• No results found

Quartile ranked set sampling for estimating the distribution function

N/A
N/A
Protected

Academic year: 2021

Share "Quartile ranked set sampling for estimating the distribution function"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Egyptian

Mathematical

Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org

www.elsevier.com/locate/joems

Original

Article

Quartile

ranked

set

sampling

for

estimating

the

distribution

function

Amer Ibrahim Al-Omari

Alal-BaytUniversity,FacultyofScience,DepartmentofMathematics,Mafraq,Jordan Received24January2014;revised5July2014;accepted15April2015

Availableonline21May2015

Keywords

Distributionfunction; Quartilerankedset sampling;

Simplerandomsampling; Rankedsetsampling; Relativeefficiency

Abstract Quartilerankedsetsampling(QRSS)methodissuggestedbyMuttlak(2003)for

estimat-ingthepopulationmean.Inthisarticle,theQRSSprocedureisconsideredtoestimatethe distribu-tionfunctionofarandomvariable.TheproposedQRSSestimatoriscomparedwithitscounterparts basedonsimplerandomsampling(SRS)andrankedsetsampling(RSS)schemes.Itisfoundthatthe suggestedestimatorofthedistributionfunctionofarandomvariableXforagivenxisbiasedand moreefficientthanitscompetitorsusingSRSandRSS.

2010MathematicsSubjectClassification: 62G30;62D05;62G05;62G07

Copyright2015,EgyptianMathematicalSociety.ProductionandhostingbyElsevierB.V. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

LetX1,X2,...,Xn bea randomsampleof sizenhaving proba-bilitydensityfunction(pdf) f(x)andcumulativedistribution function(cdf)F(x),withafinitemeanμandvarianceσ2.Let

X11i ,X12i ,...,X1ni ;X21i ,X22i ,...,X2ni ;...;Xn 1i ,Xn 2i ,...,Xnni benindependentsimplerandomsampleseachofsizeninthe ithcycle(i = 1,2,...,m).

Let FSRS(x) denotethe empirical distribution function of

asimplerandomsampleX1,X2,...,Xnm fromF(x).Bahadur [2]showedthatFSRS (x)hasthefollowingproperties:

E-mailaddress:alomari_amer@yahoo.com

PeerreviewunderresponsibilityofEgyptianMathematicalSociety.

ProductionandhostingbyElsevier

1. FSRS(x)isanunbiasedestimatorofF(x)foragivenx.

2. Var[FSRS (x)] = mn1 F(x)[1−F(x)].

3. FSRS(x)isaconsistentestimatorofF(x).

The RSSwasfirst suggestedbyMcIntyre[3] asamethod forestimatingthemeanofpastureandforageyields.TheRSS is a useful method when the sampling units can be easily rankedthanquantified.McIntyreproposedtherankedset sam-plemeanasanestimatorofthepopulationmeanandshowed thattheRSSmeanestimatorisunbiasedandismoreefficient thantheSRScounterpart.

TheRSScanbedescribedasfollows:randomlyselectnsets eachofsizenfromthetargetpopulation.Then,visuallyrank the units within each sample with respect to the variableof interest.Fromthefirstsetofnunitsthesmallestrankedunit isselected. Fromthesecond setofnunits thesecond small-estrankedunitisselected.The processiscontinueduntilthe largestrankedunitismeasuredfromthenthset.Toincreasethe S1110-256X(15)00027-9Copyright2015,EgyptianMathematicalSociety.ProductionandhostingbyElsevierB.V.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Table1 TherelativeprecisionofFQRSS (x)withrespecttoFSRS (x)andbiasvaluesofFQRSS (x)for4≤n≤11. F(x) n=4 n=6 n=8 n=10 n=5 n=7 n=9 n=11 0.01 RP 0.5270 7.9487 5.3923 9.1690 11.0248 7.0763 4.5962 8.2674 Bias 0.0090 −0.0093 −0.0088 −0.0099 −0.0096 −0.0092 −0.0084 −0.0099 0.10 RP 0.6852 1.4566 1.1587 1.2156 1.7024 1.4095 1.1780 1.1780 Bias 0.0718 −0.0429 −0.0066 −0.0650 −0.0655 −0.0356 0.0006 −0.0592 0.20 RP 0.9939 1.3260 1.0919 1.2896 1.3138 1.4388 1.1553 1.3873 Bias 0.0973 −0.0254 0.0482 −0.0396 −0.0802 −0.0142 0.0527 −0.0257 0.30 RP 1.6994 1.6332 1.5037 1.7397 1.2961 1.9075 1.7570 1.9325 Bias 0.0849 −0.0044 0.0727 0.0098 −0.0673 0.0062 0.0679 0.0201 0.40 RP 2.9902 2.2115 3.3200 2.9599 1.3908 2.5254 3.3480 3.1859 Bias 0.0475 0.0041 0.0505 0.0224 0.0367 0.0103 0.0447 0.0265 0.50 RP 4.3694 2.5640 7.3573 4.8399 1.4534 2.8914 5.5273 4.8417 Bias 0.0005 0.0008 0.0000 0.0005 0.0003 0.0005 0.0004 0.0003 0.60 RP 3.0824 2.2121 3.2736 2.9261 1.3843 2.5467 3.3917 3.2440 Bias 0.0481 0.0040 0.0508 0.0216 0.0354 0.0105 0.0443 0.0256 0.70 RP 1.7065 1.6410 1.5109 1.7521 1.2757 1.8497 1.7220 1.9539 Bias 0.0848 0.0051 0.0733 0.0088 0.0662 0.0067 0.0686 0.0194 0.80 RP 1.0080 1.3748 1.1220 1.2898 1.2997 1.4229 1.1603 1.3658 Bias −0.0960 0.0277 −0.0483 0.0391 0.0812 0.0136 −0.0536 0.0256 0.90 RP 0.6628 1.4455 1.1659 1.2054 1.6756 1.4006 1.1633 1.1870 Bias −0.0736 0.0428 0.0063 0.0650 0.0659 0.0352 0.0004 0.0592 0.99 RP 0.5126 7.3353 4.9833 9.4109 11.8336 7.3257 4.4370 8.6399 Bias −0.0098 0.0092 0.0086 0.0099 0.0096 0.0093 0.0084 0.0099

samplesize,thewholeprocesscanberepeatedmtimestoobtain asetofsizenmunits.

Let Xj(1:n)i,Xj(2:n)i,...,Xj(n:n)i be the order statistics

of the jth sample Xj1i ,Xj2i ,...,Xjni (j = 1,2,...,n) in the ith cycle (i = 1,2,...,m). Then, the measured units X1(1:n )i ,X2(2:n )i ,...,Xn (n :n )i aredenotedtotheRSS. Davidand

Nagaraja[4] showed thatthecdfandthepdfofthejthorder statisticX(j:n)aregivenby

F(j:n)(x)= n i=j n i [F(x)]i[1−F(x)]ni,−∞ <x<, and f(j:n)(x) = (j1)n!(n! j)![F(x)]j−1[1−F(x)]njf(x). The mean and the variance of X(j:n) are given by μ(j:n) =

−∞x f(j:n )(x)dx and σ(2j:n)=

−∞(xμ(j:n ))2f(j:n )(x)dx, re-spectively. Takahasi and Wakimoto [5] independently intro-ducedthesamemethodofRSSwithmathematicaltheoryand showedthat f(x)= 1 n n j=1 f(j:n )(x), μ= 1n n j=1 μ(j:n ), and σ2 = 1 n n j=1 σ2 (j:n )+ 1 n n j=1 μ(j:n )μ2.

Forafixedx,StokesandSager[6]suggestedanestimatorfor F(x)usingRSSas FRSS (x)= 1 mn m i=1 n j=1 IXj (j :n )i ≤x,

whereI(·)isanindicatorfunction.Theyprovedthefollowing: 1. FRSS (x)isanunbiasedestimatorforF(x).

2. Var[FRSS(x)]= mn 12

n

j=1F(j:n)(x)[1−F(j:n)(x)].

3. FRSS(x)E[FRSS(x)]

Var[FRSS(x)]

converges in distribution tothe standard normalasm → ∞ whenxandnarefixed.

Formore aboutestimationofthedistribution functionin rankedsetsamplingmethodsseeStokesandSager[6],Samawi andAl-Sagheer[7],KimandKim[8],Al-SalehandSamuh[9], andGhoshandTiwari[10].

Therestofthispaperisorganizedasfollows.InSection2, weintroducedthesuggestedestimationofthedistribution func-tionusingQRSSmethod.Theperformanceofthenew estima-toragainstitsSRSandRSScounterpartsisgiveninSection3. Section4,isdevotedforsomeinferencesaboutF(x).InSection 5,someconcludingremarksareprovided.

2. Estimation of F(x)using QRSS

The quartile ranked setsampling procedure as suggested by Muttlak [1] canbesummarizedasfollows.Randomlyselectn sampleseachofsizenunitsfromthetargetpopulationandrank theunitswithineachsamplewithrespecttothevariableof in-terest.Ifthesamplesizeniseven,selectandmeasurefromthe firstn/2samplestheQ1(n+ 1)thsmallestrankedunitofeach sample,i.e.,thefirstquartile,andfromthesecondn/2samples theQ3(n+ 1)thsmallestrankedunitofeachsample,i.e.,the thirdquartile.Notethat,wealwaystakethenearestintegerof Q1(n+ 1)thandQ3(n+ 1)thwhereQ1 = 25%,andQ3 = 75%. Ifthesamplesizenisodd,selectandmeasure fromthefirst (n−1)/2samplestheQ1(n+1)thsmallestrankedunitofeach sampleandfromtheother(n−1)/2samplestheQ3(n+ 1)th smallestrankedunitofeachsample,andfromonesamplethe median forthatsample.The cyclecanbe repeatedmtimesif neededtogetasampleofsizenmunits.

Ifthesamplesizeniseven,intheithcycle(i = 1,2,...,m), letXj(Q 1(n +1):n )i be the(Q1(n+ 1))thsmallestrankedunitofthe jth sample (j=1,2,...,n 2), and Xj(Q 3(n +1):n )i be the (Q3(n+ 1))th smallest ranked unit of the jth sample

(3)

(j = n +2 2 ,

n +4

2 ,...,n). Note that, the measured units

X1(Q 1(n +1):n )i ,X2(Q 1(n +1):n )i ,...,Xn2(Q1(n+1):n)i are independent

and identically distributed (iid) random variables, and also Xn+2

2 (Q 3(n +1):n )i ,Xn+24(Q 3(n +1):n )i ,...,Xn (Q 3(n +1):n )i are iid.

However, all units X1(Q 1(n +1):n )i ,X2(Q 1(n +1):n )i ,...,Xn2(Q1(n+1):n)i, Xn+2

2 (Q3(n+1):n)i,Xn+24(Q3(n+1):n)i,...,Xn(Q3(n+1):n)i are mutually

independent but not identically distributed. These measured unitsaredenotedbyQRSSE.

For odd sample size, let Xj(Q1(n+1):n)i be the Q1(n+ 1)th

smallest ranked unit of the jth sample (j = 1,2,...,n−1 2 ),

Xj(n+1

2 :n )i bethemedianofthejthsampleoftherank j = n +1

2 , andXj(Q3(n+1):n)ibe theQ3(n+ 1)thsmallestrankedunitofthe

jthsample(j= n+23,n+25,...,n).Notethat,theonlymeasured units X1(Q1(m+1):m)i,X2(Q1(n+1):n)i,. . .,Xn−1

2 (Q 1(n +1):n )i are iid,

andalsoXn+3

2 (Q 3(n +1):n )i ,Xn+25(Q 3(n +1):n )i ,...,Xn(q3(n+1):n)i areiid.

However,allunitsX1(Q1(m+1):m)i,X2(Q1(n+1):n)i,. . .,Xn−1

2 (Q 1(n +1):n )i , Xn+1

2 (n+21:n )i ,Xn+23(Q 3(n +1):n )i ,Xn+25(Q 3(n +1):n )i ,. . .,Xn (q 3(n +1):n )i are

mutually independent but not identically distributed. These measuredunitsaredenotedbyQRSSO.

Following Stokes and Sager [6], let V= (V1,V2,...,Vn)

be a multinomial random vector with nm trials and P= (1

n,

1

n,...,

1

n) be a probability vector, and assume that the nm random variables were found by first observing V and thenselectingVj unitsrandomlyfromapopulationwithpdf f(j:n )(x)(j = 1,2,...,n).LetY1,Y2,...,Ynm denotetothe ob-tainedmnunits.

Also,followingStokesandSager[6] wehavethefollowing theorembasedonQRSSmethod.

Theorem 1. BasedonthesameconditionsofTheorem1inStokes andSager[6]wehavethefollowing:

(1) For even sample size, { Y1,Y2,...,Ynm| V = (nm

2 ,0,0,...,0,

nm

2 )} has the same probability

struc-ture as {Xj(Q1(n+1):n)i,Xl(Q3(n+1):n)i; j=1,2,. . ., n 2; l= n +2 2 , n +4

2 ,. . .,n;i=1,2,...,m},aQRSSEfromthesame

population.

(2) For odd sample size, {Y1,Y2,...,Ynm |V=v1 =

(n−1)m

2 ,0,0,...,0;v(n+1

2 )= m;0,0,...,0,vn = (n−1)m

2 } ,

hasthesameprobabilitystructureas

Xj(Q 1(n +1):n )i ,Xt (t:n )i Xl(Q 3(n +1):n )i ; j=1,2,. . ., n−1 2 ; t n+ 1 2 : l = n+ 3 2 , n+ 5 2 ,...,n; i = 1,2,...,m , aQRSSOfromthesamepopulation.

Proof. TheproofisdirectlyandsimilartotheproofofTheorem 1inStokesandSager[6].

ThesuggestedQRSSEestimatorofF(x)isgivenby

FQRSSE(x)= 1 nm m i=1 n 2 j=1 IXj(Q1(n+1):n) ix 1 nm m i=1 n j=n+2 2 IXj(Q3(n+1):n) ix , (1) withvariance VarFQRSSE(x)= 1 2nm FQ1(x) 1−FQ1(x) +FQ3(x) 1−FQ3(x) . (2) AndthesuggestedQRSSOestimatorofF(x)isgivenby

FQRSSO(x)= 1 nm m i=1 n−1 2 j=1 IXj(Q1(n+1):n) ix + 1 nmI Xn+1 2( n+1 2:n)ix +nm1 m i=1 n j=n+3 2 IXj(Q3(n+1):n) ix , (3) withvariance VarFQRSSO(x)= 1 n2m n−1 2 FQ1(x) 1−FQ1(x) +FQ3(x) 1−FQ3(x) +FQ2(x) 1−FQ2(x) , (4) where FQ1(x)=B F(x);n−1 4 , 3n−3 4 , FQ2(x)=B F(x);n+1 2 , n+1 2 , FQ3(x)=B F(x);3n−3 4 , n1 4 ,

and B(w;a,b) is the incomplete beta function defined as B(w;a,b)=

w

0 u

a−1(1u)b−1du.

Assume that n is odd, and n +1

2 is odd, and let Q1 =

X(n+3 4 ),Q2 = X(n+21),andQ3 = X(3n+41),then fQ 1(x)= 1 Bn −1 4 , 3n −3 4 [F(x)]n−41[1F(x)] 3n−3 4 f(x), (5) fQ2(x) = 1 Bn+21,n+21[F(x)(1−F(x))] n−1 2 f(x), (6) and fQ3(x) = 1 B3n−3 4 , n−1 4 [F(x)]3n4−3[1F(x)]n−41f(x), (7)

whereB(δ,ϑ )istheBetafunctiondefinedas B(δ,ϑ )= (δ)(ϑ )+ ϑ ) = + 1)ϑ! −1)!

1)! . (8)

SomepropertiesoftheQRSSEandQRSSOestimatorsof thedistributionfunctionareprovidedinthefollowing proposi-tions. Proposition 1. (1) E[FQRS S E (x)]= 12[FQ 1(x)+FQ 3(x)]. (2) E[FQRS S O (x)] = n2−n 1{ FQ 1(x)[1−FQ 1(x)]+ FQ 3(x)[1− FQ 3(x)]}+ 1 n FQ 2(x), where FQ 1(x),FQ 2(x),FQ 3(x) , are definedabove.

Proposition 2. FQRS S O (x)andFQRS S E (x)arebiasedestimators ofF(x),withbiasgivenby

(4)

BiasFQRS S E (x)= 1 2 FQ 1(x)+ FQ 3(x)FQRS S E (x), and BiasFQRSSO(x)= n−1 2n FQ1(x) 1−FQ1(x) +FQ 3(x)1FQ 3(x)+1 nFQ 2(x)FQRS S O (x).

ItiseasytoprovePropositions1and2 basedonsome alge-bra.Fromthispropositionwecanseethatthesuggested estima-torsarebiased,butbasedonthecalculationsgiveninSection3, thebiasisclosetozero.

Proposition 3. Forfixednandm→∞,wehavethefollowing: 1. F QRSSE(x )E[F QRSSE(x )]

Var [F QRSSE(x )] convergesindistributiontoN(0,1).

2. FQRSSO(x)E[FQRSSO(x)]

Var[FQRSSO(x)] convergesindistributiontoN(0,1).

Proof. FollowingSamawiandAl-Sagheer[7]andKimandKim [8],theproofofthefirstpartcanbedonebyassuming

Zi = 1 n n 2 j=1 IXj(Q1(n+1):n)ix + 1 n n j=n+2 2 IXj(Q3(n+1):n)ix , i = 1,2,...,m.

AsZi’sareindependentandidenticallywith finitemeanand

variancerandomvariables,thenbasedonthecentrallimit the-oremwecanconclude √m√ [ZiE(Zi)]

Var(Zi) convergesindistributionto

thestandardnormaldistribution.

Thesecondpartcanbeprovedsimilarlybyassuming

Zi = 1 n n−1 2 j=1 IXj(Q 1(n +1):n )i ≤x + 1 nI Xn+1 2 n+1 2 :n ix +1 n n j=n+3 2 IXj(Q 3(n +1):n )i ≤x . 3. Numerical comparisons

Numericalcomparisonsareconsideredinthissectionto inves-tigatetheperformanceofthesuggestedQRSSestimatorofthe

distributionfunctionwithrespecttoSRSandRSSestimators basedonthesamenumberofmeasuredunits.Weconsidered differentsamplesizes4≤n ≤11.Therelativeprecisions(RP) ofFRSS (x)andFQRSS (x)withrespecttoFSRS (x)aredefinedas: RP[FRSS (x),FSRS (x)]= Var[FSRS (x)]

Var[FRSS (x)], and RPFQRSS (x),FSRS (x)= Var[FSRS (x)]

MSEFQRSS(x)

, (9)

whereMSEisthemeansquarederrorofanestimator.

TheresultsarepresentedinTables1and2 usingQRSSand RSS, respectively.Theresultsinboldfontsinbothtablesare thebestRPvaluesofthedistributionfunctionestimatorsQRSS andRSSwithrespecttoSRSfordifferentvaluesofF(x).Based onQRSSfromTable1,thelargestRPvaluesareobservedas F(x)goestozeroor1.Forexample,withn=5andF(x)= 0.1,0.99,theRPvaluesare11.0248and11.8336,respectively. Otherwise,theRPvaluesincreasewhenF(x)iscloseto0.5.In allcasesthebiasisnegligibleandclosetozero.

FromTable2 weobservethatFRSS (x)ismoreefficientthan FSRS(x). However, FQRSS(x) is better than FRSS(x) for most

ofcasesconsidered inthisstudy.Asan example,whenn = 9 andF(x)=0.4,therelativeprecisionsofRSSandQRSSOare 2.6347and3.3480,respectively.

The optimal values ofthe sample sizeusing QRSSEand QRSSOmethodsforestimatingF(x)aresummarizedinTable 3.

FromTable3 itcanbenotedthatQRSSOismoreefficient thanQRSSEforestimatingF(x).Also,thesamplesizen = 5 has mostoccurrenceamong other samplesizesconsideredin thisstudy.

4. Inferences about the distribution function

In this section, a pointwise estimate of F(x) is consid-ered and some inferences about the population distribution are presented using QRSS. As m gets large, then based on Proposition3,anapproximate100(1−α)%confidenceinterval forE[F(x)], =QRSSE,QRSSO,RSS,SRS,isgivenby F(x)Zα/2 Var[F(x)]<E[F(x)]<F(x) +Zα/2 Var[F(x)], (10)

whereZα/2istheupper100(α/2)%quantileoftheN(0,1),and

Table2 TherelativeprecisionofFRSS(x)withrespecttoFSRS(x)for4≤n≤11.

F(x) n=4 n=6 n=8 n=10 n=5 n=7 n=9 n=11 0.01 0.9886 1.0388 1.1355 1.1018 1.0851 1.0644 1.0712 1.0749 0.10 1.3071 1.4832 1.6539 1.7929 1.3798 1.5550 1.7035 1.9029 0.20 1.5471 1.8193 2.0421 2.2984 1.6973 1.9610 2.2084 2.3711 0.30 1.6880 2.0402 2.3306 2.6122 1.8933 2.2060 2.4760 2.7136 0.40 1.7891 2.2099 2.4696 2.7623 1.9969 2.2982 2.6347 2.8966 0.50 1.8487 2.2449 2.5601 2.8271 2.0644 2.3500 2.6801 2.9600 0.60 1.7841 2.2061 2.4787 2.7775 1.9545 2.3337 2.6349 2.9724 0.70 1.6816 2.0456 2.3528 2.6052 1.9025 2.1952 2.4917 2.7661 0.80 1.5507 1.8057 2.0610 2.3004 1.6731 1.9757 2.1988 2.4008 0.90 1.2972 1.4716 1.6241 1.8179 1.3743 1.5503 1.7450 1.8920 0.99 1.1206 1.0458 1.0523 1.0764 1.0146 1.0781 1.1562 1.1301

(5)

Table3 ThebestvaluesofthesamplesizeusingQRSSforestimatingF(x). F(x) 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99 n 5 5 7 11 9 8 9 11 7 5 5 VarFQRS S E (x)= 1 (m1)n2 ⎧ ⎨ ⎩ n 2 j=1 ˆ Fj(Q 1(n +1):n )(x) 1− ˆFj(Q 1(n +1):n )(x) + n j=n+2 2 ˆ Fj(Q 3(n +1):n )(x) 1− ˆFj(Q 3(n +1):n )(x) ⎫⎪⎬ ⎪ ⎭ (11) VarFQRSSO(x)= 1 (m1)n2 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ n−1 2 j=1 ˆ Fj(Q1(n+1):n) (x) 1− ˆFj(Q1(n+1):n) (x) +FˆQ2(x) 1− ˆFQ2(x) +n j=n+3 2 ˆ Fj(Q3(n+1):n) (x) 1− ˆFj(Q3(n+1):n) (x) ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ , (12) Var[FRSS(x)]= 1 mn2 n j=1 F(j:n) (x)1−F(j:n) (x), and Var[FSRS(x)]= 1 nm1 ˆ F(x)1− ˆF(x),

wherebasedonQRSS,RSS,andSRS,respectively,wehave ˆ Fi(t:n) (x)= 1 m m i=1 IXj(t:n) ix ,t=Q1(n+1),Q3(n+1), n+1 2 ;j=1,2,...,n, (13) ˆ Fi(j:n) (x)= 1 m m i=1 IXj(j:n) ix ,j=1,2,...,n, (14) and ˆ FSRS(x)= 1 nm nm i=1 I(Yix). (15)

Based on the 100(1−α)% confidence interval of E[F(x)],=

QRSSE,QRSSO,RSS,SRS, a 100(1−α)% confidence interval for

F(x)canbefoundas P Zα/ 2≤ F(x)E[F(x)] Var[F(x)] ≤ Z1−α/ 2 =1−α. (16) Solving(16)forE[F(x)], =QRSSE,QRSSO,RSS,SRStoget

P F(x)Z1−α/ 2 Var[F(x)]≤E[F(x)]≤F(x) +Zα/ 2 Var[F(x)] =1−α,

andthelimitswillbe

LowerBound(LB)=F(x)Z1−α/ 2 Var[F(x)], and UpperBound(UB)=F(x)+Zα/ 2 Var[F(x)].

Finally,anapproximate100(1−α)%confidenceforF(x)canbeobtained bysolvingtheequations2LB=h(F)and2UB=h(F),numerically,orby anysuitablemethod,wherebasedonQRSSEwehave

h(F)=FQ1(x)+FQ3(x), andusingQRSSOitwillbe

h(F)= 1 n (n−1)FQ1(x) 1−FQ1(x) +FQ3(x) 1−FQ3(x) +2FQ2(x) .

Itisofinteresttonoteherethatanypossiblesolutionforlasttwoequations shouldbesingularsinceh(F)isincreasingfunctioninF(x).

5. Conclusion

Inthisstudy,QRSSprocedureisconsideredtoestimatethe dis-tributionfunctionofarandomvariable.TheQRSSiscompared withRSSandSRSinestimatingthedistributionfunction.Itis foundthatQRSSismoreefficientthanSRSandalsoitismore efficientthanRSSinmostcasesconsideredinthisstudy.The RPvaluesarepreferredasF(x)goestozeroor1andincrease whenF(x)iscloseto0.5.ThebiasoftheQRSSestimatorof thedistributionfunctionisnegligible.

Acknowledgments

The authoris thankfulto theeditor andtheanonymous re-viewersfortheirvaluablecommentsandsuggestionsthat sig-nificantlyimprovedtheoriginalversionofthearticle.

References

[1] H.A.Muttlak,Investigatingtheuseofquartilerankedset sam-plesforestimatingthepopulationmean,Appl.Math.Comput.146 (2003)437–443.

[2] R.R.Bahadur,Anoteonquantilesinlargesamples,Ann.Math. Stat.37(1996)577–580.

[3] G.A.McIntyre,Amethodforunbiasedselectivesamplingusing rankedsets,Aust.J.Agric.Res.3(1952)385–390.

[4] H.A.David,H.N.Nagaraja,OrderStatistics,3rded.,JohnWiley &Sons,Inc.,Hoboken,NewJersey,2003.

[5] K.Takahasi,K.Wakimoto,Ontheunbiasedestimatesofthe pop-ulationmeanbasedonthesamplestratifiedbymeansofordering, Ann.Inst.Stat.Math.20(1968)1–31.

[6] S.L.Stocks,T.Sager,Characterizationofarankedsetsamplewith applicationtoestimatingdistributionfunctions,J.Am.Stat.Assoc. 83(1988)374–381.

(6)

[7] H.Samawi,O.M.Al-Sageer,Ontheestimationofthedistribution functionusingextremeandmedianrankedsetsampling, Biometri-calJ.43(3)(2001)357–373.

[8] D.H.Kim,D.W.Kim,G.H.Kim,Ontheestimationofthe distribu-tionfunctionusingextrememedianrankedsetsampling,JKDAS 7(2)(2005)429–439.

[9] M.F.Al-Saleh,M.H.Samuh,Onmultistagerankedsetsampling fordistributionandmedianestimation,Comput.Stat.DataAnal. 52(4)(2008)2066–2078.

[10] K.Ghosh,R.C.Tiwari,Estimatingthedistributionfunction us-ingk-tuplerankedsetsamples,J.Stat.Plann.Infer.138(4)(2008) 929–949.

References

Related documents

Online community: A group of people using social media tools and sites on the Internet OpenID: Is a single sign-on system that allows Internet users to log on to many different.

tomb furniture - presumably represented by the 'well- preserved body ,16) - has been identified as Amenemopet called Pairy, brother to Sennufer and mayor of Thebes and vizier

In the study presented here, we selected three rep- resentative pathogenic PV mAbs cloned from 3 different PV patients: F706, an anti-Dsg3 IgG4 isolated by heterohybridoma, F779,

In this study, through 3D body scanning, material physical testing and numerical simulation, a numerical model has been developed for modelling the compression garment

○ If BP elevated, think primary aldosteronism, Cushing’s, renal artery stenosis, ○ If BP normal, think hypomagnesemia, severe hypoK, Bartter’s, NaHCO3,

For the broad samples of men and women in East and West Germany every first graph in Fig- ure 1 to 4 (Appendix) shows considerable and well-determined locking-in effects during the

Undergraduate students participating in the Sea Education Association's SEA Semester program will join professional oceanographers aboard a scientific research vessel this

The fun-filled story of three brothers who move out of their parents’ home, only to be menaced by the Big Bad Wolf, who keeps blowing down their houses!. But now, as the