• No results found

Subordination and inclusion theorems for higher order derivatives of a generalized fractional differintegral operator

N/A
N/A
Protected

Academic year: 2020

Share "Subordination and inclusion theorems for higher order derivatives of a generalized fractional differintegral operator"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

O R I G I N A L R E S E A R C H

Open Access

Subordination and inclusion theorems

for higher order derivatives of a generalized

fractional differintegral operator

Hanaa M. Zayed

Correspondence:

hanaa_zayed42@yahoo.com Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin Elkom 32511, Egypt

Abstract

The main object of this paper is to investigate some subordination results of certain subclasses of multivalent analytic functions which are defined by a generalized fractional differintegral operator. Inclusion relations for functions in the class ,μ,η

p,q ;A,B) and the images of these functions by the generalized Bernardi-Libera-Livingston integral operator are also considered.

Keywords: Differential subordination, Multivalent functions, Higher order derivatives, Generalized fractional differintegral operator

2010 Mathematics Subject Classification: 30C45, 30C50.

Introduction

Denote the class consisting of analytic and multivalent functions in the open unit disc

U= {z∈C:|z|<1}of the form:

f(z)=zp+ ∞

n=1

ap+nzp+n(p∈N= {1, 2, ...}), (1)

byA(p). We note thatA(1)=A.

Consider the first-order differential subordination

H(ϕ(z),zϕ(z))h(z),

where the symbol≺stands for subordination of two analytic functions inU(see [1,2]). A univalent functionqis calleddominant, if ϕ(z)q(z)for all analytic functions ϕthat satisfy this differential subordination. A dominantqis called thebest dominant, ifq(z)q(z)for all dominantq. ForfA(p), theqth order derivative off (z)could be written as

f(q)(z)=δ(p,q)zpq+ ∞

n=1

δ(p+n,q)ap+nzp+nq, z∈U(p>q, q∈N0:=N∪ {0}),

(2) where

δ(p,q)= p!

(pq)! :=

p(p−1) . . . (pq+1), ifq=0, 1, if q=0.

(2)

Let

pFq

a1, ...,ap;b1, ...,bq;z

= ∞

n=0

(a1)n...(ap)n

(b1)n...(bq)n(1)n

zn, (3)

be the well-known generalized hypergeometric function for complex parameters

a1, ...,aq, b1, ...,bs (bj/Z0−= {0,−1,−2, ...}; j=1, 2, ...,s)and(λ)νis the Pochhammer

symbol defined by

(λ)υ :=

1 ifυ=0,

λ(λ+1)(λ+2)...+υ−1) ifυ∈N.

In addition, if we putp=2,q=1,a1=a, a2=b, b1=cin (3), we get the (Gaussian)

hypergeometric function2F1(a,b;c;z) (c=0,−1,−2,. . . )which satisfies (see [3])

1

0

tb−1(1−t)cb−1(1−tz)adt= (b) ( (cc)b) 2F1(a,b;c;z) ((c) >(b) >0); (4)

2F1(a,b;c;z)=(1−z)a2F1

a,cb;c; z

z−1 ; (5)

and

2F1(a,b;c;z)=2F1(b,a;c;z). (6)

We will recall some definitions which will be used in our paper.

Definition 1 [4–12]. Assume that0 ≤ λ <1andμ,η∈ R. Then, in terms of2F1, the

generalized fractional derivative operator for fA(p)is defined by

J0,λ,zμ,η,pf(z):= d

dz

zλ−μ

(1−λ)

z

0 (

zζ)−λf(ζ)2F1

μλ, 1−η; 1−λ; 1− ζ

z

,

where f is an analytic function in a simply-connected region of the complex z-plane con-taining the origin with the order f(z)=O(|z|ε), z→0whenε >max{0,μη} −1and the multiplicity of(zζ)−λis removed by requiringlog(zζ)to be real when zζ >0.

Remark 1We note that

(i) J0,λ,zμ,η,pzp+n= (p+n+1) (p+n+1−μ+η)

(p+n+1−μ) (p+n+1−λ+η)z

p+n−μ (n1), (ii) J0,λ,zλ,η,pf(z)=zf(z)(see[13]).

Goyal and Prajapat [14] (see also [4–12]) defined the operatorM0,λ,zμ,η,p:A(p)A(p)

0≤λ <1, μ <p+1, η >max{λ,μ} −p−1

, by

,μ,η,p

0,z f(z):=

(p+1−μ) (p+1−λ+η)

(p+1) (p+1−μ+η) z

μJλ,μ,η,p

0,z f(z)

=zp+ ∞

n=1

(p+1)n(p+1−μ+η)n

(p+1−μ)n(p+1−λ+η)n

ap+nzp+n

=zp3F2(1,p+1,p+1−μ+η;p+1−μ,p+1−λ+η;z)f(z),

(3)

where the symbol ∗stands for convolution of two power series andfA(p). It is easy to check that

z

,μ,η,p

0,z f(z)

=(pμ)M0,λ+z1,μ+1,η+1,pf(z)+μMλ0,,zμ,η,pf(z). (8) In this paper, we define the higher order derivative of0,,zμ,η,pf(z)as follows:

,μ,η,p

0,z f(z)

(q)

=δ (p,q)zpq+ ∞

n=1

(p+1)n(p+1−μ+η)n

(p+1−μ)n(p+1−λ+η)nδ(

p+n,q)ap+nzp+nq

p∈N, q∈N0, p>q, 0≤λ <1, μ <p+1, η >max{λ,μ} −p−1

. (9) From (9), we have

zMλ0,,μz,η,pf(z)(q)=(pμ)Mλ+0,z1,μ+1,η+1,pf(z)(q−1)+q+1)

×,μ,η,p

0,z f(z)

(q−1)

(q∈N). (10)

We say thatfA(p)is in the classSpλ,,,η(ζ;A,B)if

1

pqζ

⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

(q+1)

,μ,η,p

0,z f(z)

(q)ζ

⎞ ⎟

⎠≺ 1+Az

1+Bz, (11)

0≤λ <1, μ <p+1, η >max{λ,μ}−p−1, 0≤ζ <pq, −1≤B<A≤1,p∈N,q∈ N0and p > q+ζ. Denoting bySpλ,,,η(ζ,ξ), the class of functionsf (z)A(p)which

satisfies

⎧ ⎪ ⎨ ⎪ ⎩

1

pqζ

⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

(q+1)

,μ,η,p

0,z f(z)

(q)ζ

⎞ ⎟ ⎠ ⎫ ⎪ ⎬ ⎪

> ξ (ξ <1;p∈N; z∈U). (12)

Preliminaries

To prove our main results, we shall need the following definition and lemmas.

Definition 2[2]. Denote the set of all functions f that are analytic and univalent on U\E(f)byQ, where

E(f):= {ςU: lim

z→ςf(z)= ∞}, and are such that f(ς)=0forςU\E(f).

Lemma 1[15]. Let h(z)be analytic and convex (univalent) function inUwith h(0)=1. Also letφgiven by

φ(z)=1+cnzn+cn+1zn+1+...

be analytic inU. If

φ(z)+ (z)

αh(z) ((α)0; α=0), (13)

then

φ(z)ψ(z)= α nz

αn

z

0

tαn−1h(t)dth(z),

(4)

Lemma 2[16]. Let h be a convex functions with [βh(z)+γ]>0 ,γ ∈C, z∈U).

If p(z)is analytic inUwith p(0)=h(0),then p(z)+ zp

(z)

βp(z)+γh(z)p(z)h(z).

The class of star-like (and normalized) functions of orderαinU,is

S(α)=

fA:

zf(z)

f(z) > α (α <1; z∈U)

.

Also in[17], ifβ >0andβ+γ >0, for a givenα

γβ, 1

,we define the order of star-likeness of the classIβ,γ[S(α)]by the largest numberϑ (α;β,γ )such thatIβ,γ[S(α)]⊂

S(ϑ),whereIβ

,γis given by

Iβ,γ(f)(z)=

⎡ ⎣β+γ

z

0

fβ(t)tγ−1dt

⎤ ⎦

1

β

. (14)

Lemma 3[17]. Let β > 0, β + γ > 0 and consider Iβ,γ defined by (14). If α

γβ, 1,then the order of starlikeness of the classIβ,γ[S(α)]is given by the number

ϑ (α;β,γ )=inf(q(z)):z∈U,where

q(z)= 1

βQ(z)

γ

β and Q(z)=

1

0

1−z

1−tz

2β(1−α)

+γ−1dt.

Moreover, if α ∈ [α0, 1), whereα0 = max

$β−γ−

1 2β ;−γβ

%

and g = Iβ,γfwith f

S(α),then

zg(z)

g(z) > ϑ (α;β,γ ) (z∈U), where

ϑ (α;β,γ )= 1

β &

β+γ

2F1

1, 2β (1−α),β+γ +1;12γ

'

.

Subordination and Inclusion theorems involving

Mλ0,z,μ,η,pf(z)

(q)

We assume throughout this paper unless otherwise mentioned thatp ∈ N, 0 ≤ λ < 1, μ <p, η >max{λ,μ} −p−1, −1≤B<A≤1, 0≤ζ <pq, ξ <1, σ >0, 0<

c≤1 and the powers are considered principal ones.

Theorem 1Assume that1≤qp and f(z)A(p)satisfy

(1−σ)

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 +σ

Mλ+1,μ+1,η+1,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 ≺

1+cz,

then

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 ≺Q(z)

(5)

where

Q(z)=(1+cz)122F1

−1

2, 1;

pμ

σ +1;

cz

1+cz , (16) is the best dominant of (15). Furthermore,

⎧ ⎪ ⎨ ⎪ ⎩

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1

⎫ ⎪ ⎬ ⎪

>M, (17)

where

M=(1−c)122F1

−1

2, 1;

pμ

σ +1;

c c−1 .

The estimate in (17) is the best possible.

ProofPutting

φ(z)=

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 (z∈U), (18)

thenφ(z)is analytic inU. After some computations, we get

(1−σ)

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 +σ

Mλ+1,μ+1,η+1,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1

=φ(z)+

σ

pμ

(z)1+cz.

where the influence ofh(z)=√1+czunder certain values ofcis illustrated by Fig.1. To apply Lemma1, it suffies to show thath(z)is convex, therefore forz=reiθ, r(0, 1), θ ∈ [−π,π] , we have

1+ zh

h =1− cz

2(1+cz) =

2+cz

2(1+cz),

and

1+ zh

h =

2+3crcosθ +c2r2

((1+creiθ((2 ≥

2−3cr+c2r2

((1+creiθ((2

= (2((cr) (1−cr)

1+creiθ((2 >0.

This implies thathis convex inU.

Now, by using Lemma1(withn=1) and making a change of variables followed by the use of (4) and (5), we deduce that

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 ≺Q(z)=

pμ

σ z

pμ σ

z

0

tpσμ−1(1+ct)12 dt

=(1+cz)122F1

−1

2, 1;

pμ

σ +1;

cz

1+cz ,

this proves (15). Next, it is enough to show that inf

|z|<1{(Q(z)} =Q(−1).

Indeed

$√1+cz

%

(6)

(a)

(b)

(c)

(d)

Fig. 1Influence ofh(z)=√1+czfor different values ofc

Setting

G(z,s)=√1+czsanddν(s)= pμ

σ s

pμ

σ −1ds(0s1),

which is a positive measure on the closed interval [ 0, 1] , we get

Q(z)=

1

0

G(z,s)dν(s), so that

{Q(z)}

1

0

1−crdν(s)=Q(r) (|z| ≤r<1).

Lettingr→1−in the above inequality, we obtain (17). To show that the result in (17) is sharp, let us suppose that

⎧ ⎪ ⎨ ⎪ ⎩

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1

⎫ ⎪ ⎬ ⎪ ⎭>M1,

that is

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 ≺

1+(1−2M1)z

(7)

From (15), we have

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 ≺

1+(1−2M)z

1−z ,

and so

1+(1−2M)z

1−z

1+(1−2M1)z

1−z ,

which implies thatMM1, that is,Mcannot be decreased and the estimate in (17) is the

best possible.

ForfA(p) the generalized Bernardi-Libera-Livingston integeral operator Fp,υ is

defined by (see [18]):

Fp,υf(z)= υ+p zp

z

0

tυ−1f(t)dt

=

)

zp+ ∞

n=1

υ+p

υ+p+nz p+n

*

f(z)

=zp3F2(1, 1,υ+p; 1,υ+p+1;z)f(z) (υ >p). (19)

Lemma 4If fA(p),then (i)Mλ0,,μz,η,pFp,υf=Fp,υ

,μ,η,p

0,z f

,

(ii)

zM0,λ,μz,η,pFp,υf(z)

=(p+υ)M0,λ,zμ,η,pf(z)υMλ0,,zμ,η,pFp,υf(z), (20)

(iii)

z

,μ,η,p

0,z Fp,υf(z)

(q)

=(p+υ)

,μ,η,p

0,z f(z)

(q−1)

+q−1)

,μ,η,p

0,z Fp,υf(z)

(q−1)

. (21)

ProofSincef(z)A(p), then

,μ,η,p

0,z

Fp,υf

=+zp3F2(1,p+1,p+1−μ+η;p+1−μ,p+1−λ+η;z)

,

Fp,υf

=+zp3F2(1,p+1,p+1−μ+η;p+1−μ,p+1−λ+η;z)

,

∗+zp3F2(1, 1,υ+p; 1,υ+p+1;z)f(z)

,

, and

Fp,υ

,μ,η,p

0,z f

=zp3F2(1, 1,υ+p; 1,υ+p+1;z)

,μ,η,p

0,z f

=zp3F2(1, 1,υ+p; 1,υ+p+1;z)

+

zp3F2(1,p+1,p+1−μ+η;p+1−μ,p+1−λ+η;z)f(z),.

Now, the first part of this lemma follows. Also, the recurrence relation ofFp,υis given by zFp,υf(z)

=(

p+υ)f(z)υFp,υf(z). (22)

(8)

Theorem 2Suppose that1≤qp and f(z)A(p)satisfy

(1−σ)

,μ,η,p

0,z Fp,υf(z)

(q−1)

δ (p,q−1)zpq+1 +σ

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1 ≺

1+cz,

where Fp,υdefined by (19), then

,μ,η,p

0,z Fp,υf(z)

(q−1)

δ (p,q−1)zpq+1 ≺ϕ(z)

1+cz, (23)

whereϕ(z)given by

ϕ(z)=(1+cz)122F1

−1

2, 1;

υ+p

σ +1;

cz

1+cz , is the best dominant of (23). Further,

⎧ ⎪ ⎨ ⎪ ⎩

,μ,η,p

0,z Fp,υf(z)

(q−1)

δ (p,q−1)zpq+1

⎫ ⎪ ⎬ ⎪

>L, (24)

where

L=(1−c)122F1

−1

2, 1;

υ+p

σ +1;

c c−1 .

The result is the best possible.

ProofTaking

(z)=

,μ,η,p

0,z Fp,υf(z)

(q−1)

δ (p,q−1)zpq+1 (z∈U), (25)

thenis analytic inU. After some calculations, we have

(1−σ)

,μ,η,p

0,z Fp,υf(z)

(q−1)

δ (p,q−1)zpq+1 +σ

,μ,η,p

0,z f(z)

(q−1)

δ (p,q−1)zpq+1

=(z)+

σ

p+υ z

(z)1+cz.

By employing the same technique that was used in proving Theorem1, the remaining part of the theorem can be proved.

Theorem 3 Let q ∈ N0 and p > q + ζ. If f(z)Spλ,,,η(ζ,ξ), then f (z)

Sλ+1,μ+1,η+1

p,q ,ξ)for|z|<R(p,q,μ,ζ,ξ)where

R(p,q,μ,ζ,ξ)=min{r>0 :t(r)=0}, (26)

and

t(r)=1− 2r

(pqζ)((((1−ξ) (1−r)2−(ξ(( +qpq−μ−ζ(((1−r2(((.

ProofAssume thatf(z)Spλ,,,η(ζ,ξ)and

u(z)= 1 pqζ

⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

(q+1)

,μ,η,p

0,z f(z)

(q)ζ

⎞ ⎟

(9)

then,u(z)is analytic inUwithu(0) = 1, {u(z)} > ξ. After some computations, we have

u(z)+ zu (z)

(pqζ)u(z)+(q+ζμ)=

1

pqζ

⎛ ⎜ ⎝z

Mλ+1,μ+1,η+1,p

0,z f(z)

(q+1)

Mλ+1,μ+1,η+1,p

0,z f(z)

(q)ζ

⎞ ⎟ ⎠.

(28) Lettingv(z)= u(1z−ξ)−ξ, then,v(0)=1 with {v(z)}>0. Substituting in (28), we obtain

1

pqζ

⎛ ⎜ ⎝z

Mλ+1,μ+1,η+1,p

0,z f(z)

(q+1)

Mλ+1,μ+1,η+1,p

0,z f(z)

(q)ζ

⎞ ⎟ ⎠−ξ

=(1−ξ)

v(z)+ zv

(z)

(pqζ)[(1−ξ)v(z)+ξ]+(q+ζμ)

, and so ⎧ ⎪ ⎨ ⎪ ⎩ 1

pqζ

⎛ ⎜ ⎝z

Mλ+1,μ+1,η+1,p

0,z f(z)

(q+1)

Mλ+1,μ+1,η+1,p

0,z f(z)

(q)ζ

⎞ ⎟ ⎠−ξ

⎫ ⎪ ⎬ ⎪ ⎭

(1−ξ)

{v(z)} − ((zv

(z)((

(pqζ)((((1−ξ)|v(z)| −(((ξ+ qp+ζ−μq−ζ((((((

⎤ ⎦

(1−ξ)

{v(z)} − ((zv

(z)((

(pqζ)((((1−ξ) {v(z)} −(((ξ+ qp+ζ−μq−ζ((((((

⎤ ⎦.

Applying the following well-known estimate [19]:

{v(z)} ≥ 1−r

1+rand

((zv(z)(( {v(z)} ≤

2nrn

1−r2n (|z| =r<1),

forn=1, we get

⎧ ⎪ ⎨ ⎪ ⎩ 1

pqζ

⎛ ⎜ ⎝z

Mλ+1,μ+1,η+1,p

0,z f(z)

(q+1)

Mλ+1,μ+1,η+1,p

0,z f(z)

(q)ζ

⎞ ⎟ ⎠−ξ

⎫ ⎪ ⎬ ⎪

⎭≥(1−ξ)t(r) {v(z)}.

It is easily seen thatt(r)is positive, if|z|<R(p,q,μ,ζ,ξ), whereRis given by (26).

Theorem 4 Let f(z)A(p), p> μ, γ >0and

⎛ ⎜ ⎝

Mλ+1,μ+1,η+1,p

0,z f(z)

,μ,η,p

0,z f(z)

Mλ+1,μ+1,η+1,p

0,z f(z)

,μ,η,p

0,z f(z)

⎞ ⎟ ⎠< γ

pμ, (29)

then ⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

,μ,η,p

0,z f(z)

⎞ ⎟ ⎠ −1 2γ > 1 2.

(10)

ProofFrom (8), (29) may be written as

⎛ ⎜ ⎝1+

zMλ0,,zμ,η,pf(z)

,μ,η,p

0,z f(z)

zMλ0,,zμ,η,pf(z)

,μ,η,p

0,z f(z)

⎞ ⎟ ⎠< γ,

or equivalently,

1+

z

,μ,η,p

0,z f(z)

,μ,η,p

0,z f(z)

z

,μ,η,p

0,z f(z)

,μ,η,p

0,z f(z)

≺ − 2γz

1−z. (30)

Letting

(z)=

⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

,μ,η,p

0,z f(z)

⎞ ⎟ ⎠

−1 2γ

,

then, we can express (30) as

zlog(z)z

log 1 1−z

. (31)

Fom [20], (31) implies to

(z)≺ 1

1−z,

or equivalently,

⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

,μ,η,p

0,z f(z)

⎞ ⎟ ⎠

−1 2γ

> 1

2 (z∈U). To show that the result is sharp, let

K(z)=zp+ ∞

n=1

(p+1)n(p+1−μ+η)n

(p+1−μ)n(p+1−λ+η)n

2γ (2γ −1)...(2γn+1)

n! z

p+n,

and so

,μ,η,p

0,z K(z)=zp+ ∞

n=1

2γ (2γ −1)...(2γn+1)

n! z

p+n

=zp(1+z)2γ.

It is easy to check thatK(z)satisfies (29) and

⎛ ⎜ ⎝z

,μ,η,p

0,z K(z)

,μ,η,p

0,z K(z)

⎞ ⎟ ⎠

−1 2γ

→ 1

2 asz→1−. This ends our proof.

Theorem 5 Consider that q∈N0, p>q+ζ and

(pqζ) (1−A)+(q+ζμ) (1−B)≥0. (32)

(i) Suppose that

,μ,η,p

0,z f(z)

(q)

=0for all z∈U∗:=U\{0},then

Sλ+1,μ+1,η+1

(11)

(ii) Also, assuming that

1−A

1−B

1

pqζ max

p−2q−2ζ+μ−1

2 ,−(q+ζμ)

, (33)

then

Sλ+1,μ+1,η+1

p,q ;A,B)Spλ,,,η(ζ,ξ). where the bound

ξ (A,B)= 1 pqζ

pμ

2F1

1,2(pq1−ζ )(BAB),pμ+1;12

(q+ζμ)

⎤ ⎦, (34)

is the best possible

ProofLetf(z)Spλ+,q1,μ+1,η+1;A,B)and

G(z)=z

⎛ ⎜ ⎝

,μ,η,p

0,z f(z)

(q)

δ (p,q)zpq

⎞ ⎟ ⎠

1 pqζ

. (35)

Since

,μ,η,p

0,z f(z)

(q)

=0 for allz∈U∗, thenG(z)is analytic inUwithG(0)=0 and

G(0)=1. Differentiating both sides of (35)logarithmically, we get

(z)= zG (z)

G(z) =

1

pqζ

⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

(q+1)

,μ,η,p

0,z f(z)

(q)ζ

⎞ ⎟

⎠. (36)

Using (10)in(36), we have

(pμ)

Mλ+1,μ+1,η+1,p

0,z f(z)

(q)

,μ,η,p

0,z f(z)

(q) =(pqζ) (z)+(q+ζμ). (37)

Differentiating both sides of (37)logarithmically, we get 1

pqζ

⎛ ⎜ ⎝z

Mλ+1,μ+1,η+1,p

0,z f(z)

(q+1)

Mλ+1,μ+1,η+1,p

0,z f(z)

(q)ζ

⎞ ⎟

⎠= (z)+ z

(z)

(pqζ) (z)+(q+ζμ).

Combining this identity together withf(z)Spλ+,q1,μ+1,η+1;A,B), we obtain

(z)+ z

(z)

(pqζ) (z)+(q+ζμ)

1+Az

1+Bzh(z).

We will use Lemma2forβ = (pqζ), γ = (q+ζμ). Sinceh(z) is a convex function inUand

(pqζ)1+Az

1+Bz +(q+ζμ)

>0,

whenever (32) holds. Thenf(z)Spλ,,,η(ζ;A,B)from Lemma2. This completes the proof

of (i). To prove (ii), we assume that (33) holds, then all the assumptions of Lemma3 are satisfied for the above values ofβ, γ andα= 11AB. It follows thatSpλ+,q1,μ+1,η+1;A,B)

,μ,η

(12)

Theorem 6 Assume that q∈N0, p>q+ζ and

(pqζ) (1−A)+(q+ζ+υ) (1−B)≥0. (38)

(i) Suppose that

,μ,η,p

0,z Fp,υf(z)

(q)

=0for all z∈U∗,then

,μ,η

p,q ;A,B)Fp,υ

,μ,η

p,q ;A,B)

.

(ii) Also, assuming that

1−A

1−B

1

pqζ max

q+2ζ +υ+1

2 ,−(p+ζ +υ)

, (39)

then

,μ,η

p,q ;A,B)Spλ,,,η(ζ;τ (A,B)). where the bound

τ (A,B)= 1 pqζ

⎣ 2pq+υ

2F1

1,2(pq1−ζ )(BAB), 2pq+υ;12

(p+ζ+υ)

⎦, (40)

is the best possible.

ProofLetf(z)Spλ,,,η(ζ;A,B)and

H(z)=z

⎛ ⎜ ⎝

,μ,η,p

0,z Fp,υf(z)

(q)

δ (p,q)zpq

⎞ ⎟ ⎠

1 pqζ

. (41)

Since

,μ,η,p

0,z Fp,υf(z)

(q)

= 0 for allz ∈ U∗, thenH(z)is analytic inUwithH(0) = 0 andH(0)=1. Differentiating both sides of (41)logarithmically, we get

(z)= zH (z)

H(z) =

1

pqζ

⎛ ⎜ ⎝z

,μ,η,p

0,z Fp,υf(z)

(q+1)

,μ,η,p

0,z Fp,υf(z)

(q)ζ

⎞ ⎟

⎠. (42)

Using (21)in(42), we have

(p+υ)

,μ,η,p

0,z f(z)

(q)

,μ,η,p

0,z Fp,υf(z)

(q) =(pqζ) (z)+(q+ζ+υ). (43)

Differentiating both sides of (43)logarithmically, we get 1

pqζ

⎛ ⎜ ⎝z

,μ,η,p

0,z f(z)

(q+1)

,μ,η,p

0,z f(z)

(q)ζ

⎞ ⎟

⎠= (z)+ z

(z)

(pqζ) (z)+(q+ζ +υ).

Combining this identity together withf(z)Spλ,,,η(ζ;A,B), we obtain

(z)+ z

(z)

(pqζ) (z)+(q+ζ+υ)

1+Az

1+Bzh(z).

We will use Lemma2forβ= (pqζ), γ = (q+ζ+υ). Sinceh(z) is a convex function inUand

(pqζ)1+Az

1+Bz +(q+ζ+υ)

(13)

whenever (38) holds. Thenf(z)Fp,υ

,μ,η

p,q ;A,B)

from Lemma2. This proves (i). To prove (ii), we assume that (39) holds, then all the assumptions of Lemma3 are satisfied forβ, γ which stated above andα= 11AB. It follows that

,μ,η

p,q ;A,B)Spλ,,,η(ζ;τ (A,B)),

whereτ (A,B)given by (40) is the best possible

Conclusion

In our present investigation, we have derived some subordination results of certain sub-classes of multivalent analytic functions which are defined by a generalized fractional differintegral operator. We have also successfully considered inclusion relations for func-tions in the classSpλ,,,η(ζ;A,B) and the images of these functions by the generalized

Bernardi-Libera-Livingston integral operator.

Abbreviations

A(p): The class of analytic and multivalent functions in the open unit disc;U= {z∈C:|z|<1};∗: Convolution of two power series;≺: Subordination of two analytic functions inU;2F1(a,b;c;z) (c=0,−1,−2,. . . ): The well-known

(Gaussian) hypergeometric function;0,z,μ,η,pf(z): The generalized fractional derivative operator forfA(p);Fp,υ: The generalized Bernardi-Libera-Livingston integeral operator

Acknowledgements

The author would like to express her sincere thanks to Hillal Elshehabey from Mathematics department, Faculty of Science, South Valley university, for his help in plotting the functionh(z), as well as the referees for their valuable suggestions and comments, which enhanced the paper.

Authors’ contributions

The author read and approved the final manuscript.

Funding

The author declares that she had no funding.

Competing interests

The author declares that she have no competing interests.

Received: 5 April 2019 Accepted: 5 June 2019

References

1. Bulboac˘a, T.: Differential subordinations and superordinations, recent results, House of Scientific Book Publ. House of Scientific Book Publ., Cluj-Napoca (2005)

2. Miller, S. S., Mocanu, P. T.: Differential subordination: theory and applications, series on monographs and textbooks in pure and applied mathematics, Vol. 225. Marcel Dekker Inc., New York and Basel (2000)

3. Whittaker, E. T., Watson, G. N.: A course of modern analysis: an introduction to the general theory of infinite processes and of analytic functions; With an Account of the Principal Transcendental Functions, Gourth Edition. Cambridge Univ. Press, Cambridge (1927)

4. Aouf, M. K., Mostafa, A. O., Zayed, H. M.: Some characterizations of integral operators associated with certain classes of p-valent functions defined by the Srivastava-Saigo-Owa fractional differintegral operator. Complex Anal. Oper. Theory.10(6), 1267–1275 (2016)

5. Aouf, M. K., Mostafa, A. O., Zayed, H. M.: Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator. Quaest. Math.39(4), 545–560 (2016)

6. Aouf, M. K., Mostafa, A. O., Zayed, H. M.: On certain subclasses of multivalent functions defined by a generalized fractional differintegral operator. Afr. Mat.28(1-2), 99–107 (2017)

7. Mostafa, A. O., Aouf, M. K., Zayed, H. M., Bulboac˘a, T.: Multivalent functions associated with Srivastava-Saigo-Owa fractional differintegral operator. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.112, 1409–1429 (2018) 8. Mostafa, A. O., Aouf, M. K., Zayed, H. M.: Inclusion relations for subclasses of multivalent functions defined by

Srivastava-Saigo-Owa fractional differintegral operator. Afr. Mat.29(3-4), 655–664 (2018)

9. Mostafa, A. O., Aouf, M. K., Zayed, H. M.: Subordinating results for p-valent functions associated with the Srivastava-Saigo-Owa fractional differintegral operator. Afr. Mat.29(5-6), 809–821 (2018)

10. Zayed, H. M., Bulboac˘a, T.: Sandwich results for higher order fractional derivative operators. Mat. Stud.49, 52–66 (2018)

(14)

12. Zayed, H. M., Mohammadein, S. A., Aouf, M. K.: Sandwich results of p-valent functions defined by a generalized fractional derivative operator with application to vortex motion. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 113, 1499–1514 (2019).https://doi.org/10.1007/s13398-018-0559-z

13. Owa, S.: On the distortion theorems. I, Kyungpook. Math. J.18, 53–59 (1978)

14. Goyal, S. P., Prajapat, J. K.: A new class of analyticp−valent functions with negative coefficients and fractional calculus operators, Tamsui Oxford Univ. J. Math. Sci.20(2), 175–186 (2004)

15. Hallenbeck, D. Z., Ruscheweyh, St.: Subordination by convex functions. Proc. Amer. Math. Soc.52, 191–195 (1975) 16. Eenigenburg, P., Miller, S. S., Mocanu, P. T., Reade, M. O.: On a Briot-Bouquet differential subordination. In: General

Inequalities 3, ISNM, pp. 339-348. Birkhauser, Verlag, Basel, (1983)

17. Mocanu, P. T., Ripeanu, D., Serb, I.: The order of stadikeness of certain integral operators. Math. (Cluj).23(2), 225–230 (1981)

18. Choi, J. H., Saigo, M., Srivastava, H. M.: Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl.276(1), 432–445 (2002)

19. MacGregor, T. H.: Radius of univalence of certain analytic functions. Proc. Amer. Math. Soc.14, 514-520 (1963) 20. Suffridge, T. J.: Some remarks on convex maps of the unit disk. Duke Math. J.37, 775–777 (1970)

Publisher’s Note

Figure

Fig. 1 Influence of = √ h(z)1 + cz for different values of c

References

Related documents

The treatment of chitosan was administered to the cell suspension of Andrographis paniculata with the concentrations of 5 mg, 10 mg and 20 mg per 50 ml of suspension culture

The fi ndings of these studies will show how the imple- mentation and dissemination of the TREND guideline has affected reporting completeness in studies with

T-Node is basically a SU, and the other SUs, N-Node 1, N-Node 2, N-Node 3, and N-Node 4, will scan any selfish attack of the target node (T-Node).The target SU and all of

Өндөр уулын бэлчээр ургамлын зүйлийн тоо, бүрхэцээр бусад бүсээс давуутай, харин ургацын хуримтлал нь ойт хээрийн бүсэд илүү байна.. Уур амьсгалын өөрчлөлтийн нөлөө

БНХАУ-ын Өвөрмонголын бүс нутгийн бэлчээрийн мал аж ахуй нь нүүдлийн байдлаас алхам алхмаар суурин байдалд шилжихийн зэрэгцээ нүүдэллэн бэлчээрийг улирлаар сэлгэн

As [2] discusses, in traditional switching hardware, where the control, data and management planes are vertically inte- grated, the control plane minimally degrades the data

this end on the matters of rehabilitation, general amnesty and other related is- sues and activities. 1) An agreement as signed between the government and the tribal refugee

It was possible to develop a numerical model for the stream channel section located downstream of the dam, which satisfactorily represents the progress of channel processes as