• No results found

On explicit reciprocity law over formal groups

N/A
N/A
Protected

Academic year: 2020

Share "On explicit reciprocity law over formal groups"

Copied!
29
0
0

Loading.... (view fulltext now)

Full text

(1)

PII. S0161171204301249 http://ijmms.hindawi.com © Hindawi Publishing Corp.

ON EXPLICIT RECIPROCITY LAW OVER FORMAL GROUPS

SHAOWEI ZHANG

Received 16 January 2003

LetFbe a one-dimensional Lubin-Tate formal group overZp. Colmez (1998) and Perrin-Riou

(1994) proved an explicit reciprocity law for tempered distributions over the formal group Gm. In this paper, the general explicit reciprocity law over the formal groupFis proved.

2000 Mathematics Subject Classification: 11S40.

1. Formal groups. In this section, we review some basic facts on formal groups. De Shalit [3, Chapter I] is the source for this section. We just give the description on Coleman power series and the associated measures, and then study such measures extensively. These measures are the basic examples for our theory. For admissible dis-tributions, see [8].

Letpbe an odd prime. Forα∈Z×

p, letπ=pα. Letfπ(x)∈Zp[[x]]be a Frobenius corresponding toπ, sofπ(x)≡π x(mod deg 2),fπ(x)≡xp(modp). LetFbe the one-dimensional Lubin-Tate formal group overZpcorresponding to, let[+]denote the formal addition. LetWn

π:= {x∈Cp|fπ(n)(x)=0}, Kn=Qp(Wπn), K∞= ∪n≥1Kn. Hence, K∞/Qpis a totally ramified extension with Galois groupZ×p. We call this tower the Lubin-Tate tower corresponding to the formal groupF. Let R=Zp[[T ]],ᐁ=limKn×, where the map is with respect to the norm map. Letη:Gm→π be an isomorphism, then η∈Qur

p [[T ]]andη(T )=T+···, such thatΩϕ−1, whereϕ=Frobpis a generator of Gal(Qur

p /Qp). We havef◦η=ηϕ◦[p], where[p]=(1+T )p−1 is the Frobenius of the formal groupGm. Letωn=ηϕ

−n

(ζpn−1). Then it is easy to see that (i) ωn∈Wπ(n),

(ii) fπ(ωn)=ωn−1,

asfπ(ωn)=fπηϕ −n

(ζpn−1)=ηϕ−n+1◦[p](ζpn−1)=ηϕ−n+1pn−11)=ωn−1.

LetTπ=limWπ(n) be the Tate module, where the inverse limit is taken with respect to. Letκ: Gal(K∞/Qp)→Z×p be the character given by the action ofGQp on. If the formal group isGm, this character is justχ, the cyclotomic character. We know that κ=χψ, whereψis an unramified character.

Assumeβ∈ᐁ, then Coleman’s theorem tells us that there is a unique (Coleman) power seriesgβ∈Zp[[T ]]such that

(i) gβ(ωi)=βi,for alli≥1, (ii) β◦fπ(x)=

w∈Wπ1gβ(x[+]w).

(2)

Assumeβ∈ᐁsuch thatβn≡1(modωn). Thengβ(T )≡1 mod(p, T ), wherepis the maximal ideal inZp, hence we can define

loggβ(T ):=loggβ(T )−1 p

w∈Wπ1

loggβT [+]w, (1.1)

property (ii) of the Coleman power series implies thatloggβ(T )has integral coefficients. Define an algebraic distributionµβ∈+alg(Zp,Qpur)such that

Zp

(1+T )xµβ(x)=loggβ◦η(T ). (1.2)

Proposition1.1. (i)The restrictionµβ|Z×pis a measure and its Amice transformation

isloggβ◦η(T ).

(ii)The distributionµβcan be extended to a distribution inᏰ1(Qp,Qurp )Φ=1and has

the following Galois property:

σ

Qp

f (x)µβ =

Qp

fψ(σ )xµβ, ∀σ , (1.3)

for allf (x):Qp→Qp.

Proof. It is easy to see that

Z×p

(1+T )xµβ=

Zp

(1+T )xµβ−

pZp

(1+T )xµβ. (1.4)

By property (ii),

gβ◦fπ(X)=

w∈Wπ1

X[+]w. (1.5)

PutX=η(T ), then

gβ◦fπη(T )=

ζ∈µp

gβη(T )[+]η(ζ−1)=

ζ∈µp

gβηζ(1+T )−1. (1.6)

By usingfπ◦η=ηϕ◦[p], we see

gβ◦η

ϕ

◦[p]=

ζ

gβη

ζ(1+T )−1. (1.7)

Taking logarithm and using the definition ofµβ, we have

ϕ

Zp

1+[p]Txµβ =

ζ

Zp

ζx(1+T )xµβ=p

pZp

(1+T )xµβ. (1.8)

(3)

Proposition1.2. Forµβas above,

ϕ

Zp

(1+T )pxµ β =p

pZp

(1+T )xµ

β. (1.9)

Now continue the proof ofProposition 1.1. The integral

Z×p

(1+T )xµβ=loggβη(T )−1

loggβ◦ηϕ◦[p]T

=loggβ◦η− 1

ploggβ◦fπ◦η(T ) =loggβ◦η(T )

(1.10)

has integral coefficients, henceµβ|Z×

p is a measure. ByProposition 1.2we extendµβto

Qpby defining

p−nZpf (x)µβ=p nϕ−n

Zp

fp−nxµ

β, (1.11)

for anyf (x)with support inp−nZ

p. It is easy to see that this definition does not depend onn.

To prove the second property, since

η(T ):Gm →Ᏺπ, (1.12)

we can show that

ση(T )=η(1+T )ψ(σ )1, σG

Qp. (1.13)

To see this, define

hσ(T ):

η(T )−η(1+T )ψ(σ )1. (1.14)

ForTn=ζpn−1,η(Tn)∈Wπ(n),

(σ η)σ Tn=σηTn=κ(σ )πη

Tn=ηκ(σ )Tn

=ηζpκ(σ )n 1

1+σ Tn

ψ(σ )

1, (1.15)

hencehσ(σ Tn)=0 for alln≥1. The function hσ(T )has infinitely many zeros by Weierstrass lemma, thenhσ(T )=0.

From this property, we see that

σ

Zp

(1+T )xµβ loggβ◦η(T )=loggβ◦ση(T )

=loggβ◦η(1+T )ψ(σ )−1=

Zp

(1+T )ψ(σ )xµβ,

(4)

so for generalf, we have

σ

Zp

f (x)µβ =

Zp

fψ(σ )xµβ. (1.17)

From the extension definition (1.11) ofµβ, we have, for allf,

σ

Qp

f (x)µβ =

Qp

fψ(σ )xµβ. (1.18)

To show thatµβis 1-admissible, by definition and [8, Proposition 3.3], we only need to show thatpn(1−j)

a+pnZp(x−a)jµβ isr-bounded forj=0,1. Forj=0, ifa≠0, then sinceµβ|Z×

p is a measure, the integralp n

a+pnZpµβis always bounded. If a=0, then pn

pnZpµβ=ϕn(

Zpµβ)=ϕ nlogg

β(0)=loggβ(0), hence bounded. Forj=1, ifa≠0, thena+pnZpxµβis bounded. Ifa=0, then

pnZpxµβ=ϕn(

Zpxµβ)=

ϕn(Ω·(g

β(0)/gβ(0)))=αn(gβ(0)/gβ(0)), hence bounded.

Next, we will restrict to theGmcase.µβis an example which is a distribution onQp but not a measure. We will show an example of distribution which is not a tempered distribution.µβcan be extended to negative power. Fork >0, define

Zp

x−kµβ=

1−p−k−11

Z×p

x−kµβ, (1.19)

defineνβ∈+alg(Zp, K∞,cyc)such that

a+pnZpx kν

β:=pnkk!

Zp

ε ax

pn µβ

xk, k≥0. (1.20)

The relation betweenµβandνβis that

νβ⊗ e t=Ᏺalg

µβ⊗

e

t . (1.21)

Lemma 1.3. The distribution νβ is a distribution over Zp, but it is not a tempered

distribution ifloggβ(T )≡loggβ(0)(mod(p, Tp−1)).

Proof. The additivity ofνβfollows from the relation

p1

i=0

ε a+ip nx pn+1

=

    

ax

pn+1 , x≡0

0, x≡0

(modp). (1.22)

Assumeloggβ(T )=

aiTi, sinceloggβ≡0 mod(p, Tp−1), hence there existsi,1≤i≤ p−1, such thatai≡0(modp). Then

(5)

Ifνβisr-admissible, assumer∈N, then for allX,

sup a∈X

p[n(r−j)]

a+pnZp(x−a) jν

β

(1.23)

is r-bounded. Takingj=r, we would have thata+pnZp(x−a)rνβ is bounded when n→ ∞.

We will calculate the valuation ofa+pnZp(x−a)rνβ. Fora=1,

a+pnZp(x−1) rν

β= r

k=0

r k

·(−1)r−k

1+pnZpx kν

β= r

k=0

dk. (1.24)

Claim1.4. v(dk) > i/(p−1)−(n−1)=v(d0).

To prove the claim, keeping using the relation

pZp

ε x

pm µβ xk=

1

pk+1

Zp

ε x

pm−1

µβ

xk (1.25)

and the decomposition

Zp=Z×p∪pZ×p∪···∪pn−1Z×p∪pnZp, (1.26)

we have

1+pnZpx kν

β

=pkn·k!

Zp ε x pn µβ xk

=pkn·k!

n1

i=0

piZ×pε

x

pn µβ xk+

pnZpε

x

pn µβ xk

=pkn·k!

n1

i=0 1

pi(k+1)

Z× p

ε x

pn−i µβ xk+

1

pn(k+1)

Zp

µβ xk

=pkn·k!

n1

i=0 1

pi(k+1)

Z×p

ε x

pn−i µβ xk+

1

pn(k+1)

1−p−k−11

Z×p

µβ xk

.

(1.27)

The last two terms ford0equal

1

pn−1

Z× p

ε x

p µβ+ p−1

pn−1

Z× p

µβ= 1

pn−1log

ζ11

+(p−1)loggβ(0)

. (1.28)

Assumeloggβ(T )=a0+a1T+ ···. From the hypothesis we know that there exists a minimaliwith 1≤i < p−1 such thatai≡0 modp, hence the above expression equals

1

pn−1

pa0+a1

ζ11

+···+ai

ζ11

i

(6)

and therefore v(d0)=i/(p−1)−(n−1). For k >0, we easily see that v(dk)≥k− (n−1) > v(d0), hence the claim follows. The sequence

1+pnZp(x−1)rνβcould not be bounded, hence this completes the proof of the lemma.

Ifr∉ R, takingj=[r ], thenp[n(r−[r ])]

1+pnZp(x−1)[r ]νβcannot tend to zero.

2. Galois action onBdR. LetFbe a one-dimensional height-one formal group over

Zp, letπ=pαbe the uniformizer withα∈Z×p, and letf be a Frobenius power series corresponding toF, then we havef (x)≡π x(mod deg 2), f (x)≡xp(modp). Letη(x):

Gm→Fwhich is an isomorphism, such thatη(x)=x+···, whereΩis ap-adic unit with Ωϕ−1=α. Letω

n=ηϕ− n

(ζpn−1),Kn=Qp(ωn), andK∞= ∪n≥0Kn, let be the Tate module, and letκ: Gal(K/Qp)→Z×pbe the character given by the action on , then we know thatκ=χψwithψan unramified character such thatψ(Frobp)=α andσ (ωn)=[κ(σ )]ωn, where fora∈Zp, [a]denotes the unique endomorphism of Fsuch that[a]=aX+ ··· (see [4, Section 20.1]). LetΞbe the completion ofQur

p . Let tπ=t. Thenhas the property thatσ (tπ)=κ(σ )tπ, ϕ(tπ)=π tπ.

Ifx∈K∞andn∈N, we defineTn(x):=(1/pm)TrKm/Kn(x)form1. We extend

Tn to a map fromK∞((tπ))toKn((tπ))byTn(aktπk)=

Tn(ak)tπk. Note that this definition does not depend on the choice of since the different choice only differs a multiple inQpandTnisQp-linear. We also define Tr/Kn=(1/[Km:Kn])TrKm/Kn(x) form1.

Recall that᏾is the projective limit of the following diagram:

¯

O← O¯ ···. (2.1)

Forx∈᏾,x=(xn)n∈N, xnp+1=xn. Choosexn∈OCpsuch thatxn≡xn(modp).

Lemma2.1. The limitlimn→∞f(m)(xn+m)exists and does not depend on the choice of

xn. Denote it byx(m)and then we havef (x(m))=x(m−1).

Proof. We first prove thatfhas the property, fory∈᏾,

f(n)(x+py)≡f(n)(x)modpn+1y. (2.2)

This is true forn=1 from the definition off. Assume it is true forn, then we have

f(n)(x+py)=f(n)(x)+pn+1yzfor somez, hence

f(n+1)(x+py)=ff(n)(x)+pn+1yz

=f(n+1)(x)modp·pn+1yz =f(n+1)(x)modpn+2y.

(2.3)

From this we see that

f(n)x n+m

−f(n+1)x n+m+1

=f(n)x n+m

−f(n+1)x

n+m+py

0modpn+1, (2.4)

(7)

On the other hand, if(x(m))satisfies the relationf (x(m))=x(m−1), then(x¯(m)), hence᏾is one-to-one corresponding to

x(m)

m∈Nf

x(m)=x(m−1). (2.5)

LetW= {w∈Cp| ∃n,s.t.[π ]nw=0}. Forw∈W, ifn∈Nsuch that[π ]nw≠0, [π ]n+1w=0, then we say thatwhas ordern. TowW, we can associate an element

¯

w=(w, f(−1)(w), f(−2)(w), . . . ). The association is not unique.

Lemma2.2. All elements ofCGK∞

p can be written in the formx= w∈W

aw(x)w with

aw(x)∈Qptending to zero when the order ofwtends to infinity.

Proof. SinceK=Q¯GK∞

p ,W is a base ofOK∞/ZpandC GK∞

p is a separated comple-tion ofK∞with respect top-adic topology, hence the proof follows from Tate-Sen-Ax

theorem.

Proposition2.3. (i)The fieldK∞((tπ))is dense in(BdR+ )GK∞ andTncan be extended

to a continuousQp-linear map from(BdR+ )GK∞ toKn((tπ)). (ii)IfF∈(BdR+ )GK∞, thenlimn→∞pnTn(F )=F.

Proof. (i) For allx∈(BdR+ )GK∞,θ(x)∈CGK∞

p , henceθ(x)=w∈Waw(x)wfor some aw(x)∈QpfromLemma 2.2. Let

R(x)=t−1 π

x−

w∈W

aw(x)[w]¯

∈B+dRGK∞, (2.6)

so we can repeat the above process and get

x=tk+1

π Rk+1(x)− k

i=0

ti π

w aw

R(i)(x)[w]¯

, (2.7)

and this shows thatK∞((tπ))is dense in(B+dR)GK∞.

(ii) ForF∈K∞,F∈Km0for somem0, hence forn≥m0, Tn(F )=(1/pm)TrKm/Kn(F )=

(1/pn)F. Hence, lim

n→+∞pnTn(F )=F. By the definition ofTnonK∞((tπ))we have for F∈K∞((tπ)), limn→+∞pnTn(F )=F.

ForF∈(BdR+ )GK∞, (i) shows that we can takeFk∈K∞((tπ))such that limk→+∞Fk=F. Hence

lim n→+∞p

nT

n(F )= lim n→+∞p

nT n

lim

k→+∞Fk =klim→+∞nlim→+∞p

nT

nFk= lim

k→+∞Fk=F . (2.8)

We can change the order of the limit sincepnT

nis continuous.

Recall that LA denotes the space of locally analytic functions with compact sup-port in Qp taking values inQp. For a p-adic Banach space A, defineᏰcont(Qp, A)= Homcont(LA, A)with respect to Morita topology. Define

ᏰcontQp,Ξψ:=

µ∈ᏰcontQp,Ξ

Qp

f (x)µ

=

Qp

fψ(σ )xµ,∀σ∈GQp

.

(8)

Forµ∈Ᏸcont(Qp,Ξwith compact support, we can define an element inBdRas

Ᏺcont(µ)=

Qp

εxµ. (2.10)

Colmez called this element as the continuous Fourier transformation ofµand we con-tinue using his notation. Recall from [8, Section 4] thatµ∈Ᏸcont(Qp,Ξ)is said to be of orderr∈+if for all open compact setX⊂Qpand allj≥0, the following sequence isr-bounded:

sup a∈X

pE(n(r−j))

a+pnZp(x−a) jµ

. (2.11)

DefineB+cont:= ∩n≥0ϕn(B+max). An elementF B+cont is said to be of orderr if the sequencep[nr ]ϕ−nF isr-bounded. The power seriesA(T )=a

nTn∈Ξ[[T ]]is said to be of orderr ifn−r|a

n|isr-bounded. DefineΞ[[T ]]ψ:= {h(T )∈Ξ[[T ]]such that for allσ∈GQp, σ (h(T ))=h((1+T )ψ(σ )1)}.

Proposition2.4. (i)Forµ∈Ᏸcont(Qp,Ξ)ψ,Ᏺcont(µ)∈(B+cont)GK∞.

(ii)Forµ∈Ᏸcont(Zp,Ξ)ψ, the Amice transformationµ(T )is inΞ[[T ]]ψ,µhas order rif and only ifµhas.

(iii)Forµ∈Ᏸcont(Zp,Ξ)ψ, ifµhas orderr, thenᏲcont(µ)has orderr.

(iv)For a crystalline representationV, forµ∈Ᏸcont(Zp,Ξ⊗D(V ))ψ, if µ has order r, thenᏲcont(µ)has orderr+r (V ), wherer (V )=min{k∈Z|ϕ(d)=pkdfor some

d∈D(V )}.

Proof. (i) Forσ∈GQpandµ∈Ᏸcont(Qp,Ξ,

σᏲcont(µ)

Qp

εxµ =

Qp

εψ(σ )xχ(σ )µ=

Qp

εκ(σ )xµ. (2.12)

Ifκ(σ )=1, thenσ (Ᏺcont(µ))=Ᏺcont(µ), soᏲcont(µ)∈(B+max)GK∞. On the other hand, letFn=

Qp[ε α−nx

n ; we have

ϕFn

=ϕn

Qp

εαn−nx

µ =

Qp

εxµ (2.13)

and this shows thatᏲcont(µ)∈(B+cont)GK∞. (ii) The Galois action gives

σµ(T )

Zp

(1+T )xµ=

Zp

(1+T )ψ(σ )xµ=µ

(1+T )ψ(σ )−1, (2.14)

henceᏭµ(T )∈Ξ[[T ]]ψ.

The second statement can be found in [1].

(iii) Assumeµhas orderr, henceᏭµ(T )has orderrby (ii).

(9)

x=r /alogp. Forx∈R>0, we have

vp

ak

+r n+(p1k)pn−1≥r n+

k

(p−1)pn−1−r logk

logp−

logC

logp

=f k

pn, p p−1, r

logC

logp

≥g p

p−1, r logC

logp.

(2.15)

Takem≤ −1+g(p/(p−1), r )−logC/logpand recall that

Fn=

Qp

εα−nx

n

µ=ak

εα−n

n

1k, Fn=sup

k

p−(vp(ak)+kvp([εα− n

n ]−1))=sup

kp−(vp(ak)+k/(p−1)p n−1)

;

(2.16)

we get

pnrFn=sup k

p−(nr+vp(ak)+k/(p−1)pn−1)≤p−m, (2.17)

henceᏲcont(µ)isr-bounded.

Case2. Forr∈R¯+\R+, then we have limn→+∞n−r|a

n| =0. Hence, we can choose a sequenceck→0 such that|ak|< ckkr, then the above proof shows that we can take

mk= 1+g

p

p−1, r logck

logp !

, (2.18)

thenp[nr ]F

n ≤p−mn hence tends to zero.

(iv) Assumed1, . . . , dkare a base ofD(V )andµ∈(Qp,Ξ⊗D(V ))ψ, thenᏲcont(µ)=

bi⊗di for some bi B+cont with order r, p−nr|ϕ−n(bi) ≤cn for somecn (cn is bounded if r R, otherwise cn 0), so p−n(r+r (V ))|ϕ−n(bi⊗di)| ≤ cn|di|, hence

Ᏺcont(µ)is(r+r (v))-bounded.

Remark2.5. Properties (iii) and (iv) are even true forµhas support inQp. To prove this we only need to extend (ii) to this case.

Lemma2.6. (i)Form≥n≥1,

σ∈Gal(Km/Kn)

εκ(σ )x=   

pm−nε(x), ifxp−nZ p,

0, otherwise. (2.19)

(ii)Form >0,

σ∈Gal(Km/K0)

εκ(σ )x=pm1 Zp−p

m−11

(10)

Proof. (i) Ifx∈p−nZ p, then

σ∈G(Km/Kn)

εκ(σ )x=

pm−n−1

a=0

ε1+a·pnx=pm−nε(x). (2.21)

Otherwise,

σ∈G(Km/Kn)

εκ(σ )x=ε(x) pm−n1

a=0

ε ab

pk =0, (2.22)

with someb≠0 ap-unit,k≥1. (ii) Ifx∈Zp, then

σ∈G(Km/K0)

εκ(σ )x=pm−pm−1. (2.23)

Ifx∈p−1Z

p\Zp, then

σ∈G(Km/K0)

εκ(σ )x=pm−1 p1

a=1

ε a

p =p

m−1·(1)= −pm−1. (2.24)

And it is easy to see that ifxp−1Z p, then

σ∈G(Km/K0)

εκ(σ )x=0. (2.25)

So the sum equals 1Zp·(pm−pm−1)−1p−1Zp\Zppm−1=pm1Zp−pm−11p1Zp.

Proposition2.7. Ifµ∈Ᏸcont(Qp,Ξ)ψ, then

Tn

Ᏺcont(µ)

=

+∞

k=0

tk

p−n

p−nZpε(x)

xk k!µ

, ifn≥1,

T0

Ᏺcont(µ)

=

+∞

k=0

tk

Zp

xk k!µ−p

1

p−1Zp

xk k!µ

.

(2.26)

Proof. The Fourier transformation gives

Ᏺcont(µ)=

Qp

εxµ=

Qp

ε(x)exp(tx)µ

=

Qp

ε(x)

k=0

(tx)k k! µ=

k=0

tk π

Qp

ε(x) x k

k·k!µ.

(11)

To prove the first identity, we need to show that

Tn

Qp

ε(x) x k

k·k!µ

=p−n

p−nZpε(x)

xk

k·k!µ (2.28)

(note that the right-hand side is indeed inKn). Now, assumeµhas compact supportp−mZ

pfor somem, then

Tn

p−mZpε(x)

xk

= 1

pm

σ∈G(Km/Kn)

σ

p−mZpε(x)

xk

= 1 pm

σ

p−mZpε

κ(σ )xx k

=p−n

p−nZpε(x)

xk

kµ.

(2.29)

The same proof works for the second formula.

The Galois action onBdRhas the following property.

Lemma 2.8. Suppose V is a p-adic representation ofGK∞, then (BdR⊗V )GK∞ is a

finite-dimensional vector space overBdRGK∞ with dimensiondimQpVand can have a base

consisting of elements in(Bmaxϕ=1⊗V )GK∞.

Proof. By an argument similar to [2, Corollary B.14], we can see that(BdR+ ⊗V )GK∞ is a finite-dimensional vector space over(B+dR)GK∞ and we can have a basev1, . . . , vdsuch thatv1, . . . , vd∈(W ()⊗V )GK∞. Assumee1, . . . , edare a base ofV /Qp, and(v1, . . . , vd)= (e1, . . . , ed)AwithA∈GLd((BdR+ ⊗V )GK∞), thenθ(det(A))≠0.

Fork≥1,1≤i≤d, letvi,k=m∈Zπ−kmϕm−1(η([ε]−1)k+1vi), then this is a con-vergence sum and it converges to an element in (B+crys⊗V )GK∞. Consider that v1,k/ ϕ−1(η([ε]1))k+1tends toϕ1(v

i)whenk→ ∞, hence whenk1,vi,k/ϕ−1(η([ε]

1))k+1, . . . , v

d,k/ϕ−1(η([ε]−1))k+1 are linearly independent, hence v1,k, . . . , vd,k are linearly independent.

Fromϕ(t−k

π vi,k)=(tπ−kvi,k)we see that tπ−kv1,k, . . . , t−πkvd,k∈(B ϕ=1

max ⊗V )GK∞ are a base of(BdR⊗V )GK∞ overB

GK∞ dR .

Lemma2.9. H1(K

∞, BdR⊗V )=0andH1(K∞,r(Z×p, B ϕ=1

max⊗V ))=0.

Proof. Assumeτ→cτ is a cocycle fromGK∞ →V. From [2] we know thatH1(K∞, W (m᏾)⊗T )=0, whereT⊂Vis a Galois invariant lattice. Letω=(ω0, ω1, ω2, . . .)∈᏾, then[ω]cτ∈H1(K∞, W (m᏾)⊗T )=0, so we can find ac∈W ()⊗Vsuch that[ω]cτ= (1−τ)c. From the ramification property, we can show that[ω]p−10(modp)inAcrys, hencea=n∈Z(ϕn([ω])/pn)is convergent inAGcrysK∞ andϕ(a)=pa. Let

c= 1 pa

ϕn pn

[ω]−1ϕ[ω]c, (2.30)

then it is easy to see that(1−τ)c=cτ. Sincec∈(Bmaxϕ=1⊗V ), this shows that the inclu-sion maph1(K

(12)

in [2, Lemmas B.18 and B.19] we conclude thatH1(K

∞, BdR⊗V )=0, H1(K∞,r(Z×p, B ϕ=1 max

V ))=0.

Lemma2.10. For ap-adic representationV ofGQp, as aᏰ0(Z×p,Qp)-module the

fol-lowing sequence is exact:

0 →H1Γ, 0

Z×

p, V

GK∞ H1Q p,Ᏸ0

Z×

p, V

H1K

∞,Ᏸ0

Z×

p, V

Γ →0.

(2.31)

Proof. The proof can be found in [2].

3. Perrin-Riou exponential map. ForI Z, we have defined LPI, I

alg(Qp, A), Φ, andᏲalgin [8, Section 4]. For a Galois moduleA, in this section, the Galois action on

I

alg(Qp, A)is defined by

f (x)σ (µ)=σ

fκ(σ )xµ , (3.1)

whereµ∈I

alg(Qp, A)andσ∈GQp. Recall that we have the following formulas:

Ᏺalgxk1a+pnZp(y)=p−n k!

(−ty)kε(ay)1p−nZp(y), (3.2)

Ᏺalg

xk1

Z× p

=(tx)1 k·1Zp−p−1 1

(−tx)k1p−1Zp. (3.3)

Proposition3.1. For a de Rham representationV, ifµ∈(−∞,h−1]

alg (Qp,Ξ⊗D(V ))ψ,

then(h) alg(µ)∈

[1−h,+∞)

alg (Qp, BdR⊗V )is fixed byGQp.

Proof. Forσ∈GQp,

a+pnZpx kσ(h)

alg(µ)

κ(σ )−1a+pnZp

κ(σ )xkᏲalg(h)(µ)

=p−n(k+h1)!κ(σ )k

×

σ

p−nZpε

κ(σ )−1ax(tx)−kµ

=p−n(k+h−1)!

p−nZpε(ax)(−tx)

−kµ

=

a+pnZpx k(h)

alg(µ),

(3.4)

hence we haveσ ((h)alg(µ))=(h) alg(µ).

Let exp denote the connecting map of the following exact sequence:

0 →Ᏸ+

alg

Z×

p, V

→Ᏸ+

alg

Z×

p, B ϕ=1

max⊗V →Ᏸ+alg

Z×

p, BdR/B+dR⊗V

(13)

Proposition3.2. The following diagram is commutative:

+

alg

Z×

p, BdR/B+dR⊗V

GQp exp

1+pnZpxkµ

H1Q p,+alg

Z×

p, V

1+pnZpxkµ

DKn

Vκk exp H1K, Vκk.

(3.6)

Proof. For µ +

alg(Z×p, BdR/BdR+ ⊗V )

GQp, it is easy to see that

1+pnZpxkµ

DKn(V (κ

k)) and for ξH1(Q

p,+alg(Z×p, V )),

1+pnZpxkξ∈H1(Kn, V (κk)), then the proposition follows from the following commutative diagram:

0 V Bmaxϕ=1⊗V BdR/BdR+ ⊗V 0

0 Ᏸ+alg

Z×

p, V

1+pnZpxk

+

alg

Z×

p, B ϕ=1 max⊗V

1+pnZpxk

+

alg

Z×

p, BdR/B+dR⊗V

1+pnZpxk

0.

(3.7)

Now we define the Perrin-Riou exponential mapE=Eh,V as the composition of the following ones:

alg

Qp,Ξ⊗D(V )

Φ=1 Ᏺalg

+

alg

Qp, BdR⊗V

GQp

Fil<0

+

alg

Z×

p, BdR/BdR+ ⊗V

GQp

exp

→H1Qp,+alg

Z×

p, V

.

(3.8)

The invariance ofΦµ=µgives the following identity:

p−nZpf (x) 1

(−tx)kµ=ϕ

−n

Zp

f x

pn µ

(−tx)k (3.9)

for alln∈Z, k≥0, andf a local constant function with compact supportp−nZ p.

Theorem3.3. The integrals of the exponential map give

Z× p

xkE

h,V(µ)=(k+h−1)! expV (κk)

(1−ϕ)−11p1ϕ1 Z×

p

µ (−tx)k ,

a+pnZpx kE

h,V(µ)=(k+h−1)! expV (κk)

ϕ−n

pn

Zp

ε ax

pn · µ (−tx)k

.

(14)

Proof. By formulas (3.2) and (3.3), we have

Z×p

xk(h)alg(µ)=

Qp

(h) alg

xk1Z×

p

µ

=

Qp

(k+h−1)!

1

(−tx)k1Zp−p−

1 1

(−tx)k1p−1Zp µ

=(k+h−1)!(1−ϕ)−11−p−1ϕ−1 Z×p

µ (−tx)k ,

a+pnZpx k(h)

alg(µ)=

Qp

(h) alg

xk1

a+pnZpµ

=

Qp

(k+h−1)!p−n·(tx)1 kε(ax)1pnZp

=(k+h−1)!ϕ

−n

pn

Zp

ε ax

pn µ (−tx)k .

(3.11)

Hence, byProposition 1.2, we have

Z× p

xkE

h,V(µ)=expV (κk)

Qp

Ᏺalgxk·1Z×pµ

=expV (κk)

(k+h−1)!(1−ϕ)−11p1ϕ1 Z×

p

µ (−tx)k ,

a+pnZpx kE

h,V(µ)=expV (κk)

Qp

Ᏺalg

xk1a+pnZpµ

=expV (κk)

(k+h−1)!ϕ

−n

pn

Zp

ε ax

pn µ (−tx)k

.

(3.12)

Lemma 3.4. For a de Rham representation V such that Fil1D(V ) = D(V ), µ (−∞,0]

alg (Qp,Ξ⊗D(V ))Φ=1,ψ,a∈Z×p, n≥1, andj≥0,

a+pnZp(x−a)jEh,V(µ)restricted

toH1(K

∞,[alg0,∞)(Z×p, V ))is represented by the cocycle

τ(τ−1)EulB βa,n,j(µ), (3.13)

where

βa,n,j(µ)=j!pnj(−t)j ϕ−n

pn

Z×p

[ε]ax µ

xj. (3.14)

Proof. We first consider

a+pnZpx kE

1,V(µ)=expV (κk)

k!ϕ

−n

pn

Zp

ε ax

pn µ

(15)

Put

γa,n,k(µ)=k! ϕ−n

pn Zp ε ax pn µ (−tx)k,

γa,n,k(µ)=k! ϕ−n

pn Zp εax k

i=0

(−atx)i i!

µ (−tx)k.

(3.16)

By the formulaε(1/pn)=

n]exp(−t/pn), we have

ε x

pn

εxn

k

i=0 1

i!

tx

pn i

=ϕ−n

εx

k

i=0

(−tx)i i!

modFilk+1BdR

. (3.17)

Let

δa,n,k(x)=ε

ax

pn −ϕ

−n εax k

i=0

(−atx)i i!

Filk+1BdR

=ϕ−n

ε ax

pn

εax

k

i=0

(−atx)i i! , (3.18) then

γa,n,k(µ)−γa,n,k(µ)=k! ϕ−n

pn

Zp

ϕnδa,n,k

µ (−tx)k

∈BdR1 ⊗D(V )⊂BdR1 ⊗B−dR1⊗V⊂B+dR⊗V .

(3.19)

Hence, γa,n,k(µ)∈ Bmax⊗V is a lifting of γa,n,k under the projection map Bmax

BdR/BdR+ . By [2, Lemma 0.5.1], we see that the above cohomology class expV (κk)(γa,n,k(µ)) is represented by the cocycleτ→(1−τ)EulB((1−ϕ)γa,n,k(µ)). Moreover,

(1−ϕ)γa,n,k(µ)=(1−ϕ)k! ϕ−n

pn Zp εax k

i=0

(−atx)i i!

µ (−tx)k

=k!ϕ− n pn Z× p εax k

i=0

(−atx)i i!

µ (−tx)k

(3.20) since ϕ Zp εax k

i=0

(−atx)i i!

µ (−tx)i

= Zp εax k

i=0

(−atx)i i!

1

(−tx)kΦµ, (3.21)

andΦ(µ·1Zp)=1pZp·µ. Hence, fora∈Z×

p, n≥1,

a+pnZpxkE1,V(µ)is represented by

τ(τ−1)EulB

(16)

where

γ∗a,n,k(µ)=k! ϕ−n

pn

Z×p

εax

k

i=0

(−atx)i i!

ν (−tx)k

. (3.23)

Therefore,

a+pnZp(x−a) jE

1,V(µ)= j

k=0

a+pnZp

j k

(−a)j−kxkE 1,V(µ)

=

j

k=0

j k

(−a)j−k

a+pnZpx kE

1,V(µ)

(3.24)

is represented by

τ(τ−1) j

k=0

j k

(−a)j−kEul B

γ∗a,n,k(µ)

=(τ−1)EulB

j

k=0

j k

(−a)j−kk!ϕ−n pn Z× p εax k

i=0

(−atx)i i!

µ (−tx)k

=(τ−1)EulB

ϕ−n

pn

Z× p

eatx·

j

k=0

k! j k

(atx)j−k

k

k=0

(−atx)i i!

× µ

(−tx)j

=(τ−1)EulB

ϕ−n

pn

Z×p

j!εax µ (−tx)j

,

(3.25)

anda+pnZp(x−a)jE1,V(µ)is represented by

τ(τ−1)EulB

j!pnj(−t)−jϕ− n

pn

Z×p

εaxµ

xj , (3.26)

and the lemma follows.

Lemma3.5. The following diagram is commutative:

(−∞,h] alg

Qp,Ξ⊗D

V (κ)Φ=1 µ→(−tx)µ

Eh+1,V (κ)

(−∞,h−1] alg

Qp,Ξ⊗D(V )

Φ=1

Eh,V

H1K,[−h,∞) alg

Z×

p, V (κ)

ξ→x−1ξκ1

H1K,[1−h,∞) alg

Z×

p, V

.

(17)

Proof. First note that all the maps are well defined. For µ (−∞,h]

alg (Qp,Ξ D(V (κ)))ψ,(tx)µ(−∞,h−1]

alg (Qp,Ξ⊗D(V ))ψ,

Z× p

xkE h,V

(−tx)µ

=(k+h−1)! expV (κk)

(1−ϕ)−11p1ϕ1 Z×

p

µ (−tx)k−1

,

Z×p

xk·x−1Eh+1,V (κ)(µ)

=(k+h−1)! expV (κk)

(1−ϕ)−11p1ϕ1 Z×

p

µ (−tx)k−1

,

(3.28)

hence the lemma follows.

Theorem3.6. AssumeVis a crystalline representation andh∈Zsuch thatFil−hD(V ) =D(V ). Forµ∈Ᏸtemp(Qp,Ξ⊗D(V ))Φ=1,ψ, under the map

(−∞,h−1] alg

Qp,Ξ⊗D(V )Φ=1H1

Qp,[alg1−h,∞)

Z×

p, V

res

→H1K

∞,[alg1−h,∞)

Z×

p, V

Γ ,

(3.29)

the image is inH1(K

∞,Ᏸtemp(Z×p, V ))ΓwithΓ=Gal(K∞/Qp).

Proof. Sincex1−hE

1,V (κ1−h)((−tx)h−1µ)=Eh,V(µ), byLemma 3.5, replacingV by V (1−h)andµby(−tx)h−1µ, we can assumeh=1. FromLemma 3.5foraZ×

p, n≥1, andj≥0,a+pnZp(x−a)jE1,V(µ)is represented by the cocycle

τ(τ−1)EulB

j!pnj(t)−jϕ−n pn

Z×p

εaxµ

xj

. (3.30)

From [8, Lemma 14], we know that ifµis of orderr, thenµ/xjis also of orderr. From

Proposition 2.4, we know thatZ× p[ε

ax](µ/xj)has orderr+r (V ), that is,

p[n(r+r (V )+1)]ϕ−n

Z× p

εaxµ

xj (3.31)

isr-bounded. Hence,p[n(r+r (V )+1)]

a+pnZp(x−a)jE1,V(µ)represented by

τ(τ−1)EulB

j!(−t)−j

p[n(r+r (V )+1)]ϕ−n

Z×p

εaxµ

xj

(3.32)

is(r+r (V ))-bounded. Hence, the image is inH1(K

∞,r+r (V )+1(Z×p, V ))Γ.

4. The logarithmic map. The proof ofTheorem 3.6suggests thatᏲcont(µ)has some deep arithmetic meaning for the distributionµ. In this section, we construct a logarith-mic map on the cohomology side, which is related toᏲcont(µ).

SupposeV is a de Rham representation. The Qp-space ∪n∈N(Bmaxϕ=1⊗V (κ−i))GKn

(18)

subspace ofmax=1⊗V. LetWibe one supplement. Supposeh∈Z, h≥1, µ∈H1(Qp,

h−(Z×p, V )), andτ→µτ is a 1-cocycle representation ofµ. Supposeµ has the prop-erty 1+pnZpx−iµ ∈He1(Kn, V (κ−i))=ker{H1(Kn, V (κ−i))→H1(Kn, B

ϕ=1

max ⊗V (κ−i))}.

For such aµ, there is acn,i∈Bmaxϕ=1⊗V (κ−i)such that

1−κ(σ )−iσc n,i=

1+pnZpx

−iµ

σ. (4.1)

The choice ofWimakes it possible to choosecn,i∈Wiuniquely forn1.

Theorem4.1. SupposeVis a de Rham representation ofGQp,h≥1is an integer, and µ∈H1(Q

p,h−(Z×p, V ))such that

1+pnZpx−iµ∈He1(Kn, V (κ−i))forn≥1,0≤i≤h−1.

Choosecn,i∈Wisuch that

1−κ(σ )−iσc n,i=

1+pnZpx

−iµ, (4.2)

then the sequence (1/(h−1)!)pnh−1 i=0

h−1 i

cn,i converges to an element in (Bϕmax=1

V )GK∞ which is denoted byLh,V(µ).

Proof. ByLemma 2.9, H1(K

∞,h−(Z×p, B ϕ=1

max ⊗V ))=0, the inflation-restriction se-quence gives the following isomorphism:

H1Q p,h−

Z×

p, B ϕ=1 max ⊗V

H1Γ, h−

Z×

p,

Bmaxϕ=1⊗V

GK∞. (4.3)

Letµ∈H1(Γ,h−(Z×

p, (B ϕ=1

max ⊗V )GK∞))correspond to the image ofµ under the map

H1(Q

p,h−(Z×p, V ))→H1(Qp,h−(Z×p, B ϕ=1

max⊗V )). Thenµ−µis a coboundary inH1(Qp,

h−(Z×p, B ϕ=1

max ⊗V )), that is, there existsν∈h−(Z×p, B ϕ=1

max⊗V )such thatµσ−µσ =(1

σ )ν. Letun,i=cn,i−

1+pnZpx−iν, thenun,i∈(Bmaxϕ=1⊗V (κ−i))GK∞and(1−κ(σ )−iσ )un,i

=1+pnZpx−iµσ forσ∈GKn, and we have

lim n→∞

pn

h1

i=0

(−1)i

h−1

i

cn,i−pn h1

i=0

(−1)i

h−1

i

un,i

=lim n→∞p

n

1+pnZp

1−x−1h−1

ν=0.

(4.4)

Here, again, we use [8, Lemma 14]. Note that there exists aksuch thatun,i∈(t−kBmax+ )ϕ=1

⊗V (κ−i)(which does not depend onn, i) [2]. The theorem will follow from the following lemma.

Lemma 4.2. Suppose µ ∈H1(Γ,

h−(Z×p, (B ϕ=1

max ⊗V )GK∞)) and k∈N such that for

n≥1and0≤i≤h−1, the image1+pnZpx−iµ is zero inH1(Γn, (Fil−kBmaxϕ=1⊗V )GK∞).

Suppose

Fil−kBϕmax=1⊗VGK∞ = ∪+∞n=0

Fil−kBmaxϕ=1⊗Vκ−i GKn

(19)

is a direct summand decomposition (since the first component is closed). Supposeσ µσ is a cocycle representation of µ, take un,i Wi such that

1+pnZpx−iξσ = (1 κ−i(σ )σ )u

n,ifor allσ∈GKn, then the sequencevn=pnhi=−01(−1)i

h1

i

un,iconverges

to an element in(Fil−kBϕmax=1⊗V )GK∞.

Proof. The cocycles satisfyµσ−1τσ1+σ−1µτ=µτ+τµσ−1, and this means that

σ−1µ

τ=µτ+(τ−1)µσ−1,

1+pnZpx

−iσ1µ τ=σ−1

κ(σ )+pnZpκ

i(σ )x−iµ τ .

(4.6)

This gives

κ(σ )+pnZpx

−iµ

τ=κ(σ )−iσ

1+pnZpx

−i·σ1µ τ

=tπi·σ

1+pnZp

tπx

i

·σ−1µτ

=ti

π(1−τ)σ

t−i

π un,i−

1+pnZp

tπx

−i µσ−1

(4.7)

by

tπ−i(1−τ)un−1,i=t−πi·

σ∈Γn−1/Γn

κ(σ )+pnZpx

−iµ σ

=(1−τ) σ∈Γn−1/Γn

σt−i

πun,i

−σ

1+pnZp

tπx

−i

µσ−1 .

(4.8)

From the choice ofWi, we can cancel(1−τ)and get

vn−vn−1=pn−1 h1

i=0

(−1)i

h−1

i

tπi

σ∈Γn−1/Γn

(σ−1)t−πiun,i

−σ

1+pnZp

tπx

−i

µσ−1 .

(4.9)

The sum

pn h1

i=0

(−1)i

h−1

i

ti πσ

1+pnZp

tπx

−i µσ−1

=pnσ 1+pnZ

p

1−κ(σ )−1xh−1µ

σ−1 →0

(4.10)

asκ(σ )∈1+pn−1Z

p, µσ−1 →µ1 which is of order 1. Hence, to show that vn is a Cauchy sequence, we only need to show that forσn∈Γn−1the sequence

pn h1

i=0

(−1)i

h−1

i

κσniσn−1

un,i (4.11)

(20)

Case1(h=1). This is equivalent to showing that

lim n→+∞p

nσ

n−1un,i=0. (4.12)

PutTσ=

p−1

j=0σj, then

Tσn

σn−1

un,0=

σnp−1

un,0= −

1+pnZpµσ p

n. (4.13)

Sinceµσp

n has order 1

, we have

lim n→∞p

n

1+pnZpµσ p

n=0, (4.14)

hence

lim n→∞p

nT σn

σn−1

un,0

=0. (4.15)

The theorem follows from the following proposition.

Proposition 4.3. There exists a constantC >0such that, for alln∈N, σ∈Γn, F∈(Fil−kBmax⊗V )GKn,

Tσ(F )≥CF, (4.16)

where·is the norm onBmax.

In the following we will develop several lemmas to prove the above proposition.

Lemma4.4. There exist aζ∈Z×

pand aBmax-morphismg:Bmax⊗V→Bmaxd such that

g(Bmaxϕ=1⊗V )GK∞ is contained in((Bmaxϕ=ζ)GK∞)d, whered=dimQpV.

Proof. Supposee1, . . . , ed∈(Bmaxϕ=1⊗V )GK∞ such that they are a base ofBdR⊗Vover BdR byLemma 2.8. Assumev1, . . . , vd are a base ofV /Qpand assumeei=

d

j=1aijvj, thenaij∈Bϕmax=1, theσ action gives det(σ )·det(σ (aij))=det(aij). Consider the one-dimensional representation detQp(V )which has a basee=v1∧···∧vd, then the above formula givese1∧···∧ed=(det(aij))v1∧···∧vd, henceσ (e)=(det(aij)/det(σ (aij)))e. But detQp(V )is a one-dimensional representation, so it must be of the formφ0φκk, where φ0 is a finite-order N of character, φ is an unramified character such that

φ(Frobp)=ufor some u∈Z×p. TakeQpur such that Frobp()=u, then the above identity means that det(aij)/σ (det(aij))=φ0(σ )·φ(σ )·κk(σ ). Assumeσ∈GK∞ and raiseNth power, we get(det(aij)/σ (det(aij)))N=φN(σ ). Take∆=(det(aij))N, then this givesσ ()=∆for allσ∈GK∞. On the other hand,ϕ()=ϕ(det(aij)·)N= det(aij)N·N·uN =uN·∆. Now, takingζ=uN, g:x→x, theng(ei)=ei and ϕ(ei)=uNδei=ζei, and the lemma follows.

Corollary4.5. Fork∈N, there existαk∈Zpandgk:t−πkBmax+ ⊗V→(B+max)d such

(21)

Proof. Use thegin Lemma 4.4, assumets

π·g(Bmax+ ⊗V )(Bmax+ )d, and letgk= tk+s

π g, αk=πk+sζ.

Lemma 4.6. For k N, >0, there exists n∈ N such that for σ Γn and F (Fil−kBϕmax=1⊗V )GK∞,

gk

σ (F )−σgk(F )≤F. (4.17)

Proof. Letγ1 be a topology generator ofΓ1and γ1∈GQp a lifting ofγ1; we can chooseγ1in thep-Sylow subgroup ofGQp.γ1induces a continuous map fromΓ1→GQp by sendingxtoγ"1logγ1x. So, forσ∈Γ1, we can getσ∈GQpunder such a map. The map

gk◦σ−σ◦gk:Bmax⊗V→(Bmax)dand the mapgk◦σ−σ◦gk:(Fil−k(Bmaxϕ=1⊗V ))GK∞

(Bd

max)are the same if we restrict to(B ϕ=1

max⊗V )GK∞, and

gk

σtπ−kvi

−σ g k

tπ−kvi

=gk

σ−1tπ−kvi

+1−σgk

tπ−kvi

(4.18)

sincet−k

π v1, . . . , tπ−kvdare a base oftπ−kBmax+ ⊗V overBmax+ , and whenσ 1 the above goes to zero, hence the lemma follows.

Lemma4.7(Coleman-Colmez exact sequence). Forα∈Zp, α≠0, r=vp(α), (i) ifαpN, then(Bmax+ )ϕ=α,GK∞

r−(Z×p,ΞQp)ψ, (ii) ifα=pr, then the following sequence is exact:

0→Qptr

Bmax+

ϕ=pr,G K∞

r−

Z×

p,Ξ⊗Qp

ψ

→Qp →0. (4.19)

Proof. See [2, Appendix A].

Lemma4.8. Forr∈R+, there existsCr>0such that forµr(Zp,ΞD(V ))ψand a∈Zp,

p1

i=0

δia∗µ

≥Crµ. (4.20)

Proof. This is the same as [2, Lemma III.2.6]. Note theabove is induced by the addition inZp.

Corollary4.9. Forr∈R+, there existsCr>0such that forµr(Zp,ΞD(V ))ψ

anda∈1+pZp,

p1

i=0

δai∗µ

≥Crµ. (4.21)

Here the∗is induced by the multiplication inZ×

p.

Corollary4.10. There existC >0and ann0Nsuch that forF∈(Bmax+ )ϕ=α,GK∞

andσ∈Γn0,

(22)

Proof. UsingCorollary 4.9,F corresponds toµ,F = µ, andTσ(F )corresponds toδai∗µ, hence

Tσ(F )=

δai∗µ≥Cµ =CF. (4.23)

Corollary4.11. There exist aC >0and ann∈Nsuch thatTσ(gk(F ))≥Cgk(F )

for allF∈(Fil−kBmaxϕ=1⊗V )GK∞.

Proof. The corollary follows sincegk(F )∈(Bmax+ )ϕ=α,GK∞.

NowProposition 4.3follows sincegkis just a multiple bypk+s∆.

Case2(generalh). In this case we need to show that

pn

h1

i=0

(−1)i

h−1

i

κσniσn−1

un,i

→0 (4.24)

asn→ ∞.

Lemma4.12. Forl∈Nandσ∈Γ, putTl,σ=pj=−01κ(σ )−ljσj, then the sequence

pn k

l=0

Tl,σn

h1

i=0

h−1

i

κσn

−i σn−1

un,i

(4.25)

tends to zero asn→ ∞.

Proof. Forl≥0 andl≤k

Tl,σn

κσniσn−1

un,i=

κσnpi·σnp−1

un,i= −

1+pnZpx

−iµ

σnp, (4.26)

then (4.25) equals

−pn h1

i=0

(−1)i

h−1

i h1

l=0,l≠i Tl,σn

1+pnZpx

−iµ

σnp= −p n

h1

l=0

Rl·Yl (4.27)

with Rl∈pn(h−1−l)Zp[[T ]]andpnRl·Yl∈pn(h−l)Zp[[T ]]

1+pnZp(x−1)lµσp

n 0. By [2, Lemma III.3.3], the proof of the lemma follows.

Lemma4.13. There exist aC >0and ann∈Nsuch that

h1

i=0

Ti,σ(F )

≥CFh (4.28)

References

Related documents

investors own physical bullion; millions more are likely to enter the precious metals market in the future, creating further price appreciation?. • As leading silver expert

Since Mr Khan is of the opinion that a failure to use TED stockings does materially increase the risk of DVT and therefore a pulmonary embolism then this exception to the strict

[r]

The theory of cristalline cohomology discovered by Alexandre Grothendieck, in particular, gives a canonical lifting of the de Rham cohomology of algebraic varieties into

CAD assembly models can be considered similar according to different criteria and at different levels (i.e. globally or partially).. Indeed, besides the shape criterion, CAD

Spe- cifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) showed the slowest release over a period of 26 days with negligible

UDMP Software Architecture Data Agent Device Access Control mId Interface (REST) mIa Interface (REST&amp;WebSocket) App Access Control mIm Interface (REST) Mgmt Access

In recent years, a certain amount of work has been done on the Galois structure of principal homogeneous spaces of finite group schemes that are constructed via