• No results found

Relating stream function and land cover in the Middle Pee Dee River Basin, SC

N/A
N/A
Protected

Academic year: 2021

Share "Relating stream function and land cover in the Middle Pee Dee River Basin, SC"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Journal

of

Hydrology:

Regional

Studies

jou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / e j r h

Relating

stream

function

and

land

cover

in

the

Middle

Pee

Dee

River

Basin,

SC

A.D.

Jayakaran

a,∗

,

Z.T.

Smoot

b

,

D.M.

Park

c

,

D.R.

Hitchcock

d aWashingtonStateUniversity,Puyallup,WA98371,USA

bWoolpertInc.,Columbia,SC29210,USA cClemsonUniversity,Clemson,SC29634,USA dClemsonUniversity,Georgetown,SC29442,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17September2015 Receivedinrevisedform 25December2015 Accepted29December2015 Availableonline17February2016 Keywords:

Flashiness Streamhabitat Flowindices Landcoveranalysis Wetlands Coastalplain Bedmaterial

Partialleastsquaresregression PeeDeeRiver

SouthCarolina

a

b

s

t

r

a

c

t

Studyregion:Thestudyregioncomprisedsixteenstreamsitesandassociatedcontributing watershedslocatedintheMiddlePeeDeeRiverBasin(MPDRB)ofSouthCarolina,USA.

Studyfocus:Thestudywasconductedbetween2008and2010toquantifyhowindices ofstreamflowvariedwithlandcovercharacteristicsanalyzedatmultiplespatialscales andfluvialgeomorphiccharacteristicsofsampledstreamsintheMPDRB.Studyobjectives weretorelatethreeindicesofstreamflowthatreflectrecenttemporalflowvariabilityin astream,withsynopticstreamgeomorphologicalmeasurements,andlandcovertypeat specificspatialdomains.

Newhydrologicalinsightsfortheregion:Modificationstothelandscape,hydrologicregime, andalterationtochannelmorphology,aremajorthreatstothefunctioningofriparian ecosystemfunctionsbutcanrarelybelinkedtoasinglecommonstressor.Resultsfromthe studyshowedthatintheMPDRB,wetlandcoverintheripariancorridorwasan impor-tantfactor,correlatingsignificantlywithstreamflashiness,channelenlargement,andbed substratecharacter.Itwasalsoshownthatacombinationofstreamgeomorphological characteristicswhencombinedwithlandscapevariablesatspecificspatialscaleswere reasonablepredictorsofallthreeindicesofstreamflow.Thestudyalsohighlightsan inno-vativestatisticalmethodologytorelatelandcoverdatatocommonlymeasuredmetricsof streamflowandfluvialgeomorphology.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 2010, the South Carolina Legislature sought to regulate withdrawals from surface water sources in the state (A247—SouthCarolinaSurfaceWaterWithdrawal,Permitting,Use,andReportingAct,2010).Thepotentialalterationto flowregimesbysurfacewaterwithdrawalsandtheirimpactsonriparianecosystemsisstilltosomeextentanunknown inseveralwatershedsthatareaffectedbythelaw.Inorderforregulatoryagenciestomakesounddecisionsingranting surfacewaterpermits,agreaterunderstandingoftherelationshipofcurrentstreamflowrates,channelmorphology,and landcoverdriversinSouthCarolina’swatershedsbecameofcriticalimportance.Thisstudywasconductedfrom2008to 2010todeterminethefluvialgeomorphiccharacteristicsoftheMiddlePeeDeeRiverBasin(MPDRB),andtherelationship

∗ Correspondingauthorat:CollegeofAgriculture,Human,andNaturalResourceSciences—WSUExtension2606WestPioneer,Puyallup,WA98371, USA.Tel.:+12534454523;fax:+12534454522.

E-mailaddress:anand.jayakaran@wsu.edu(A.D.Jayakaran). http://dx.doi.org/10.1016/j.ejrh.2015.12.064

2214-5818/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

262 A.D.Jayakaranetal./JournalofHydrology:RegionalStudies5(2016)261–275

oftheseripariansystemstolandcover.Whilethephysicalcharacteristicsofaripariansystemareintimatelyintertwined withthebiologicalandecologicalcharacteroftheecosystem,thisstudyfocusedsolelyontheabioticstructureofstream andlandscape.Thegoalofthisworkwastoinvestigatetherelationshipbetweenlandscapecharacteristicsandthreeindices ofstreamflow.Theoverallobjectiveofthisworkwastodetermineifbymeasuringcommonlandscapeandstream geomor-phologicalparametersintheMPDRP,couldonereasonablyestimatecharacteristicsofstreamflowregimewithouthaving toinvestthetimeandresourcesneededtomeasurecontinuousstreamflowatalocation.Ultimately,wehopedthatthis workwouldprovideinsightonlandscapefactorsthatmostinfluencedflowregimefortheirinclusioninthedevelopment ofplanned,state-regulatedflowregimesthatwouldmaintainecologicalviabilityintheMPDRB.

1.1. Watershedscaleanalysesandstreamhealth

Ithasbeenwidelydocumentedthatanthropogenicchangestothelandscapeimpactripariansystems(Brabec,2009;

Boothetal.,2004;Allan,2004;Poffetal.,1997;Hammer,1972)andinmanycasescanleadtoalterationsthatsurpassthe

system’sabilitytoreturntoitsoriginalstate(Blannetal.,2009).Blannetal.(2009)identifiedmodificationstohydrology, geomorphology,nutrientcycling,andsedimentdynamicsasbeingmajorthreatstoripariansystemfunctions.Landcover changescanresultindrasticchangestowaterquality(Bedoyaetal.,2009),hydrologicregime(BoothandJackson,1997), andincreasedsedimentinputsthatsubsequentlyimpairstreamhabitat(Tuffordetal.,2003;Gergeletal.,2002).However, suchdrasticchangesarerarelylinkedtoasinglestressor(Bedoyaetal.,2009).Thereareseveralmetricsusedtoquantify anthropogenicinfluenceonalandscape,theseincludesummedtotalimperviousarea(IMP)(Hammer,1972), Landscape-DisturbanceIndex(LDI)asdefinedbyStanfieldandJackson(2011),andtheextentofagriculturalandcommercialland coverwithinawatershed.Eachmetrichasbeenfoundtoinfluencethephysicalandecologicalconditionofastreamsystem

(Brabec,2009;BoothandJackson,1997).Imperviousareahasbeenshowntohavedeleteriousimpactsonstreamprocesses

(Brabecetal.,2002)andthresholdsformaintainingstreamhealthtendtobewatershed-specificrangingfrom4to15%

imperviousness(Schueler,1994;Klein,1979;BoothandJackson,1997;HicksandLarson,1997;Bakeretal.,2004;Brabec, 2009).Agriculturallanduseswithinhighlymodifiedwatershedsareoftensynonymouswithhighernutrientinputstostream systems(Kingetal.,2005;Howarthetal.,1996;Vitouseketal.,1997;Tilmanetal.,2001)aswellashydromodification associatedwithstreamchannelization(JayakaranandWard,2007;RhoadsandHerricks,1996).

1.2. Theanalysisoflandscapemetricsatmultiplescales

Withevidenceoflandscapeimpactsonstreamfunction(Blannetal.,2009;Frimpongetal.,2005;Sutherlandetal.,2002;

Fitzpatricketal.,2001;Daviesetal.,2000;Staufferetal.,2000;Rothetal.,1996;BerkmanandRabeni1987;Oswoodand

Barber,1982),thereisalsoevidencethatcertainlandscapedrivershavegreaterinfluenceoninstreamfunctionatspecific

spatialscales(e.g.Kingetal.,2005;Sponselleretal.,2001;Maddock1999;Rankin,1995).Whilesomeaspectsofastream’s character(suchasbedmaterialtype,presenceofwoodydebris,channelroughness)tendtobeinfluencedby localized/reach-scalefactors,others(suchaschannelshape,bedmaterialtransport,streamflashiness)aremoreinfluencedbyfactorsatlarger landscape/catchmentscales(Bedoyaetal.,2009;McRaeetal.,2004;Wangetal.,2003;Richardsetal.,1996;Allanetal., 1997).However,itisimportanttonotedistinctionsbetweenlandscapeandreachscaleprocessesaremostlysemantic, andpragmaticallythereisconsiderableoverlapbetweenthetwo.Forexample,Allanetal.(1997)showedthatlandcover couldbeastrongindicatorofreach-specificbiologicalandhabitatintegrityfor100-mreaches,wherebiologicalandhabitat integrityweremeasuredbyahabitatindex(HI)andanindexofbioticintegrity(IBI),respectively.Inthatstudy(Allanetal., 1997),agriculturallandcoverexplainedasmuchas50%ofthevarianceinIBIand75%ofthevarianceinHI.Theauthors alsodocumentedthatagriculturalcoveratthecatchmentscalewasfarmoreindicativeofbiotaandhabitatatasitethan reach-scalelandcoverinformation,althoughcorrelationswerefoundatbothscales.

1.3. Characterizingstreamflow

Synopticphysicalhabitatassessmentsandfluvialgeomorphicmeasurementsprovideinsightintothecurrentecological conditionofastream,butdonotincludeinformationonstreamfunctioningthatcanonlybederivedfromarecordof recentstreamflowdata.Thelackofinformationonrecentflowhistoryisusuallyafunctionofthecost-prohibitivenatureof installing,andmaintaining,continuousstreamflowloggingequipment.Withthisstudy,wehopedtoshowthatthroughthe synopticmeasurementofspecificcharacteristicsofchannelmorphologyandlandcover,certaincharacteristicsofstreamflow atasitemightberevealed.Secondly,wealsohopedtodevelopinsightintowhatlandcoverparametersmostinfluenced flowinthestreamsoftheMPDRB.Threeindiceswerechosentocharacterizestreamflow:

a)Ameasureofchannelenlargement(Pizzutoetal.,2000)requiringknowledgeofbankfullflowatthatlocation—Hammer number(H).

b)Anestimateofstreamflashiness(Bakeretal.,2004)requiringacontinuousflowrecordatasite—RichardsBakerFlashiness Index(RBI).

(3)

c)Anestimateofbed materialtransport (Brownlie,1981)requiring bothstreamflow record,channeldimensions,and channelsubstratedata—BedMaterialYield(BMY).

Thethreeselectedindicesofstreamflowprovideinformationonstreamfunctioninlightofprevailingreach-scaleand landscape-scalecharacteristicsofthewatershed.Theseindicescouldpotentiallybeusedtocharacterizehowstreamfunction mightchangeovertime,givenchangestolandscape(landusechange)orflowregime(dams,waterwithdrawals).

Hammernumber(H)wasametricproposedbyPizzutoetal.(2000)asameanstoquantifythephenomenonofchannel enlargementduetourbanization(1972).Mathematically,Hisdefinedastheflowconveyedbythebankfullchannelperunit watershedareaor,bankfullflowrateperunitdrainagearea(units:m/s).Hreflectsthehydraulicpropertiesofthestream channelreachandnotthehydrologiccharacteristicsofthewatershed(Pizzutoetal.,2000).ThisisnottosaythatHis unaffectedbydrainagearea,buttosaythatHisameasureofhowthebankfullchannelhasadjustedtoprevailinghydrologic conditions.

Flashiness(RBI)quantifiestherateofchangeofstorm-associatedflowwithrespecttobaseflowconditionswithhigherRBI valuessignifying“flashier”streams.Flashinessinstreamsistypicallyassociatedwithincreasedwatershedimperviousness (e.g.Walshetal.,2005)buthasalsobeenassociatedwithstreamchannelizationandhighgroundwaterconditions(e.g.

Jayakaranetal.,2014).RBIisaunitlessindexthatdoesnothaveamaximumlimitalthoughBakeretal.(2004)reporteda

maximumRBIof1.3inastudyof515Midwesternstreams.

BedMaterialYield(BMY)isthetotalbedmaterialtransportedbyastreamexpressedperunitwatershedarea(units: tons/ha/yr).BMYwaschosenasanindexofstreamfunctioningasitintegratesthehydraulicpropertiesofastreamreach, hydrologiccharacterofthewatershed,andbedmaterialcharacteristicsofstreamsubstrate.Forthisstudy,wecalculated BMYusingBrownlie’s(1981)resistanceequationsforsand-bedstreams(USDA-NRCS,2004)usingflowandbedmaterial information.

1.4. Studyobjectives

Objectivesofthisstudywereto:(a)relatethreeindicesofstreamflowtoobservedstreamgeomorphologicalfeatures, (b)identifywhichlandcovertypesandatwhatspatialresolutionmostinfluenceindicesofstreamflow,(c)determineif combinationsoflandscapeandgeomorphologicalvariablescanadequatelypredictcertainstreamflowcharacteristics.

2. Studyareaandmethods

StreamsandtributarieswithintheMPDRBclassifyaslowgradientblackwatercoastalplainstreamswithsandor sand-gravelmixstreambeds.All16siteswerelocatedinthelevel3SoutheasternPlainsecoregion(Olsenetal.,2001)andwithin twolevel4ecoregions:AtlanticSouthernLoamPlainsandSandHills(Fig.1).TheSoutheasternPlainsecoregionliesbetween thePiedmontandtheMiddleAtlanticCoastalPlain.Studysiteswereselectedtorepresentawiderangeofwatershedareas (17–1,718km2).Siteselectionwasalsodependentuponlandusewithinthewatershed,easeofaccess,andsecurityof

instrumentation.Sixofthechosensiteswereco-locatedwithUnitedStatesGeologicalSurvey(USGS)flowmonitoring gauges,andfivesiteswerechoseninconjunctionwiththeSouthCarolinaDepartmentofNaturalResources(SCDNR) fish-monitoringprogram.Averageannualrainfallintheregionis1,197mmwhileevapotranspirativedemandis762mmannually (Luetal.,2005).

2.1. Landscovermetricsandscalesofspatialanalyses

SixlandcovermetricswereanalyzedatfivespatialscalesperSponselleretal.(2001):theentirecatchmentscale,a ripariancorridorscale,andthreeriparian‘sub-corridor’scales(200,1000and2000mupstreamofstudysite).Theentire catchmentscalecomprisedtheentirewatershedupstreamofasamplingsite.Theripariancorridorscalecomprisedariparian bufferdefinedinthelateral(landscape-to-stream)directionbyahydraulicflowlengthof180mextendingtoeitherside ofthestream.Thehydraulicflowlength(orflowtraveldistance)wasderivedfroma30-mdigitalelevationmodelwithin ageographicinformationsystem(GIS)usingtheArcHydrotool(ArcMapversion10.0,EnvironmentalSystemsResearch Institute,RedlandsCA).Theripariancorridorinthelongitudinalupstreamdirection(along-channel)includedallstreams andtributariesupstreamofthesamplingsite.Theripariancorridorwasfurthersubsetintothreeripariansubcorridorsthat extendedtooneofthreedistancesupstreamfromasamplingsite—200m,1000m,and2000mupstreamofthesite.Theonly departurefromSponselleretal.’s(2001)methodologywasourchoiceofdefiningthelateralcorridorwidthbyhydraulicflow length.Thesixmetricsoflandcoverwerederivedfromthe2006NationalLandCoverDatabase(NLCD)geospatialdataset withinaGISenvironment.Thelandcovermetricsusedinthisstudywere:landdisturbanceindex(LDI),curvenumber(CN), totalimperviousarea(IMP),percentforestedland(FOR),percentagriculturalland(AGR)andpercentwetlands(WET).

LDI(StanfieldandJackson,2011)wasclassifiedinaGISenvironmentpermethodologyprescribedbyMorrisonetal.

(2006).Thefollowingsimplificationsofthe2006NLCDdatasetwereperformedtobeconsistentwiththeclassification

systemusedbyStanfieldandJackson(2011):agriculturalareasincludedalllandcoverclassifiedasrow-cropagriculture; forestedareasincludedallpine,deciduousandmixedforestclasses;andwetlandsareasincludedallherbaceouswetland,and emergentherbaceouswetlandclasses.Landcoverclassifiedasopenwater,barrenland,andherbaceousgrasslandswere

(4)

264 A.D.Jayakaranetal./JournalofHydrology:RegionalStudies5(2016)261–275

Fig.1.Locationofstudysites,majorstreamnetworksandcontributingdrainageareas.Insetfigure(a)showsallsitesarelocatedwithintheSoutheastern Plainslevel3ecoregion.Insetfigure(b)showsSites1,2,11,12,15,and16arelocatedintheAtlanticSouthernLoamPlainsecoregion(level4).Theremaining sitesfallwithintheSandHillsecoregion(level4).SeeTable1formoresite-specificinformation.

omittedfromallanalyses.Hydrologiccurvenumber(CN)wasderivedbycross-referencinggeospatialdatarepresenting landcoverandhydrologicsoilgrouping,whereallgeospatialdatahada30×30mspatialresolution.Hydrologicsoilgroups (HSG)werederivedbyreclassifyingdatafromtheNationalResourcesConservationService’sSoilSurveyGeographicdatabase (SSURGO).HSGdatawerethencross-referencedagainstlandcoverinformationfromthe2006NLCDdataset.Asaresult, uniqueCNswereobtainedforevery30×30mpixelrepresentingtheMPDRBregion.

2.2. Streamgeomorphologyandflowmeasurements

Forthetenwadeablestreamsites,topographicalsurveyswereusedtomeasurechannelpattern,profile,anddimension

perHarrelsonetal.(1994).Ateachsite,thestreamprofilewassurveyedforthirtybankfullwidthsandincludedthalweg,water

surfaceandbankfullelevations.Atleastthreerepresentativecrosssectionsalongthesurveyedprofilewerealsomeasured. Atthesixnon-wadeablesites,channelpattern,profile,anddimensionbelowthewaterlevelwerecharacterizedusinga floatingacousticdopplercurrentprofiler(ADCP)unit(SontekRiverSurveyorM9,SanDiego,CA).Topographicsurveyswere carriedouttocompletetheabove-waterportionsofthestreamcrosssectionsthatcouldnotbeprofiledwiththeADCPunit. SurveydatawereprocessedusingtheReferenceReachSpreadsheetforChannelSurveyDataManagement(Mecklenburgand

Ward,2004).RiparianconditionwasassessedusingtheQualitativeHabitatEvaluationIndex(QHEI)developedbyRankin

(1989).QHEIisasemi-quantitativephysicalhabitatindexdevelopedtoprovideanevaluationofhabitatqualityforfish.

Scoresrangefrom0to100withscoresabove60consideredtobegoodtoexcellentforaquaticlife,andscoresbelow45 consideredlimiting.Forthisstudy,QHEIwasusedpurelyasameanstocomparerelativehabitatqualityamongsites,and notforcomparisonwithsitesfromotherstudiesandregions.

Flowvelocitiesatwadeablesitesweremeasuredusingahandheldflowmeter(YSI-SontekFlowTracker,SanDiego,CA)

perJohn(2001),andatnon-wadeablesitesusingtheADCPunitperMuellerandWagner(2009).Bedmaterialsamplesat

eachstreamsitewerecollectedatfivelocationswithashallowwaterbottomdredgesamplerfollowingagriddedsampling approach.Bedmaterialsampleswerethendried,analyzedbysieveanalysisforparticleslargerthan2mm,andbyalaser diffractionparticlesizeanalyzer(BeckmanCoulterTM,Brea,CA)forparticlesbetween0.001mmand2mm.Particlesize

distributionwascharacterizedbycalculatingthe16th,50th,and84thpercentiles(D16,D50,andD84,respectively)aswell asthegeometricsorting(␴)coefficient(Kondolfetal.,2003).Bankfulldefininghydraulicgeometrywasnotestimatedat site15assignificantbeaveractivityimmediatelydownstreamofthesiteearlyinthestudylimitedflowestimation.Forthis study,allbankfullvaluesweredeterminedbasedonindicatorsoutlinedbyDunneandLeopold(1978).Aweightofevidence approachtoestimatebankfullelevationwasmade,satisfyingasmanyindicatorsaspossible.

(5)

Fifteen-minute streamflow data for the six USGS sites were obtained from the USGS real time water website

(http://waterdata.usgs.gov/sc/nwis/rt);dataavailabilityrangedfrom3to52years.Forthetenremainingsites,flowwas

determinedfromatmosphericpressurecompensatedstreamstagedata(Levelogger®andBarrologger®,Solinst,Ontario,

Canada)inconjunctionwithstage-flowratingcurvesdevelopedforeachsite.Sensorswereinplaceforaperiodofalmost 3yearsfromJuly2009toJune2012.USGSflowrecordsweretruncatedtotheperiodbetweenJuly2009andJune2012 ensuringthattheperiodforstreamflowdatawasconsistentacrossall15sites.Theonlyexceptionisashortenedstreamflow recordfromsite16(JeffriesCreek,USGS)duetodecommissioningofthatsiteinSeptember2010.Fifteen-minuteflowand streamstagedatawereconvertedtomeandailyvaluesforestimationofstreamflowindices.

2.3. Indicesofstreamflow

Streamflowwascharacterizedbyevaluatingthreeprimaryindices–theRichards-BakerFlashinessIndex(RBI)(Baker etal.,2004),Hammernumber(Pizzutoetal.,2000),andbedmaterialyield(BMY)asestimatedusingBrownlie’sequation

(1981)forsandbedstreams.Calculatedbedmaterialtransportwassummedovertheperiodofstudyandconvertedtoa

yieldperunitwatershedarea.

2.4. Statisticalanalysis

Theclassifyingoffluvialgeomorphicvariablesstrictlyasdependentand/orindependentiscomplicatedbythe interde-pendenceofvariablesbroughtaboutbyreinforcingfeedbackloopsbetweenwater,sediment,vegetation,landscapeand channelshape(SchummandLichty,1965;AshworthandFerguson,1986);aswellastheself-organizingcharacteroffluvial processes(JayakaranandWard,2007;Rodríguez-IturbeandRinaldo,2001;Parker,1996).Tohandlethiscomplexity,we deliberatelychosenottotestapriorihypotheses.Insteadwechosetoclassifystatisticalanalysesinthisstudyintotwotypes: causaltypeanalyseswhereweidentifiedpredictorandresponsevariablesandtestedtheirrelationshipbybivariate regres-sion;andpredictivetypeanalyseswheremultipleregressionmodelsweredevelopedtopredictanindexofstreamflow, basedonselectedlandscapeandchannelmorphologicalparameters.

Alldataweregroupedintothreeclasses:(1)threestreamflowindices(RBI,H,andBMY)treatedasbothdependentand independentvariablesdependingonthetypeofanalysis(2)thirtylandcovervariablescomprisingsixlandcoverclassesat fivespatialscales,alltreatedasindependentvariables,and(3)twelvechannelgeomorphologicalvariablesdescribingriparian habitat,bankfullfeatures,bedmaterial,streamslope,andstreamroughnesstreatedasdependentorindependentdepending ontheanalysis.AsummaryofhowvariablesweretreatedandstatisticalanalysesusedisoutlinedinTable2.

AlldatawerefirsttestedfornormalityusingShapiro–Wilkes’testandwhennon–normal,transformedusingBoxCox transformations(BoxandCox,1964).Thosevariablesthatdidnotachieveanormaldistributionpost-transformationwere omittedfromfurtheranalyses.Thestrengthofrelationshipsbetweenindicesofstreamfunctioning,andinfluential geo-morphologicalandlandcovervariablesweretestedbysimpleandmultipleregressiontechniquesat˛=0.10.Duetothe largenumberofindependentvariables,onlyselectedgeomorphologicalandlandcovervariableswereusedforsubsequent regressiontesting.Toparedownvariables,onlythosemostcorrelatedwithindicesofstreamflowbyPearsoncorrelation werechosenforfurtheranalyses.Toselectlandcovervariablesthatmostinfluencedindicesofstreamfunction,thevariable importanceinprojection(VIP)procedureforpartialleastsquaresregression(PLSR)wasused(seeChongandJun,2005). PLSRisparticularlyamenableforusewithhighlymulticollineardata(Woldetal.,2001),aconditionthatcharacterizedthe landcoverdatausedinthisanalyses.Multicollinearityoflandcoverdatawascompoundedbythefactthatriparian corri-dorandsubcorridorscaleswerenested.ThePLSR-VIPprocedurewasimplementedinatwo-stepproceduretodetermine whatlandcover-spatialscalecombinationmostinfluencedanindexofstreamflow.Asafirststep,aparticularlandcover atallfivespatialscaleswereanalyzedbyPLSR-VIPtodeterminewhichspatialscaleofthatlandcovermostinfluenceda streamflowindex.Thisprocesswasrepeatedforeachlandcovervariable,andforeachstreamflowindex.Withsixland cover-spatialscalevariablesperstreamflowindexchosenfromthefirststep,asecondPLSR-VIProutinewithamodified jackknifeproceduretoestimateparametersignificance(perMartensandMartens,2000)wascarriedout.Significantland cover-spatialscalevariableschosenfromthesecondstepandimportantstreamgeomorphologicalvariables(bypreviously describedcorrelationanalyses)werethenrelatedtoeachstreamflowindexusingmultiplelinearregression.Thestrength ofthepredictiveregressionmodelswereevaluatedbycomparingthepredictiver2statisticgeneratedbyeachregression

model.

3. Results

3.1. Landcoveranalysis

Atthecatchmentscale,AGRrangedfrom23%to58%,FORrangedfrom13%to64%,WETrangedfrom4%to27%,and IMPrangedfrom0.4%to5.2%.Wetlandstypicallydominatedlandcoveratthethreesmallestripariansub-corridorscales (200m,1000m,and2000m),withWETdecreasingwithincreasingupstreamextentofripariansubcorridor.Streamsites intheASLPecoregionhadfractionallymorewetlandsinthecatchmentandripariancorridorscomparedtothosestreams intheSHecoregion(Fig.2a).ThedifferencebetweenWETatthecatchmentandripariancorridorscalesisameasureof

(6)

266 A.D. Jayakaran et al. / Journal of Hydrology: Regional Studies 5 (2016) 261–275 Table1

Sitecharacteristicsincludingsitelocationbylevel4ecoregions(ASLP,SH:AtlanticSouthernLoamPlainsandSandHills,respectively),drainagearea(DA),bankfullchanneldimensions(Wbkf,Dbkf,Qbkf:bankfull width,depth,andflow,respectively),riparianhabitat(QHEI)andlandcover(For,Ag,Wet,Imp:Forest,Agriculture,Wetland,andImpervious,respectively).Severalsitescoincidedwithlocationsmonitoredby USGSandSCDNR.FlowwasnotmeasuredatSite15duetobeaveractivity.

Name Eco-region DA Wbkf Dbkf Qbkf Slope D50 QHEI For Ag Wet Imp LDI RBI H BMY Notes

km2 m m m3/s % m %oftotalDA *10−6m/s t/ha/yr

1 CrookedCreek ASLP 167.4 14.3 1.0 6.3 0.110 382 66.5 26.3 42.8 19.9 1.5 11.1 0.15 0.038 1.34

2 CrookedCreekDNR ASLP 72.1 8.9 0.8 2.3 0.069 289 57.5 25.5 33.5 26.5 0.7 13.4 0.19 0.032 0.33 DNR,wadeable

3 HuckleberryBranch SH 17.3 3.4 0.4 0.5 0.420 471 67.5 16.2 51.4 13.6 4.0 15.9 0.14 0.029 1.09 wadeable

4 ThompsonCreek SH 385.0 19.8 1.5 15.7 0.039 853 55.5 61.1 28.6 3.9 0.6 5.5 0.19 0.041 0.27 wadeable

5 JuniperCreek SH 50.9 9.2 0.8 1.4 0.023 304 43.0 49.4 28.9 13.5 1.0 6.2 0.21 0.027 0.02 wadeable

6 JuniperCreekDNR SH 96.5 6.8 0.9 2.3 0.170 354 61.5 50.0 28.3 13.8 1.0 6.0 0.14 0.024 1.27 DNR,wadeable

7 HamsCreekDNR SH 45.6 6.9 0.7 1.9 0.200 242 78.0 62.7 26.4 6.9 0.4 3.2 0.23 0.043 1.32 DNR,wadeable

8 LynchesRiveratHwy1 SH 998.3 28.9 2.0 42.7 0.033 505 50.0 53.8 34.2 6.3 0.7 5.7 0.31 0.043 0.57

9 LittleLynchesRiverDNR SH 154.5 20.7 1.0 11.6 0.140 764 48.0 63.9 23.3 5.4 0.8 4.4 0.42 0.075 0.51 DNR,wadeable

10 LittleForkCreekUSGS SH 39.3 8.1 0.6 2.1 0.280 866 65.0 49.5 35.4 3.7 1.3 7.1 0.46 0.053 1.01 USGS,wadeable

11 LynchesRiver@BishopvilleUSGS ASLP 1717.9 46.7 3.2 68.1 0.029 295 43.5 52.8 32.9 9.0 0.7 5.6 0.21 0.040 0.14 USGS

12 BlackCreek@QuinbyUSGS ASLP 1137.1 26.7 2.1 31.5 0.141 319 57.5 30.1 45.1 14.0 2.1 11.2 0.10 0.028 1.39 USGS

13 BlackCreek@McBeeUSGS SH 295.6 17.2 1.6 8.1 0.024 176 55.0 49.5 31.9 11.2 1.1 5.4 0.15 0.028 0.42 USGS

14 BlackCreeknearChesterfieldUSGS SH 134.1 12.8 1.0 6.8 0.064 400 63.5 38.4 40.7 9.7 1.9 7.9 0.30 0.051 0.83 USGS,wadeable

15 JeffriesCreekDNR ASLP 44.9 465 48.0 13.4 57.6 18.8 2.0 15.4 DNR

16 JeffriesCreekUSGS ASLP 121.1 15.6 1.1 7.7 0.042 594 34.5 15.0 47.9 18.0 5.2 17.7 0.30 0.064 0.19 USGS,wadeable

(7)

Table2

Summaryofdependentandindependentvariables,modeofindependentvariableselection,typeofanalyses,andstatisticaltestapplied.

Dependentvariables Independentvariables Independentvariableselection Analysestype Statisticaltestused Channelmorphology RBI,H Correlation Causal Linearregression BMY Channelmorphology Correlation Causal Linearregression RBI,H,BMY Landcover PLSwithVIP Causal Linearregression RBI,H,BMY Channelmorphology+landcover Fromprevioussteps Predictive Multipleregression

isolatedornon-riparianwetlandsinthecatchment.AgriculturewasexpectedlytheprimarylandcoveracrosstheMDRP, withgraduallyincreasingintensityasthespatialscaleunderconsiderationincreased.Therewasmoreagriculturewithin theentireripariancorridorintheASLPecoregionwhencomparedtotheSHecoregion.However,atsmallerripariansub corridorscales,therewasnodiscernibledistinctionbetweenagriculturepracticesbetweenASLPandSH.Forestsdominated thetwolargestspatialscales(ripariancorridorandentirecatchment),andFORincreasedwithincreasingspatialextent ofsubcorridorscales.FORwassignificantlynegativelycorrelatedtoWETacrossallthespatialscales,withthegreatest correlationatthecatchmentscale(r=−0.76,p<0.01),andtheleastbutstillsignificantcorrelationattheripariancorridor scale(r=−0.53,p=0.04).Whencomparedbyecoregion,FORwasmoreprevalentacrossallspatialscalesintheSHecoregion (Fig.3c)thanintheASLPecoregion.Near-zerovaluesforIMPwereobservedwithinalltheripariansubcorridorscales,while thehighestLDIandIMPweremeasuredconsistentlyatthecatchmentscale(Fig.2dande),reflectingthatmostintense urbanizationoccursoutsideoftheripariancorridorintheMPDRB.TherangeofIMPwasgreaterintheASLPecoregiondue tothepresenceofseverallargetownsclosetooursamplinglocations.Similarly,LDIwasalsohigheracrossallscalesinthe ASLPmostlylikelyduetothegreatercombinedpresenceofagricultureandurbanizationinASLPinrelationtoSHecoregion. AverageCNweresimilaracrossthefivespatialscalesrangingfrom36.6to75.0atthecatchmentscale,and25.7to75.9across thefourripariancorridorscales.Whenexaminedbyecoregion,CNatthecatchmentandripariancorridorscaleswerehigher intheASLPthaninSHthoughthistrenddiminishedwithspatialextentoftheripariansubcorridorunderconsideration (Fig.2f).

Fig.2.(a–f):Boxplotdiagramsforlandcovermetricsbymajorecoregionwithinthecatchmentandripariancorridorscalesofspatialanalyses.Thewhiskers extendtothemostextremedatapointwhichisnomorethan1.5timestheinterquartilerangefromthebox.Pointsoutsidetherangeofthewhiskers representoutliersandareillustratedbyopencircles.

(8)

268 A.D.Jayakaranetal./JournalofHydrology:RegionalStudies5(2016)261–275

Fig.3. Streamflowat15studysitesmeasuredovera2.9yearperiodofstudyshowingdrainageareaandflashiness(RBI).Thestudysitesincludesix long-termUSGSsites,however,onlydatacontemporaneouswiththisstudywereused.Horizontalbluelinesrepresentbankfullflowateachsite.To facilitatecomparisonofflowdatafromstreamsofvaryingsizes,allflow(volume/time)arerepresentedasflowperunitareaofwatershedperday (volume/area/time=depth/time).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

3.2. Streamgeomorphology

Bedmaterialwastypicallycharacterizedbyparticlesintherangeofsand(0.0063–2.00mm),withD16rangingfrom 0.063mmto0.391mm,D50from0.176mmto0.866mm,andD84from0.393mmto3.705mm.Thedistributionofbed materialasmeasuredbythegeometricsortingcoefficienthadameanvalueof2.74(rangeof1.73–4.43)suggestingthatbed materialatthesitesrangedfromwelltopoorlysorteddistributions.Streamssloperangedinbetween0.023%and0.42%. Bankfullfeaturesidentifiedbyaweightofevidenceapproachwerewellcorrelatedwithdrainagearea(Smootetal.,2015). QHEIscoresrangedfrom34.5(JeffriesCreekUSGS)to78(HamsCreekDNR),withameanof56.Eightstreamswereinfair condition(52≤QHEI≤70.9),oneingoodcondition(71≤QHEI≥89.9),and4inpoorcondition(27≤QHEI≤51.9).

3.3. Indicesofstreamflow(H,RBI,andBMY)

Hammer(H)numbersrangedfrom0.024×10−6m/sto0.075×10−6m/s,withameanvalueof0.041×10−6m/s.

Flashi-ness(RBI)rangedfrom0.11to0.42withameanvalueof0.23acrossallsites(Fig.3).Theaveragecalculatedbedmaterial yield(annualaveragecalculatedloadperunitdrainageareaorBMY)rangedfrom0.02t/ha/yrto1.4t/ha/yrwithanaverage of0.71t/ha/yracrossallsites.ThemeandailystreamflowrecordusedinthestudyispresentedforallsitesinFig.3and expressedasdepthperunitareaofwatershed.Thestreamflowrecordfromsite16(JeffriesCreek,USGS)isonlypartialdue todecommissioningofthatsitebyUSGS.

3.4. Correlatingindicesofstreamflowtolandcoverandstreamgeomorphology

Ontherelationshipsbetweenstreamflowindicesandappropriatelytransformedstreamgeomorphologicalvariables, RBIwassignificantlycorrelatedwithD50(r=0.61,p=0.017)andD16(r=0.59,p=0.021).Hwaspositivelycorrelatedwith D50(r=0.62,p=0.013),D16(r=0.53,p=0.041),andbankfullvelocity(r=0.46,p=0.085).BMYwaspositivelycorrelatedwith QHEI(r=0.80,p<0.001),slope(r=0.79,p=0.001).OthercorrelationsarepresentedgraphicallyinFig.4a.Correlationswithin thesetofstreamgeomorphologicalvariablesshowedthatbankfulldimensions(bankfullwidth,bankfulldepth,andbankfull channelcrosssectionalarea)weresignificantlycorrelatedwitheachother,aswellaswithbankfullflow.Therelationships

(9)

Fig.4. CorrelationmatrixplotshowingPearson’scorrelationcoefficientbetween(a)flowindicesandgeomorphologicalvariables,(b)crosscorrelation amonggeomorphologicalvariables,and(c)crosscorrelationamongstreamindices.

betweenbankfulldimensionsandbankfullflowaredetailedinSmootetal.(2015).Othercorrelationsthatwerenotable weretherelationshipsbetweenaveragebankfullvelocityandthreemeasuresofbedmaterialcomposition:D16(r=0.64,

p=0.010),D50(r=0.48,p=0.073),andthecoefficientofgradation(r=−0.55,p=0.034).Averagechannelslopeandcalculated Manning’scoefficientwerealsosignificantlycorrelated(r=0.64,p=0.011).QHEIwassignificantlypositivelycorrelatedwith streamslope(r=0.69,p=0.004).Othersignificantcorrelationsnotreportedduetovariablenon-independencewerethose relationshipsamongbankfulldimensions,bankfullvelocity,andaveragestreamslope.Correlationsamongindicesofstream function(Fig.4c)showedthatRBIandHweresignificantlypositivelycorrelated(r=0.87,p<0.001).

3.5. Relatinggeomorphologytoindicesofstreamfunction

Bivariatelinearregressionmodelswereusedtorelatestreamindicestothemostwellcorrelatedstreamgeomorphological variablesthroughbivariateregression.Choiceofresponseandpredictorvariableswerebasedontheheuristicoutlinedin

Table2.Bivariatelinearregressionrelationshipsexplained34%ofthevariationoftransformedD50withRBI(p=0.014,

Fig.5a),andH(p=0.013,Fig.5b).Abivariateregressionmodeldescribed59%ofthevariationinBMYwithtransformed streamslope(p<0.001).Similarly,anotherbivariateregressionmodelexplained63%ofthevariationinBMYwithQHEI (p<0.001).

3.6. Relatinglandscapetoflowindices

H:Basedonthetwo-stepPLSR-VIP(Fig.6a)analysiswithjackknifeestimationofparameteruncertainty,percentwetland coverwithintheentireripariancorridor(WETALL)wastheonlyvariableofsignificance(p=0.066).Asimpleregressionmodel describingthevariationofHwithWETALLwassignificant(adj.r2=0.32,p=0.017)(Fig.7a)andshowedthatHdecreased

withincreasingwetlandcoverintheripariancorridor.AtwocomponentmodeldescribingHwithintermsofWETALLand transformedD50valuesasexplanatoryvariableswasalsosignificant(adj.r2=0.36,p=0.028).Thistwo-parametermodel

hadapredictedr2of0.19(Fig.7b).

RBI:BasedonthetwostepPLSR-VIPanalysis(Fig.6b)withjackknifeestimationofparameteruncertainty,percentwetland coverandcurvenumberwithinthe2000mripariansubcorridor(WET2000,p=0.014;CN2000,p=0.083)werevariablesof significance.AsimplelinearregressionsignificantlydescribedthevariationinRBIwithtransformedWET2000(adj.r2=0.46,

p=0.003,Fig.8a),withRBIdecreasingwithincreasingwetlandcover.Asimplelinearregressionalsosignificantlydescribed thevariationinRBIwithCN2000(adj.r2=0.26,p=0.031,Fig.8b),withRBIincreasingwithcurvenumber.Giventhepreviously

presentedsignificantregressionmodelbetweenRBIandD50(Fig.5a),atwo-parameterpredictivemultipleregressionmodel wasdevelopedrelatingRBItoD50andWET2000.ThetwoparametermodelforRBIhadapredictedr2statisticof0.40(Fig.8c).

(10)

270 A.D.Jayakaranetal./JournalofHydrology:RegionalStudies5(2016)261–275

Fig.5. Scatterplotsdepictingthreeflowindiceswiththemostcorrelatedgeomorphologicalvariable.Dataandregressionlinesareplottedinuntransformed space,whiletheadjustedcoefficientsofdetermination(adj.r2)werederivedusingtransformedindependentvariables.

BMY:BasedonthetwostepPLSR-VIP(Fig.6c)analysiswithjackknifeestimationofparameteruncertainty,wetland coverwithinthe200mripariansubcorridorzone(WET200)wastheonlyparameterofsignificance(p=0.051).However,a bivariatelinearregressionmodelwithWET200asapredictorofBMYwasnotsignificant(adj.r2=0.08,p=0.16,Fig.8d).The

bestcombinationoflandcovermetric(WET200)andgeomorphologicalvariable(averagestreamslope)aspredictorsofBMY yieldedapredictedr2of0.44(Fig.8e).However,theregressionmodelthatbestpredictedBMYwasamultipleregression

modelwithtransformedstreamslopeandQHEIaspredictorvariables(pred.r2=0.66,adj.r2=0.71,p<0.001,Fig.8f).

4. Discussion

TheMPDRBispredominantlyaforestedandagriculturallandscapelocatedintheSoutheasternPlainslevel3ecoregion ofSouthCarolina.Thetwolevel4ecoregions(SandHillsandAtlanticSouthernLoamPlains)demarcatedacleartransitionin landcoverdistribution,withwatershedsintheSandHills(SH)ecoregioncharacterizedbyforestedlandcoverwhilethose intheAtlanticSouthernLoamPlains(ASLP)byagriculture.Withincreasingproximitytoastream,forestedandagricultural landcoverintheMPDRBdiminishedgivingwaytoriparianwetlandcomplexes.Atallspatialscales,wetlandsweremore

Fig.6. Partialleastsquaresregressionbiplotsshowinghowlandscapevariablesatparticularspatialscalesrelateto:(a)Hammernumber(H),(b)stream flashiness(RBI),and(c)calculatedbedmaterialyield(BMY).

(11)

Fig.7.LinearregressionmodelsthatexplainthevariationofHwith:(a)wetlandcoverintheripariancorridor(WETALL),(b)atwo-parameterregression equationthatincludesWETALLandlogtransformedD50.

Fig.8.RegressionequationsthatexplainthevariationofRBIwith(a)transformedwetlandcoverinthe2000mripariansubcorridor(WET2000)bybivariate regression,(b)curvenumberinthe2000mripariansubcorridor(CN2000)bybivariateregressionand(c)transformedWET2000.Linearregressionmodels thatexplainthevariationofBMYwith:(d)wetlandcoverinthe200mripariansubcorridor(WET200),(e)atwo-parameterregressionequationthat includesstreamslope(Slope)andWET200,(f)atwo-parameterregressionequationthatincludesstreamslope(Slope)andQHEI.

(12)

272 A.D.Jayakaranetal./JournalofHydrology:RegionalStudies5(2016)261–275

Fig.9.Bivariaterelationshipsbetween(a)streamhammernumberandstreamflashiness,and(b)D50ofmeasuredbedmaterialandwetlandpresencein theripariancorridorexpressedasapercentage.

prevalentintheASLPecoregionthanintheSHecoregion.Wedefinedaripariancorridoras180mofDEM-derivedflow distanceextendingtobothsidesofthestreaminthecross-valleydirection,andincludedalltributariesupstreamofthe samplingsiteinthealong-valleydirection.Withinthisdefinedripariancorridor,agricultureandwetlandweresimilarly distributedintheSHecoregion,whileagriculturewastheprevalentlandcoverintheASLPripariancorridor.Theriparian corridoracrossallsampledstreamsreflectedthelowestanthropogenicinfluenceasmeasuredbythepercentimpervious landcoverandLDI.Withintheripariansubcorridorspatialscales,wetlandprevalencedecreasedwithupstreamdistance, whileagricultureandforestcorrespondinglyincreased.Thisobservationisconsistentwiththefactthatwithincreasing upstreamdistance,streamgradientsarelikelytoincreasewhilevalleywidthdecreases.Thecombinedfactorsofsteeper streamsandnarrowervalleyslimitwetlandspatialextentandfrequency.Itisalsopossiblethatcommercialinterestshave convertedmanyofthelessextensivewetlandcomplexestoforestandagriculturallandcoverintheheadwaterriparian corridorsintheMPDRB.

Flashiness(RBI):Therewasasignificantrelationshipbetweenthemedianparticlesizeofbedmaterialandflashinessover theperiodofstudy.Ahigherflashinessnumberindicatesthatthestreamissubjecttoshortperiodsofhighvelocityflows relativetoaverageflowconditions(Bakeretal.,2004;Poffetal.,1997),aconditionthatcanresultinacoarseningofbed material(Dinehart,1998)duetohigher,albeitbrief,periodsofincreasedsedimenttransportcapacity(Robinson,1976a,b;

Finkenbineetal.,2000;Pizzutoetal.,2000).However,moststudiesreportingbedmaterialcoarseningwererelatedto

depletionofsedimentsupplyingravelbedstreams(e.g.Rubinetal.,1998;Dietrichetal.,1989)orthoserelatedto water-shedurbanization(e.g.Hawleyetal.,2013).Thesignificantrelationshipinthisstudybetweenflashinessandbedmaterial suggestsamechanismwheresedimenttransportcapacityexceedssedimentsupply(e.g.Schummetal.,1984a,b),where thestreamflashinessthatweobservedisameasureofexcesstransportcapacitywithinthestudyreaches.Flashinesswas significantlyrelatedtowetlandcoverinthe2000mripariansubcorridorzone,withdecreasingstreamflashinessassociated withincreasingwetlandcover.Thisresulthighlightstheassimilativecapacitiesofriparianwetlandecosystemsandtheir inherentabilitytoattenuateflows,decreasingflowpeaksandextendingeventdurations(Gedanetal.,2010;Hillman,1998;

WooandWaddington,1990).ThedatapossiblyalsoreflectthefactthatwetlandpresenceintheripariancorridorofMiddle

PeeDeeRiverwatershedimpliestheabsenceofanthropogenicactivitiesthattypicallyinvokestreamflashiness(Bakeretal.,

2004;Poffetal.,1997).Thisresultholdsimplicationsfortheregulationofriparianareaofstreams,especiallywithregards

toamoresystematicprotectionofriparianwetlandecosystemsintheMiddlePeeDeeRiverwatershed.

Hammernumber(H):ThesignificantpositivecorrelationbetweenHammernumber(H)andmedianbedmaterialsize (D50)mirrorstheothersignificantrelationshipbetweenRBIandD50.Further,RBIandHwerealsofoundtobesignificantly correlatedwitheachother,aresultthatunderscoresthefactthatRBImeasuresstreamflashiness,andHmeasureschannel enlargement—awell-documentedconsequenceofstreamflashiness(O’Driscolletal.,2009;Walshetal.,2005;Henshaw

andBooth,2000).AsimplelinearregressionrelationshipbetweenRBIandHexplainedover66%ofvariationofHwithRBI

(p<0.001,Fig.9a).AswithRBI,themostsignificantlandcovervariableassociatedwithHwaswetlandcover.However,unlike RBIthatwasnegativelycorrelatedwithwetlandcoverinthe2000mripariansubcorridor,Hwasnegativelycorrelatedwith wetlandcoverwithintheentireripariancorridorscale.ThisresultillustratesthedependenceofHonareachequivalent spatialscaleechoingPizzutoetal.’s(2000)observationthatHwasameasureofchannelcharacteristicsandnot watershed-scalefactors.Theresultfurthersuggeststhatforagivendrainageareaand streamslope,bankfullflowand associated bankfullchanneldimensionsdiminishwithincreasedwetlandcoverintheripariancorridor.Perhapstheverymechanisms offlashinessattenuationprovidedbyriparianwetlandsystemsalsomitigatechannelenlargement(asmeasuredwithH)

(13)

andbedmaterialcoarsening.Infact,medianbedmaterialsizesignificantlyreduced(adj.r2=0.43,p=0.004)withincreased

presenceofwetlandwithintheripariancorridor(Fig.9b).

Bedmaterialyield(BMY):Thetotalcalculatedbedmaterialmovedateachsiteovertheperiodofstudywassignificantly relatedtodrainagearea,assiteswithlargerdrainageareasexperienceagreatervolumeofrunoffatthewatershedoutlet thatinturnmovedmorebedmaterial.ThemostinfluentialgeomorphicparametersonBMYwereaveragestreamslope andQHEI.Wetlandcoverwithinthe200mriparianwasshowntobeimportantbythePLSR-VIPprocedurebutwasnot significantwhentestedbylinearregression.GiventhatstreamslopeisanintegralpartofBrownlie’stransportequation, itsinfluenceonBMYwaswellwithinreason.ThefactthatincreasedBMYwasassociatedwithhighQHEIvaluesreflects thefactthatstreamswithhighergradientsandcoarseexposedbedmaterialscorehighbytheQHEIframework—thelatter twoparametersalsobeingindicatorsofhighbedmaterialtransport.TheutilityofBMYestimatesinthisstudy(range: 0.02–1.4t/ha/yr)isprimarilyasaconsistentmetricforcomparisonbetweenstudysites.Thebodyofpublishedstudieson bedmaterialyieldsforCoastalPlainwatershedsislimitedtothosethatmeasuresuspendedsedimentand/ortotalsediment yields(e.g.Gellisetal.,2009;Slatteryetal.,2002;Calvo-AlvaradoandGregory,1997;Phillips,1995;Simmons,1988;Ursic

andDendy,1965).Resultsfromthisstudyarecomparabletosedimentyieldspublishedbytheseworkers,however,since

weonlyestimatedbedmaterialyield(afractionoftotalsedimentyield),ourresultsareclearlybiasedhigh.StottandMount

(2004)publishedasynthesisofbedloadyieldestimatesfromforesteduplandcatchmentsintheUnitedKingdom,reporting

meanbedloadyieldfromamatureforestedcatchmentas0.17t/ha/yrandfromaharvestingforestas0.58t/ha/yr.

4.1. Implicationsfordevelopingwetland-specificregulationsinSouthCarolina

Themedianbedmaterialparticlesize(D50)wascloselyrelatedtoinstreamflowconditionswithcoarserbedmaterial associatedwithflashierstreamsandlargerhammernumbers.Thisresultsuggeststhatonemightpotentiallyestimatea stream’sflashinessorhammernumberintheMPDRBbymeasuringparticlesizedistributionofbedmaterial,aparticularly usefulresultespeciallywhentheresourcestoinstallastreamgaugeandtoestimatestreamflowoverasufficientperiodof timearenotavailable.Fromtheperspectiveofhabitatprotection,QHEIscoreswereclearlygreateratsiteswithsmalldrainage areas—suggestingtheimportanceofprotectingheadwaterstreamsintheMPDRBasimportanthabitatforaquaticfauna. WetlandcoverintheripariancorridorsoftheMPDRBplayedstatisticallysignificantrolesinregulatingstreamflashiness, hammernumber,andbedmaterialtransport.AstypicalanthropogenicactivitiesintheMPDRBinvolvetheconversionof wetlandandforestedlandscapestoagricultureanddevelopment,wearelikelytoseegreaterflashiness,hammernumbers, and possiblyincreasedbed materialyieldfromtheMPDRB.In termsofthespatialextentthatstreamflowindicesare influenced,streamflashinesswasinfluencedbywetlandcoverwithintheripariancorridorextendingto2kmupstreamof thesampledsite.Thisincludedtheripariancorridorofalltributarystreamswithin2km(upstreamalongchannel)ofthat site.Channelenlargement(Hammernumber)wasevenmoresensitivetowetlandcover,beinginfluencedbywetlandcover withintheentireripariancorridor(includingallupstreamtributaries).Currently,therearenostate-specificregulations pertainingtowetlandmanagementorregulationinSouthCarolina.TheUnitedStatesArmyCorpsofEngineersadministers Section404oftheCleanWaterActlimitingwetlandalteration,andtheSouthCarolinaDepartmentofNaturalResources protectsnon-coastalwetlandsbyadministeringthefederalWaterQuality(401)CertificationprogramundertheClean WaterAct.However,thelatterislimitedtowaterqualityanddoesnotaddresswaterquantitymetricssuchasflashiness.In thesoutheasternUSA,thepredominantcauseforchangeinacreageofforestedwetlandswasagriculture,urbanizationand forestry(WearandGreis,2002)thoughthemajorityofwetlandconversiontookplacepriorto1980.Between1986and1997 however,around3%offorestedwetlandshavebeenlostinthesoutheasternUSAascomparedto15%between1950and

1970(WearandGreis,2002).Itthereforestandstoreasonthatprotectingriparianwetlandsisintimatelyintertwinedwith

streamfunction,andthereforedevelopingwetland-specificregulationforSouthCarolinaacriticalsteptowardsensuring thefuturestabilityandhealthofstreamsintheMPDRB.Finally,webelievethatwhileanecoregionistheappropriateunit withinwhichtoevaluatestreamfunctionforthedevelopmentofstate-specificenvironmentalregulations,thegeographic extentofsuchstudiesshouldnotextendbeyondtheboundariesofasinglelevel3ecoregion.

4.2. Futurework

Whilemostrelationshipspresentedinthisstudybetweenlandcover,channelmorphologicalmeasurements,andindices ofstreamflowweresignificant,theabilitytopredictstreamflowindicesfromlandscapeandchannelmeasurementsalone werelow.Webelievethatvariationamongsiteswithinlevel4ecoregionsispartlythereasonforthislowpredictivepower. Futurestudiesincorporatingalargernumberofstudysitesstratifiedbylevel4ecoregionislikelytoproducemultivariate modelswithgreaterpredictivepower.

5. Conclusions

Withthiswork,wehavepresentedthreeindicesofstreamflowthatmaybeusedtoquantifyinstreamfunctioningas wellaspresentedhowfluvialgeomorphicandlandcovervariablesaffecttheseindices.Theeffectofwatershedlandcover type,andthescaleatwhichspecificlandcoversalterstreamflowregimeprovidesinsightintohowfluvialgeomorphological characteristicswillchangewithchanginginlandcover.Thestudyalsooffersinsightintohowfarupstreamonemightneed

(14)

274 A.D.Jayakaranetal./JournalofHydrology:RegionalStudies5(2016)261–275

tomanagetheupstreamripariancorridorinordertoensurethataspecificlocationinthedrainagenetworkisprotected. Lastly,theprotectionofriparianwetlandsiscriticalinensuringthattheflowregimeinMPDRBisbuoyedfromdestabilizing anthropogenicactivitiesonthelandscape.

Acknowledgments

WewouldliketoexpressgratitudeforfundingofthisworkprovidedbythePeeDeeResearchandEducationCenter Endowment.Thesponsordidnothaveanyroleinstudydesign,datacollection,analysis,interpretation,decisiontopublish, ormanuscriptpreparation.Theauthorsarealsogratefultoseveralundergraduate,graduatestudents,andtechnicianswho facilitateddatacollection.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at

http://dx.doi.org/10.1016/j.ejrh.2015.12.064.

References

Allan,J.D.,2004.Landscapesandriverscapes:theinfluenceoflanduseonstreamecosystems.Annu.Rev.Ecol.Evol.Syst.35,257–284.

Allan,J.D.,Erickson,D.L.,Fay,J.,1997.Theinfluenceofcatchmentlanduseonthestreamintegrityacrossmultiplespatialscales.Freshw.Biol.37,149–161. Ashworth,P.J.,Ferguson,R.I.,1986.Interrelationshipsofchannelprocesses,changesandsedimentsinaProglacialBraidedRiver.GeografiskaAnnaler.Ser.

APhys.Geogr.68(4),361–371http://doi.org/10.2307/521527.

Baker,D.B.,Richards,R.P.,Loftus,T.T.,Kramer,J.W.,2004.Anewflashinessindex:characterizationsandapplicationtomidwesternriversandstreams.J. Am.WaterResour.(JAWRA)40(2),503–522.

Bedoya,D.,Novotny,V.,Manolakos,E.S.,2009.Instreamandoffstreamenvironmentalconditionsandstreambioticintegrity:importanceofscaleandsite similaritiesforlearningandprediction.Ecol.Model.220,2393–2406.

Berkman,H.E.,Rabeni,C.F.,1987.Effectofsiltationonstreamfishcommunities.Environ.Biol.Fish.18(4),285–294.

Blann,K.L.,Anderson,J.L.,Sands,G.R.,Vondracek,B.,2009.Effectsofagriculturaldrainageonaquaticecosystems:areview.Crit.Rev.Environ.Sci.Technol. 39(11),909–1001.

Booth,D.B.,Jackson,C.R.,1997.Urbanizationofaquaticsystems:degradationthresholds,stormwaterdetection,andthelimitsofmitigation.J.Am.Water Resour.Assoc.(JAWRA33(5),1077–1090.

Booth,D.B.,Karr,J.R.,Schaumann,S.,Konrad,C.P.,Morley,S.A.,Larson,M.G.,Burges,S.J.,2004.Revivingurbanstreams:landuse,hydrology,biology,and humanbehavior.J.Am.WaterResour.Assoc.40(5),1351–1364.

Box,G.E.,Cox,D.R.,1964.Ananalysisoftransformations.J.R.Stat.Soc.Ser.B(Method),211–252.

Brabec,E.A.,2009.Imperviousnessandland-usepolicy:towardaneffectiveapproachtowatershedplanning.J.Hydraul.Eng.14(4),425–433. Brabec,E.A.,Schulte,S.,Richards,P.L.,2002.Impervioussurfacesandwaterquality:areviewofcurrentliteratureanditsimplicationsforwatershed

planning.J.Plann.Lit.16(4),499–514.

Brownlie,W.R.,1981.Predictionofflowdepthandsedimentdischargeinopenchannels.ReportNo.KH-R-43A.CaliforniaInst.ofTech.W.M.KeckLab.of HydrologyandWaterResources.Pasadena,CA.

Calvo-Alvarado,J.C.,Gregory,J.D.,1997.PredictingMeanAnnualRunoffandSuspendedSedimentYieldinRuralWatershedsinNorthCarolina,ReportNo. 307.WaterResourcesResearchInstitute,UniversityofNorthCarolina.

Chong,I.G.,Jun,C.H.,2005.Performanceofsomevariableselectionmethodswhenmulticollinearityispresent.Chemometr.Intell.Lab.Syst.78(1–2), 103–112.

Davies,N.M.,Norris,R.H.,Thoms,M.C.,2000.Predictionandassessmentoflocalstreamhabitatfeaturesusinglarge-scalecatchmentcharacteristics. Freshw.Biol.45(3),343–369.

Dietrich,W.E.,Kirchner,J.W.,Ikeda,H.,Iseya,F.,1989.Sedimentsupplyandthedevelopmentofthecoarsesurfacelayeringravel-beddedrivers.Nature 340(6230),215–217.

Dunne,T.,Leopold,L.B.,1978.WaterinEnvironmentalPlanning.W.H.FreemanandCompany,SanFrancisco,California.

Finkenbine,J.K.,Atwater,J.W.,Mavinic,D.S.,2000.Streamhealthafterurbanization.J.Am.WaterResour.Assoc.36(5),1149–1160.

Fitzpatrick,F.A.,Scudder,B.C.,Lenz,B.N.,Sullivan,D.J.,2001.Effectsofmulti-scaleenvironmentalcharacteristicsonagriculturalstreambiotaineastern Wisconsin.J.Am.WaterResour.Assoc.37(6),1489–1507.

Frimpong,E.A.,Sutton,T.M.,Engel,B.A.,Simon,T.P.,2005.Spatial-scaleeffectsonrelativeimportanceofphysicalhabitatpredictorsofstreamhealth. Environ.Manag.36(6),899–917.

Gedan,K.B.,Kirwin,M.L.,Wolanski,E.,Barbier,E.B.,Silliman,B.R.,2010.Thepresentandfutureroleofcoastalwetlandvegetationinprotecting shorelines:answeringrecentchallengestoaparadigm.Clim.Change106,7–29.

Gellis,A.C.,C.R.,Hupp,M.J.,Pavich,J.M.,Landwehr,W.S.Banks,B.E.,Hubbard,M.J.,Langland,J.C.,Ritchie,J.M.,Reuter,2009.Sources,transport,and storageofsedimentatselectedsitesintheChesapeakeBayWatershed.USGeologicalSurveyScientificInvestigationsReport2008–5186,95p. Gergel,S.E.,Turner,M.G.,Miller,J.R.,Melack,J.M.,Stanley,E.H.,2002.Landscapeindicatorsofhumanimpactstoriverinesystems.Aquat.Sci.64,118–128. Hammer,T.R.,1972.Streamchannelenlargementduetourbanization.WaterResour.Res.8(6),1530–1540.

Harrelson,C.C.,C.L.,Rawlins,J.P.,Potyondy,1994.StreamChannelReferenceSites:AnIllustratedGuidetoFieldTechnique.FisheriesStreamSurvey Manual,USDAForestService,RockyMountainResearchService.

Hawley,R.J.,MacMannis,K.R.,Wooten,M.S.,2013.Bedcoarsening,riffleshortening,andchannelenlargementinurbanizingwatersheds,northern Kentucky,USA.Geomorphology,201.WaterResourcesPublications,Littleton,Colorado,pp.111–126.

Henshaw,P.C.,Booth,D.B.,2000.Naturalrestabilizationofstreamchannelsinurbanwatersheds.J.Am.WaterResour.Assoc.36,1219–1236, http://dx.doi.org/10.1111/j.1752-1688.2000.tb05722.

Hicks,A.L.,Larson,J.S.,1997.Impactsofurbanstormwaterrunoffonfreshwaterwetlandsandtheroleofaquaticinvertebratebioassessment.In:Roesner, L.A.(Ed.),EffectsofWatershedDevelopmentandManagementonAquaticEcosystems.ASCE,NewYork,pp.386–401.

Hillman,G.R.,1998.Floodwaveattenuationbyawetlandfollowingabeaverdamfailureonasecondorderborealstream.Wetlands18(1),21–34. Howarth,R.W.,Billen,G.,Swaney,D.,etal.,1996.RegionalnitrogenbudgetsandriverineN&PfluxesforthedrainagestotheNorthAtlanticOcean:

naturalandhumaninfluences.Biogeochemistry35,75–139.

Jayakaran,A.D.,Ward,A.D.,2007.GeometryofinsetchannelsandthesedimentcompositionoffluvialbenchesinagriculturaldrainagesystemsinOhio.J. SoilWaterConserv.62(4),296–307.

Jayakaran,A.D.,Libes,S.M.,Hitchcock,D.R.,Bell,N.L.,Fuss,D.,2014.Flow,organic,andinorganicsedimentyieldsfromachannelizedwatershedinthe southcarolinalowercoastalplain.J.Am.WaterResour.Assoc.50(4),943–962.

(15)

King,R.S.,Baker,M.E.,Whigham,D.F.,Weller,D.E.,Jordan,T.E.,Kazyak,P.F.,Hurd,M.K.,2005.Spatialconsiderationsforlinkingwatershedlandcoverto ecologicalindicatorsinstreams.Ecol.Appl.15(1),137–153.

Klein,R.D.,1979.Urbanizationandstreamqualityimpairment.J.Am.WaterResour.Assoc.(JAWRA)15,948–963.

Kondolf,G.M.,Lisle,T.E.,Wolman,G.M.,2003.Bedsedimentmeasurement.In:Kondolf,G.M.,Piégay,H.(Eds.),ToolsinFluvialGeomorphology.JohnWiley &Sons,Ltd,Chichester,UK,http://dx.doi.org/10.1002/0470868333,chp.13.

Lu,J.,Sun,G.,McNulty,S.G.,Amatya,D.M.,2005.AcomparisonofsixpotentialevapotranspirationmethodsforregionaluseintheSoutheasternUnited States.J.Am.WaterResour.Assoc.41(3),621–633,http://dx.doi.org/10.1111/j.1752-1688.2005.tb03759.x.

Maddock,I.,1999.Theimportanceofphysicalhabitatassessmentforevaluatingriverhealth.Freshw.Biol.41,373–391.

Martens,H.,Martens,M.,2000.ModifiedJack-knifeestimationofparameteruncertaintyinbilinearmodellingbypartialleastsquaresregression(PLSR). FoodQual.Preference11(1),5–16.

McRae,S.E.,Allan,J.D.,Burch,J.B.,2004.Reach-and-catchment-scaledeterminantsofdistributionoffreshwatermussels(Bivalvia:Unionidae)in southeasternMichigan,U.S.A.Freshw.Biol.49,127–142.

Mecklenburg,D.E.,A.D.,Ward,2004.STREAMmodules:spreadsheettoolsforriverevaluation,assessmentandmonitoring.ASAEPublicationNumber 701P0904.

Morrison,M.M.,Marcot,B.G.,Mannan,R.W.,2006.Wildlife-HabitatRelationships:ConceptsandApplications.IslandPress,Washington,D.C,pp.493. O’Driscoll,M.A.,Soban,J.R.,Lecce,S.A.,2009.StreamchannelenlargementresponsetourbanlandcoverinsmallCoastalPlainwatersheds,NorthCarolina.

Phys.Geogr.30(6),528–555.

Olsen,D.M.,E.,Dinerstein,E.D.,Wikramanayake,N.D.,Burgess,G.V.N.,Powell,E.C.,Underwood,J.A.,D’amico,I.,Itoua,H.E.,Strand,J.C.,Morrison,C.J., Loucks,T.F.,Allnutt,T.H.,Ricketts,Y.,Kura,J.F.,Lamoreux,W.W.,Wettengel,P.Hedao,K.R.Kassem,2001.TerrestrialEcoregionsoftheWorld:ANew MapofLifeonEarth.BioScience,51(11):933–938.2001.

Oswood,M.E.,Barber,W.E.,1982.Assessmentoffishhabitatinstreams:goals,constraints,andanewtechnique.Fisheries7,8–11. Parker,H.,1996.Rivermeanderingasself-organizationprocess.Science271,1710.

Phillips,J.D.,1995.Decouplingofsedimentsourcesinlargeriverbasins.In:Osterkamp,W.R.(Ed.),EffectsofScaleonInterpretationandManagementof SedimentandWaterQuality,226.InternationalAssociationofHydrologicalSciences,Publication,pp.11–16.

Pizzuto,J.E.,Hession,W.C.,McBride,M.,2000.Comparinggravel-bedriversinpairedurbanandruralcatchmentsofsoutheasternPennsylvania.Geology 28,79–82.

Poff,N.L.,Allan,J.D.,Bain,M.B.,Karr,J.R.,Prestegaard,K.L.,Richter,B.D.,Sparks,R.E.,Stromberg,J.C.,1997.Thenaturalflowregime:aparadigmforriver conservationandrestoration.Bioscience47(11),269–784.

Rankin,E.T.,1989.TheQualitativeHabitatEvaluationIndex[QHEI]:Rationale,Methods,andApplication.StateofOhioEnvironmentalProtectionAgency, EcologicalAssessmentSection,DivisionofwaterQualityPlanningandAssessment.Ohio,Columbus.

Rankin,E.T.,1995.Habitatindicesinwaterresourcequalityassessments.In:Davis,W.S.,Simon,T.P.(Eds.),BiologicalAssessmentandCriteria.Lewis Publishers,BocaRaton,Florida,pp.181–208.

Rhoads,B.L.,Herricks,E.E.,1996.NaturalizationofheadwateragriculturalstreamsinIllinois:challengesandpossibilities.In:Brookes,A.,Shields,F.D. (Eds.),RiverChannelRestoration:GuidingPrinciplesforSustainableProjects.Wiley,NewYork,pp.331–369.

Richards,C.,Johnson,L.B.,Host,G.E.,1996.Landscape-scaleinfluencesonstreamhabitatsandbiota.FishAquat.Sci.53(1),295–311.

Robinson,A.M.,1976a.Theeffectsofurbanizationonstreamchannelmorphology.In:Proc.Natl.Symp.UrbanHydrology,Hydraulics,andSediment Control.

Robinson,A.M.,1976b.Theeffectsofurbanizationonstreamchannelmorphology.In:NationalSymposiumonUrbanHydrology,Hydraulics,and SedimentControl,UniversityofKentucky,Lexington,Kentucky,pp.115–127.

Rodríguez-Iturbe,I.,Rinaldo,A.,2001.FractalRiverBasins:ChanceandSelf-organization.CambridgeUniversityPress.

Roth,N.E.,Allan,J.D.,Erickson,D.L.,1996.Landscapeinfluencesonstreambioticintegrityassessedatmultiplespatialscales.Landsc.Ecol.11,141–156. Rubin,D.M.,Nelson,J.M.,Topping,D.J.,1998.Relationofinverselygradeddepositstosuspended-sedimentgrain-sizeevolutionduringthe1996flood

experimentinGrandCanyon.Geology26(2),99–102.

Schueler,T.R.,1994.Theimportanceofimperviousness.WatershedProtect.Technol.1(3),100–111. Schumm,S.A.,Harvey,M.D.,Watson,C.C.,1984a.IncisedChannels:Morphology,Dynamics,andControl.

Schumm,S.A.,Harvey,M.D.,Watson,C.C.,1984b.IncisedChannels:Morphology,Dynamics,andControlLittleton(CO).WaterResourcesPublications. Schumm,S.A.,Lichty,R.W.,1965.Time,space,andcausalityingeomorphology.Am.J.Sci.263(2),110–119.

Simmons,C.E.,1988.SedimentCharacteristicsofStreamsinNorthCarolina.USGeologicalSurvey,Open-fileReport87–701.

Slattery,M.C.,Gares,P.A.,Phillips,J.D.,2002.Slope?channellinkageandsedimentdeliveryonNorthCarolinacoastalplaincropland.EarthSurf.Process. Landforms27,1377–1387,http://dx.doi.org/10.1002/esp.436.

Smoot,Z.T.,Jayakaran,A.D.,Park,D.M.,Hitchcock,D.R.,2015.HydraulicgeometrycurvesinthePeeDeeRiverwatershed.J.S.C.WaterResour.s2(1), 63–69.

Sponseller,R.A.,Benfield,E.F.,Valett,H.M.,2001.Relationshipsbetweenlanduse,spatialscaleandstreammacroinvertebratecommunities.Freshw.Biol. 46,1409–1424.

Stanfield,L.W.,Jackson,D.A.,2011.Understandingthefactorsthatinfluenceheadwaterstreamflowsinresponsetostormevents.J.Am.WaterResour. Assoc.47(2),315–336.

Stauffer,J.C.,Goldstein,R.M.,Newman,R.M.,2000.Relationshipofwoodedriparianzonesandrunoffpotentialtofishcommunitycompositionin agriculturalstreams.Can.J.Fish.Aquat.Sci.57,307–316.

Stott,T.,Mount,N.,2004.PlantationforestryimpactsonsedimentyieldsanddownstreamchanneldynamicsintheUK:areview.Prog.Phys.Geogr.28 (2),197–240.

Tilman,D.,Fargione,J.,Wolff,B.,D’Antonio,C.,Dobson,A.,Howarth,R.,Swackhamer,D.,2001.Forecastingagriculturallydrivenglobalenvironmental change.Science292(5515),281–284.

Tufford,D.L.,Samarghitan,C.L.,McKellarJr.,H.N.,Porter,D.E.,Hussey,J.R.,2003.Impactsofurbanizationonnutrientconcentrationsinsmallsoutheastern coastalstreams.J.Am.WaterResour.Assoc.(JAWRA)39(2),301–312.

UnitedStatesDepartmentofAgriculture,NaturalResourcesConservationService(USDA-NRCS).2004.NRCSNationalEngineeringHandbook.USDA NationalResourcesConservationService,Washington,DC.Availableat:www.wcc.nrcs.usda.gov/hydro/hydro-techref-neh-630.html. Ursic,S.J.,Dendy,F.E.,1965.Sedimentyieldsfromsmallwatershedsundervariouslandusesandforestcovers.USDepartmentofAgriculture.

MiscellaneousPubl.970,47–52.

Vitousek,P.M.,Aber,J.D.,Howarth,R.W.,Likens,G.E.,Matson,P.A.,Schindler,D.W.,Schlesinger,W.H.,Tilman,D.G.,1997.Humanalterationoftheglobal nitrogencycle:sourcesandconsequences.Ecol.Appl.7,737–750.

Walsh,C.J.,Roy,A.H.,Feminella,J.W.,Cottingham,P.D.,Groffman,P.M.,MorganII,R.P.,2005.Theurbanstreamsyndrome:currentknowledgeandthe searchforacure.J.N.Am.Benthol.Soc.24(3),706–723,http://dx.doi.org/10.1899/04-028.1.

Wang,L.,Lyons,J.,Rasmussen,P.,Seelbach,P.,Simon,T.,Wiley,M.,Kanehl,P.,Baker,E.,Niemela,S.,Stewart,P.M.,2003.Watershed,reach,andriparian influencesonstreamfishassemblagesintheNorthernLakesandForestEcoregion,U.S.A.Can.J.Fish.Aquat.Sci.60,491–505.

Wear,D.N.,Greis,J.G.,2002.SouthernForestResourceAssessment—SummaryReport.Gen.Tech.Rep.SRS-54.U.S.DepartmentofAgriculture,Forest Service,SouthernResearchStation,Asheville,NC,103p.

References

Related documents

An estimated 18.4% of all employers offer wellness incentives, including 58.8% of large businesses with 1,000 or more employees, 36 and efforts should be made to improve

1.) To obtain the maximum potential size, peaches need to develop in a region of the canopy receiving about 20% full sun during the final three weeks before harvest. 2.)

In a scenario where digital globalization and content problematization become vital for students to acquire knowledge in learning processes, information and communication

If the round trip (5th and 6th stage) is between the ports of San Nazzaro, Ascona, Gerra, Ranzo, Isole di Brissago, Porto Ronco, Brissago, we suggest to buy the more convenient

 Albany County Department for Aging’s Elder Law Attorney: through Legal Aid of Northeastern New York can provide Albany County seniors with legal advice and representation on

Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage

blepharophimosis ptosis epicanthus- inversus syndrome (bPEs) is a rare genetic cause of primary ovarian insufficiency.. It mainly affects development of eyelids and has