

1 Brick wall 25 cm m3 705.00 8500.00 5,992,500.00Lek

2 Brick wall 12 cm m3 204.00 9000.00 1,836,000.00Lek

7,828,500.00Lek Paving working activities

1 Tiles paving m2 2200.00 2000.00 4,400,000.00Lek

2 Tile coatings m2 270.00 1500.00 405,000.00Lek

3 Marble window sill m2 36.00 4500.00 162,000.00Lek

4 Marble steps m2 72.00 4500.00 324,000.00Lek

5 Stair paving with marble m2 130.00 5000.00 650,000.00Lek

6 Stairs parapet and balconies m2 38.00 1700.00 64,600.00Lek

6,005,600.00Lek

BILL OF MATERILAS

OBJECT: 5 story residential building + 1 underground story

SUBTOTAL I

SUBTOTAL II

(48)

No.: Description of the working activity Unit QTY Price/Unit (ALL) AMOUNT (ALL) Duralumin and wooden working

activities

1 Duralumin doors and rail m2 270.00 13000.00 3,510,000.00Lek

2

Duralumin windows with rail and

mosquito net m2 130.00 14000.00 1,820,000.00Lek

3 Glass duraluminium window m2 300.00 13000.00 3,900,000.00Lek

4 Internal doors pcs 125.00 25000.00 3,125,000.00Lek

5 Armored doors pcs 34.00 35000.00 1,190,000.00Lek

6 Garage shutter pcs 2.00 36000.00 72,000.00Lek

13,617,000.00Lek

Finishing working activities

1 Terranova coating for stores m2 100.00 4000.00 400,000.00Lek

2 Internal wall finishing m2 10000.00 550.00 5,500,000.00Lek

3 Finishing of ceilings m2 2520.00 600.00 1,512,000.00Lek

4 External finishing and paintings m2 2205.00 900.00 1,984,500.00Lek

9,396,500.00Lek Terrace working activities

1 Tiles paving m2 520.00 1600.00 832,000.00Lek

2 Hydroisolation m2 620.00 2600.00 1,612,000.00Lek

3 Vertical gutter ø100 ml 120.00 400.00 48,000.00Lek

4 Gutter tapes pcs 4.00 800.00 3,200.00Lek

2,495,200.00Lek SUBTOTAL IV

SUBTOTAL V

(49)

No.: Description of the working activity Unit QTY Price/Unit (ALL) AMOUNT (ALL)

Sewage system and drainage

1 Earthworks for channels m3 100.00 300.00 30,000.00Lek

2 Manholes 100x100 pcs 10.00 8000.00 80,000.00Lek

3 Concrete pipes ø100 ml 90.00 400.00 36,000.00Lek

146,000.00Lek Plumbing and sanitary

1 Galvanized pipes 1/1/2 kg 150.00 140.00 21,000.00Lek

2 Galvanized pipes 3/4 kg 200.00 140.00 28,000.00Lek

3 Galvanized pipes 1/2 kg 120.00 140.00 16,800.00Lek

4 Plastic pipe ø100 ml 150.00 350.00 52,500.00Lek

5 Plastic pipe ø40-50 ml 200.00 100.00 20,000.00Lek

6 WC pcs 50.00 10000.00 500,000.00Lek

7 Bide pcs 50.00 12000.00 600,000.00Lek

8 Washbay pcs 50.00 10000.00 500,000.00Lek

9 Shower plate pcs 50.00 6000.00 300,000.00Lek

10 Boiler 80 ltrs pcs 50.00 1000.00 50,000.00Lek

11 WC outlets pcs 50.00 5000.00 250,000.00Lek

12 Sink pcs 36.00 11000.00 396,000.00Lek

13 Water meter pcs 38.00 6000.00 228,000.00Lek

2,962,300.00Lek Electrical system

1 Switch outlet pcs 350.00 2600.00 910,000.00Lek

2 Plug outlet pcs 400.00 2800.00 1,120,000.00Lek

3 Citofon pcs 1.00 200000.00 200,000.00Lek 4 Telephone pcs 1.00 200000.00 200,000.00Lek 5 Antenna pcs 1.00 200000.00 200,000.00Lek 2,630,000.00Lek 72,572,300.00Lek 7,257,230.00Lek 79,829,530.00Lek 15,965,906.00Lek 95,795,436.00Lek TOTAL II VAT 20% TOTAL SUBTOTAL VII SUBTOTAL IX SUBTOTAL X TOTAL I (I+II+III+IV+V+VI+VII+VIII+IX+X) NET INCOME 10%

Figure

Updating...

References

Updating...

Related subjects :