• No results found

Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

N/A
N/A
Protected

Academic year: 2021

Share "Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal"

Copied!
42
0
0

Loading.... (view fulltext now)

Full text

(1)

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico

Lisbon, Portugal

http://www.ipfn.ist.utl.pt

C. Silva| Lisboa, Jan. 2014 | IST

Diagnostics

 Electric probes

(2)

C. Silva | Lisboa, Jan. 2014 | IST

2

Langmuir probes

 Simplest diagnostic (1920) – conductor immerse into the plasma

 Data interpretation complicated as probes perturb the plasma

 Limited to the plasma region were the probes can survive or do not perturb plasma

 Allows the determination of a large variety of plasma parameters (some of them only possible with probes)

 The importance of edge effects resulted in the continued use of probes

 The most widely used diagnostic techniques for low temperature plasmas, Te < 100 eV

(3)

C. Silva | Lisboa, Jan. 2014 | IST

3

Plasma Parameters (JET)

Core

T < 20 keV n ~ 1x10

20

m

-3

Edge plasma

T < 100 eV n < 1x10

19

m

-3

Industrial / Space plasmas T < 10 eV

n < 1x10

15

m

-3

(4)

C. Silva | Lisboa, Jan. 2014 | IST

4

 Physics of probes equivalent to that of plasma- wall interaction

 Electrostatic potentials are shielded within a

short distance. Sheath keeps the plasma neutral

 Sheath dimension 10 λD ~ 0.1 mm, thin layer D~ 10-5m for Te = 20 eV, n = 1 ×1019 m-3).

 Thin:

λD << d (probe dimension, ~mm)

 Collisionless:

l (mean free path, cm - m) >> λD

Debye shielding

Not to scale

(5)

C. Silva | Lisboa, Jan. 2014 | IST

5

Sheath

 As electrons are more mobile a electric field arises in the sheath so that Γi = Γe.

 Probe rapidly charges up

negatively, floating potential. Probe floats below the plasma potential

 Sheath has a positive charge

(6)

C. Silva | Lisboa, Jan. 2014 | IST

6

Sheath analysis

 Relation density and potential follows Boltzmann factor (Maxwellian)

 Space divided quasi-neutral plasma and the sheath (ni  ne)

Sheath analyses: Simplest possible case (B = 0, Z = 1, Ti = 0, collisionless, plane probe, 1D), all particles absorbed by the probe

 Aim: estimate parameters at sheath edge (se)

(7)

C. Silva | Lisboa, Jan. 2014 | IST

7

Sheath analysis

 Energy conservation in the sheath

 Combining particle and energy conservation

 ni > ne sheath: Solve the 1D Poisson’s equation

(8)

C. Silva | Lisboa, Jan. 2014 | IST

8

y(x) is non-oscillatory if a > 0  |Vse| kTe/2e vse2 kTe/mi or vse cs with cs = (kTe/mi )1/2

Bohm criterion

This is called the Bohm sheath criterion (1949):

 Ions must stream into the sheath with cs for a sheath to form (depends on Te).

 How can the ions get such a large velocity?

(9)

C. Silva | Lisboa, Jan. 2014 | IST

9

Pre-sheath

 There must be a small electric field in the plasma that accelerates ions to an energy ~ ½kTe toward the sheath edge. This region is called the pre- sheath (Esheath ≈ kTeD ≈ 105 Epre-sheath).

 The pre-sheath field is weak enough that quasi-neutrality does not have to be

violated. The point where (ni − ne)/ni becomes significant, corresponding to the plasma–sheath interface.

 The density at the sheath edge cannot be the same as the plasma density in the main plasma.

Sheath edge: vse = cs, Vse = - ½kTe , therefore nse = n0e- ½ ≈ 0.6n0

 Total pressure constant

(10)

C. Silva | Lisboa, Jan. 2014 | IST

10

Summary

 A plasma can coexist with a material boundary only if a thin sheath forms, isolating the

plasma from the boundary.

 In the sheath there is a potential drop (few times kTe) which

repels electrons from and

accelerates ions toward the wall.

 The sheath drop adjusts itself so that the fluxes of ions and

electrons leaving the plasma are almost exactly equal, so that

quasi-neutrality is maintained.

(11)

C. Silva | Lisboa, Jan. 2014 | IST

11

 Ti  0, weak dependence

 Probe geometry: Results generally applied provided the sheath is thin, probe considered locally planar – used with probes of any shape

 Exact numerical solution with B = 0, Ti  0 (Loframboise ,1966): approximate

analysis adequate, ~10%.

 Orbit-limited collection: λD > d

More general cases

(12)

C. Silva | Lisboa, Jan. 2014 | IST

12

 Ion flux to a surface

se = w, no dependence on the sheath potential drop

 Potential drop between plasma and a floating surface ( see = sei)

Probe parameters

 eVf/kTe ≈ 3 for Te ≈ Ti, D plasma Vp = Vf + 3Te

(13)

C. Silva | Lisboa, Jan. 2014 | IST

13

Single probe

 What if the surface is not floating, but electrically biased?

(14)

C. Silva | Lisboa, Jan. 2014 | IST

14

Single probe, I – V characteristic

 B=0, Z=1, Ti=0, Maxwellian distribution, no secondary emission,

collisionless, no particle sources, d > λD  Sheath: Vse= cs, nse=0.5 n0

(15)

C. Silva | Lisboa, Jan. 2014 | IST

15

Single probe, I - V characteristic

Te, Vf and Isat derived from the characteristic and then n from Isat

(16)

C. Silva | Lisboa, Jan. 2014 | IST

16

Effect of the magnetic field

 Particles collected over larger distances

 Collisionless assumption may not be valid as, l L

 Typical case: ρe < d and ρi ≈ d ~ mm (magnetized / strong magnetized)

 Determination of the effective probe area can be complex

 Despite theoretical difficulties, Bohm formula is valid and information may be extracted assuming for the area A, limiting the analysis to Vap ~< Vf

(17)

C. Silva | Lisboa, Jan. 2014 | IST

17

Double and triple probes

Valid only if no significant gradients exist Double probe

Triple probe

(18)

C. Silva | Lisboa, Jan. 2014 | IST

18

References

 Principles of Plasma Diagnostics, Hutchinson, Cambridge

 The Plasma Boundary of Magnetic Fusion Devices,

Stangeby, IoP

(19)

C. Silva | Lisboa, Jan. 2014 | IST

19

Typical circuit

(20)

C. Silva | Lisboa, Jan. 2014 | IST

20

Typical I, V signals

(21)

C. Silva | Lisboa, Jan. 2014 | IST

21

I - V characteristic

(22)

C. Silva | Lisboa, Jan. 2014 | IST

22

Typical applications

(23)

C. Silva | Lisboa, Jan. 2014 | IST

23

Fixed probes

 Graphite probes fixed in the plasma facing components (same material as PFCs) – do not perturb plasma

 Study plasma-wall interaction

 Materials: Graphite, Tungsten

 Γwall= Isat/eAp [m-2s-1]

 qwall=γTe Γwall [W/m2]

(24)

C. Silva | Lisboa, Jan. 2014 | IST

24

JET divertor probes

 Essential for the characterization of the divertor particle and heat fluxes

 Array of embedded probes made of the target material (CFC / W). The probes have heat conduction capabilities that are similar to that of the target plates, and they will erode at a similar rate

(25)

C. Silva | Lisboa, Jan. 2014 | IST

25

Divertor probes for ITER

Successful operation of the divertor relies on achieving a ‘detached’ divertor regime. Probes give the most direct indication of detachment – Isat drops

 Main problem: For heavily loaded PFCs (10 MWm−3), the design of the Langmuir probe becomes as difficult as that of the target

 Heat conduction capabilities and a erosion rate that are similar to that of the target plates (replaced in parallel with the exchange of the divertor ).

(26)

C. Silva | Lisboa, Jan. 2014 | IST

26

Reciprocating probes

 Reduce the probe heat loads (few 100 ms)

 Pneumatic systems

 Typical velocity 1 m/s

(27)

C. Silva | Lisboa, Jan. 2014 | IST

27

JET reciprocating probe head

 9 – pin probe head (C, BN)

 Allows determination of a large variety of parameters (some only possible with

probes) ( Isat, Vf, Te, M//, Eθ, Er, ΓExB…)

 Local measurements (only limited pin size)

 High temporal resolution (limited by the data acquisition system)

 Ideal for turbulence studies

(28)

C. Silva | Lisboa, Jan. 2014 | IST

28

Reciprocation at JET

(29)

C. Silva | Lisboa, Jan. 2014 | IST

29

Reciprocation at JET

(30)

C. Silva | Lisboa, Jan. 2014 | IST

30

ISTTOK probe arrays

Radial array

Poloidal array

(31)

C. Silva | Lisboa, Jan. 2014 | IST

31

Gundestrup probe

Determination of the poloidal e toroidal plasma rotation

M

//

= 0.4 ln(I

satu

/I

satd

)

(32)

C. Silva | Lisboa, Jan. 2014 | IST

32

Retarding field energy analyzer

 Simple Langmuir probes can tell us nothing about Ti. (This require measuring the ion current at positive voltages at which the current to the Langmuir probe is dominated by highly mobile electrons.)

 RFA operation: The slit plate is biased negatively to repel electrons. The transmitted ions are retarded in the electric field created by a swept

positive voltage applied to grid 1. The collector measures the ion current.

(33)

C. Silva | Lisboa, Jan. 2014 | IST

33

Space plasmas

 One of two Langmuir probes on board ESA's space vehicle Rosetta (intended to study the comet

67P/Churyumov-Gerasimenko).

 The probe is the spherical part, 50 mm in diameter and made from titanium with a surface coating of titanium nitride. This specific Langmuir probe is on a mission to study the space plasma around the comet.

 Probes also used in the Cassini mission to measure the inner magnetosphere of Saturn

(34)

C. Silva | Lisboa, Jan. 2014 | IST

34

Typical results

(35)

C. Silva | Lisboa, Jan. 2014 | IST

35

Examples of application

Heat loads (IR, thermocouples), particle flux, detachment monitor, …

 High temporal resolution, local measurement

(36)

C. Silva | Lisboa, Jan. 2014 | IST

36

ELM studies

Filaments during ELMs

 ELMs have a complex internal structure (filaments) clearly seen in the far SOL density (also seen in other diagnostics as the fast visible camera)

(37)

C. Silva | Lisboa, Jan. 2014 | IST

37

SOL profiles at JET

(38)

C. Silva | Lisboa, Jan. 2014 | IST

38

Edge plasma studies with probes

 Determination of plasma parameters in different regimes

 Heat and particle loads

 Detailed ELM structure and propagation

 Characterization and control of turbulence

(39)

C. Silva | Lisboa, Jan. 2014 | IST

39

Turbulence in tokamaks

 Turbulence is responsible for and increase in the radial transport (anomalous transport) limiting the tokamaks performance

 SOL transport occurs via intermittent convective bursts (composed of long filaments along B)

(40)

C. Silva | Lisboa, Jan. 2014 | IST

40

Turbulent particle flux

B E n

B E

~

 ~

B v E

E r

~ ~

~  

If local density and Efluctuations are in phase then a net time-averaged radial transport exists

(41)

C. Silva | Lisboa, Jan. 2014 | IST

41

 Temperature fluctuations are often ignored and therefore density and plasma potential fluctuations derived respectively from the ion

saturation current and floating potential fluctuations.

 I

sat

 nT

1/2

, V

p

= V

f

+ 3T

Fluctuations measurements

 Results from emissive and ball pen probes as well as numerical codes indicate that the fluctuation level in Vf is larger than in Vp and therefore standard Langmuir probes overestimate the turbulent transport

(42)

C. Silva | Lisboa, Jan. 2014 | IST

42

Typical fluctuations analysis

    

( )  2 ( )2

) ( )

(

y t y x

t x

y t y x t

Cxy x

Fluctuations poloidal structure

Poloidal correlation

References

Related documents

The four cases were selected based on the following criteria: firstly, they had completed the ERP implementation process: the details of implementation problems associated

Research Project: “Physical Controls on Monogenetic Basaltic Volcanism, Auckland.. Volcanic Field”,

[r]

Millet would increase overall under the mild and wet scenario, but decline substantially in the lowland dry savannah and lowland semi-arid agro-ecological zones.. Maize would

Chief Technology Officer (CTO), Solar Business Group of Applied Materials President of the European Photovoltaic Industry Association (EPIA) and.. member of the Scientific Board

Projections in the 1st factorial plane (PCA1/PCA2) of PCA analysis carried out for geochemical data on not-PHE in house dusts: plot 2a shows projections of

• A foundation degree leading to Masters degrees in Architecture, Landscape Architecture, Urban Design and Planning (applications to these is by portfolio and good undergrad

As was stated at the beginning of this chapter the PoAF damage will be slightly bigger that the manufacturer's, so that the CRAINFLOW spectrum cannot be used to calculate the