• No results found

Di­ammonium tris­­[hexa­aqua­magnesium(II)] tetra­kis­[hydrogenphosphate(III)], (NH4)2[Mg(H2O)6]3(HPO3)4

N/A
N/A
Protected

Academic year: 2020

Share "Di­ammonium tris­­[hexa­aqua­magnesium(II)] tetra­kis­[hydrogenphosphate(III)], (NH4)2[Mg(H2O)6]3(HPO3)4"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

inorganic papers

Acta Cryst.(2005). E61, i129–i131 doi:10.1107/S160053680501723X Messouriet al. (NH

4)2[Mg(H2O)6]3(HPO3)4

i129

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Diammonium tris[hexaaquamagnesium(II)]

tetrakis[hydrogenphosphate(III)],

(NH

4

)

2

[Mg(H

2

O)

6

]

3

(HPO

3

)

4

Ibtissam Messouri,aBrahim El Bali,a* Francesco Capitelli,b Juan F. Piniella,cMohammed Lachkaraand Zineb Slimania

aLaboratoire d Analyses, Essais et Environnement

(LAEE), De´partment de Chimie, Faculte´ des Sciences Dhar Mehraz, BP 1796 Atlas, 30000 Fe´s, Morocco,bInstitute of Crystallography– CNR, via G. Amendola, 122/o, 70125 Bari, Italy, andcDepartment of Geology, Universitat Auto´noma de Barcelona, Campus Universitari UAB, 08193 Bellaterra, Spain

Correspondence e-mail: belbali@fsdmfes.ac.ma

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(P–O) = 0.001 A˚

Rfactor = 0.022

wRfactor = 0.064

Data-to-parameter ratio = 11.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The framework of the title compound is made up of discrete

Mg(H2O)6 octahedra, and HPO3and NH4tetrahedra, which

are organized in planes parallel to (010). Strong hydrogen bonding between the building units stabilizes the structure. The hydrogenphosphate(III) tetrahedra, the ammonium tetrahedron and one of the two Mg atoms lie on positions

withmsymmetry, whereas the second Mg atom is located on a

position with 2/msymmetry.

Comment

The work reported in the present paper is a continuation of our investigations focusing on the synthesis of phosphates and phosphites using wet-chemical methods. In the course of this project we have synthesized and structurally characterized various compounds, such as diphosphates (Essehliet al., 2005, and references therein), phosphites (Ouarsalet al., 2003, 2004, and references therein) and monophosphates including (NH4)CoPO46H2O (El Baliet al., 2005).

The first structural investigation in the system Mg–PIII–O–H was carried out by Corbridge (1956), who determined the

crystal structure of MgHPO36H2O on the basis of

two-dimensional X-ray photographic data. This structure was

redetermined some years ago (Powell et al., 1994). In the

present work, we report the synthesis and crystal structure of the ammonium-containing phase (NH4)2Mg3(HPO3)418H2O.

The two independent Mg2+cations lie on positions with 2/m

(Mg2) and m(Mg1) symmetry. They are octahedrally

coor-dinated by six O atoms that all belong to water molecules

(Fig. 1). The average Mg—O distance of 2.072 (2) A˚ is

[image:1.610.207.459.533.707.2]

Received 10 May 2005 Accepted 31 May 2005 Online 17 June 2005

Figure 1

(2)

comparable to that of 2.099 A˚ reported for MgHPO36H2O

(Corbridge, 1956) and to that of 2.086 A˚ for NaMg(H2PO3)3

-H2O (Ouarsal et al., 2004). The Mg(H2O)6 octahedra are

isolated in the structure, the shortest Mg Mg distance being 6.1666 (3) A˚ , which is considerably longer than the Mg Mg distance of 5.031 A˚ found in NaMg(H2PO3)3H2O.

The P atoms occupy two non-equivalent crystallographic

positions, both withmsymmetry. The surrounding tetrahedra

consist of three O atoms and one H atom. The average P—H and P—O distances are 1.25 (2) and 1.527 (2) A˚ , respectively. The distances are in good agreement with those found in (NH4)2HPO3H2O (1.36 and 1.523 A˚ ; Rafiqet al., 1982) or in

[Zn2(H2O)4](HPO3)2H2O (1.31 and 1.520 A˚ ; Ortiz-Avila et al., 1989).

The crystal structure of (NH4)2Mg3(HPO3)418H2O might

be described as a framework made up of isolated

[Mg(H2O)62(HPO3)]2 and [NH4]+ units that are stabilized

by an intricate network of hydrogen bonds (Table 2). Figs. 2 and 3 depict projections of the crystal structure. The three polyhedra Mg(H2O)6, HPO3and NH4lie on a plane parallel to

(010). The hydrogen-bond network ensures the interactions between two neighbouring planes.

Experimental

MgO (10 mg) was dissolved in H3PO3 (10 ml) to which aqueous

ammonia solution (around 5 ml, 0.4M) was added. The solution was heated for 2 h at 300 K and was then left to stand at room temperature. After a week, colourless crystals of (NH4)2Mg3(HPO3)4.18H2O deposited. They were filtered off and

washed with an ethanol–water (80:20) solution.

Crystal data

(NH4)2[Mg(H2O)6]3(HPO3)4

Mr= 753.21 Monoclinic,C2=m a= 34.330 (3) A˚

b= 7.0380 (3) A˚

c= 6.1666 (3) A˚

= 91.377 (6)

V= 1489.51 (16) A˚3

Z= 2

Dx= 1.679 Mg m3 MoKradiation Cell parameters from 72

reflections

= 5.1–27.5

= 0.43 mm1

T= 293 (2) K Prism, colourless 0.450.450.40 mm

Data collection

Nonius KappaCCD diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Siemens, 1996)

Tmin= 0.831,Tmax= 0.848

4735 measured reflections 1799 independent reflections

1687 reflections withI> 2(I)

Rint= 0.012

max= 27.5

h=44!41

k=9!9

l=7!8

inorganic papers

i130

Messouriet al. (NH

[image:2.610.315.558.52.419.2] [image:2.610.42.573.54.428.2]

4)2[Mg(H2O)6]3(HPO3)4 Acta Cryst.(2005). E61, i129–i131

Figure 2

[image:2.610.43.232.60.431.2]

Projection of the crystal structure alongc. Dashed lines indicate hydrogen bonds.

Figure 3

(3)

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.022

wR(F2) = 0.064

S= 1.11 1799 reflections 158 parameters

All H-atom parameters refined

w= 1/[2

(Fo2) + (0.0385P)2

+ 0.6624P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.28 e A˚

3

[image:3.610.44.294.208.308.2]

min=0.32 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

P1—O1 1.5235 (8)

P1—O2 1.5261 (11)

P1—H1 1.232 (18)

P2—O4 1.5240 (8)

P2—O3 1.5328 (11)

P2—H2 1.267 (19)

Mg1—O6 2.0545 (9)

Mg1—O7 2.0793 (13)

Mg1—O8 2.0929 (9)

Mg1—O5 2.0973 (12)

Mg2—O10 2.0504 (12)

Mg2—O9 2.0737 (9)

O1i

—P1—O1 112.41 (6)

O1—P1—O2 112.33 (4)

O1i—P1—H1 107.1 (4)

O2—P1—H1 105.0 (9)

O4ii

—P2—O4 112.92 (6)

O4—P2—O3 111.67 (4)

O4—P2—H2 106.6 (4)

O3—P2—H2 106.8 (9)

[image:3.610.45.296.379.494.2]

Symmetry codes: (i)x;y;z; (ii)x;yþ1;z.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O8—H81 O3 0.75 (2) 1.98 (2) 2.7227 (12) 168 (2) O8—H82 O1 0.77 (2) 1.93 (2) 2.6883 (12) 173 (2) O10—H100 O1 0.85 (2) 1.83 (2) 2.6707 (10) 169 (2) N1—H110 O3 0.90 (3) 1.90 (3) 2.799 (2) 179 (2) O5—H5 O4i

0.87 (2) 1.81 (2) 2.6758 (10) 169 (2) O6—H62 O4v 0.80 (2) 1.94 (2) 2.7193 (12) 166 (2) O6—H61 O4vi

0.75 (2) 2.00 (2) 2.7436 (12) 170 (2) O7—H71 O5vii

0.71 (3) 2.23 (3) 2.9363 (19) 172 (3) O7—H72 O2vii

0.87 (3) 1.80 (3) 2.6657 (18) 172 (2) O9—H91 O2iv

0.85 (2) 1.87 (2) 2.7207 (12) 173 (2) N1—H112 O8viii

0.87 (2) 2.20 (2) 3.0242 (17) 157 (2)

Symmetry codes: (i)x;y;z; (iv)x;y;z; (v)x;y;zþ1; (vi)xþ1 2;y

1 2;zþ1;

(vii)x;y;zþ1; (viii)x;yþ1;z1.

H atoms were found in difference Fourier maps and refined isotropically without any restraints.

Data collection: COLLECT (Nonius, 1998); cell refinement:

EVALCCD (Duisenberg, 2003); data reduction: EVALCCD; program(s) used to solve structure:SIR97 (Altomare et al., 1999); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:DIAMOND(Brandenburg, 1999); software used to prepare material for publication:SHELXL97.

BEB thanks Dr M. Bouchaib [Centre for the Study of Matter at Extreme Conditions (CeSMEC), Florida Interna-tional University, VH-140, University Park, Miami, FL 33199, USA] for his unquestioning collaboration. JFP is thankful for the financial support of the Spanish Ministerio de Educacion y Ciencia (Programa nacional de ayudas para la movilidad de profesores espano˜lesyextranjeros; Ref. PR-2004-0403).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115–119.

Brandenburg, K. (1999).DIAMOND. Version. 2.1c. Crystal Impact GbR, Bonn, Germany.

Corbridge, D. E. C. (1956).Acta Cryst.9, 991–994.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003).

J. Appl. Cryst.36, 220–229.

El Bali, B., Essehli, R., Capitelli, F. & Lachkar, M. (2005).Acta Cryst.E61, i52– i54.

Essehli, R., Lachkar, M., Svoboda, I., Fuess, H. & El Bali, B. (2005).Acta Cryst.E61, i64–i66.

Nonius. (1998).COLLECT. Nonius BV, Delft, The Netherlands.

Ortiz-Avila, C. Y., Squattrito, P. J., Shieh, M. & Clearfield, A. (1989).Inorg. Chem.28, 2608–2615.

Ouarsal, R., Alaoui, T. A., Lachkar, M., Dusek, M., Fejfarova, K. & El Bali, B. (2003).Acta Cryst.E59, i33–i35.

Ouarsal, R., Essehli, R., Lachkar, M., Zenkouar, M., Dusek, M., Fejfarova, K. & El Bali, B. (2004).Acta Cryst.E60, i66–i68.

Powell, D. R., Smith, S. K. & Farrar, T. C. (1994).Acta Cryst.C50, 342–346. Rafiq, M., Durand, J. & le Cot, L. (1982).Z. Anorg. Allg. Chem.484, 187–194. Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Siemens (1996). SADABS. Siemens Analytical X-ray Instruments Inc.,

Madison, Wisconsin, USA.

inorganic papers

Acta Cryst.(2005). E61, i129–i131 Messouriet al. (NH

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, i129–i131

supporting information

Acta Cryst. (2005). E61, i129–i131 [https://doi.org/10.1107/S160053680501723X]

Diammonium tris[hexaaquamagnesium(II)] tetrakis[hydrogenphosphate(III)],

(NH

4

)

2

[Mg(H

2

O)

6

]

3

(HPO

3

)

4

Ibtissam Messouri, Brahim El Bali, Francesco Capitelli, Juan F. Piniella, Mohammed Lachkar and

Zineb Slimani

Diammonium trimagnesium tetrakis[hydrogenphosphate(III)] octadecahydrate

Crystal data

(NH4)2[Mg(H2O)6]3(HPO3)4 Mr = 753.21

Monoclinic, C2/m Hall symbol: -C 2y a = 34.330 (3) Å b = 7.0380 (3) Å c = 6.1666 (3) Å β = 91.377 (6)° V = 1489.51 (16) Å3 Z = 2

F(000) = 796 Dx = 1.679 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5254 reflections θ = 5.1–27.5°

µ = 0.43 mm−1 T = 293 K Prism, colourless 0.45 × 0.45 × 0.40 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Siemens, 1996) Tmin = 0.831, Tmax = 0.848

4735 measured reflections 1799 independent reflections 1687 reflections with I > 2σ(I) Rint = 0.012

θmax = 27.5°, θmin = 5.1° h = −44→41

k = −9→9 l = −7→8

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.022 wR(F2) = 0.064 S = 1.11 1799 reflections 158 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined w = 1/[σ2(F

o2) + (0.0385P)2 + 0.6624P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.28 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, i129–i131

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

P1 0.047588 (10) 0.0000 0.34406 (6) 0.01405 (11) P2 0.204833 (11) 0.5000 0.37833 (6) 0.01539 (11) Mg1 0.166919 (14) 0.0000 0.75159 (8) 0.01693 (13) Mg2 0.0000 0.5000 0.0000 0.01638 (16) O1 0.05798 (2) 0.17990 (11) 0.47012 (12) 0.02087 (18) O2 0.06427 (3) 0.0000 0.11689 (17) 0.0219 (2) O3 0.16056 (3) 0.5000 0.40510 (19) 0.0238 (3) O4 0.21869 (2) 0.31952 (12) 0.26747 (13) 0.02258 (19) O5 0.19134 (3) 0.0000 0.44310 (19) 0.0224 (2) O6 0.20496 (2) −0.21016 (14) 0.84966 (15) 0.0255 (2) O7 0.14077 (4) 0.0000 1.0523 (2) 0.0379 (4) O8 0.12952 (3) 0.21956 (13) 0.65128 (14) 0.02337 (19) O9 −0.03569 (3) 0.29247 (13) 0.12762 (15) 0.0267 (2) O10 0.03689 (4) 0.5000 0.2665 (2) 0.0309 (3) N1 0.11722 (5) 0.5000 0.0148 (3) 0.0328 (4) H1 0.0120 (5) 0.0000 0.315 (3) 0.019 (5)* H2 0.2201 (6) 0.5000 0.567 (3) 0.022 (5)* H5 0.2033 (5) −0.098 (2) 0.388 (3) 0.041 (5)* H61 0.2253 (6) −0.211 (3) 0.807 (3) 0.042 (5)* H62 0.2060 (5) −0.255 (2) 0.968 (3) 0.038 (5)* H71 0.1513 (8) 0.0000 1.154 (4) 0.038 (7)* H72 0.1162 (7) 0.0000 1.087 (4) 0.035 (6)* H81 0.1400 (5) 0.286 (3) 0.577 (3) 0.036 (5)* H82 0.1092 (5) 0.198 (2) 0.603 (2) 0.031 (4)* H91 −0.0430 (5) 0.195 (3) 0.055 (3) 0.039 (4)* H92 −0.0394 (5) 0.737 (3) 0.243 (3) 0.045 (5)* H100 0.0418 (5) 0.403 (3) 0.344 (3) 0.040 (4)* H110 0.1314 (7) 0.5000 0.140 (4) 0.037 (6)* H112 0.1230 (5) 0.602 (3) −0.060 (3) 0.055 (5)* H113 0.0913 (10) 0.5000 0.046 (5) 0.069 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, i129–i131

Mg1 0.0149 (2) 0.0201 (3) 0.0158 (2) 0.000 0.00105 (18) 0.000 Mg2 0.0193 (3) 0.0158 (3) 0.0141 (3) 0.000 0.0003 (3) 0.000 O1 0.0267 (4) 0.0177 (4) 0.0181 (4) 0.0004 (3) −0.0017 (3) −0.0024 (3) O2 0.0242 (5) 0.0272 (6) 0.0145 (5) 0.000 0.0047 (4) 0.000 O3 0.0169 (5) 0.0257 (6) 0.0290 (6) 0.000 0.0044 (4) 0.000 O4 0.0250 (4) 0.0183 (4) 0.0247 (4) 0.0004 (3) 0.0065 (3) −0.0039 (3) O5 0.0277 (6) 0.0176 (5) 0.0222 (6) 0.000 0.0076 (5) 0.000 O6 0.0192 (4) 0.0337 (5) 0.0237 (4) 0.0047 (3) 0.0019 (3) 0.0074 (4) O7 0.0193 (6) 0.0785 (11) 0.0160 (6) 0.000 0.0026 (5) 0.000 O8 0.0165 (4) 0.0246 (4) 0.0288 (4) −0.0003 (3) −0.0014 (3) 0.0034 (4) O9 0.0391 (5) 0.0237 (4) 0.0174 (4) −0.0098 (4) 0.0063 (3) 0.0001 (3) O10 0.0514 (8) 0.0160 (6) 0.0245 (6) 0.000 −0.0173 (6) 0.000 N1 0.0309 (8) 0.0355 (9) 0.0316 (9) 0.000 −0.0034 (7) 0.000

Geometric parameters (Å, º)

P1—O1i 1.5235 (8) Mg2—O9iii 2.0737 (9)

P1—O1 1.5235 (8) Mg2—O9iv 2.0737 (9)

P1—O2 1.5261 (11) Mg2—O9 2.0737 (9) P1—H1 1.232 (18) Mg2—O9ii 2.0737 (9)

P2—O4ii 1.5240 (8) O5—H5 0.874 (17)

P2—O4 1.5240 (8) O6—H61 0.753 (19) P2—O3 1.5328 (11) O6—H62 0.798 (19) P2—H2 1.267 (19) O7—H71 0.71 (3) Mg1—O6i 2.0545 (9) O7—H72 0.87 (3)

Mg1—O6 2.0545 (9) O8—H81 0.751 (19) Mg1—O7 2.0793 (13) O8—H82 0.766 (17) Mg1—O8i 2.0929 (9) O9—H91 0.85 (2)

Mg1—O8 2.0929 (9) O10—H100 0.848 (17) Mg1—O5 2.0973 (12) N1—H110 0.90 (3) Mg2—O10 2.0504 (12) N1—H112 0.87 (2) Mg2—O10iii 2.0504 (12) N1—H113 0.91 (3)

O1i—P1—O1 112.41 (6) O10iii—Mg2—O9iii 93.16 (4)

O1i—P1—O2 112.33 (4) O10—Mg2—O9iv 86.84 (4)

O1—P1—O2 112.33 (4) O10iii—Mg2—O9iv 93.16 (4)

O1i—P1—H1 107.1 (4) O9iii—Mg2—O9iv 89.55 (5)

O1—P1—H1 107.1 (4) O10—Mg2—O9 93.16 (4) O2—P1—H1 105.0 (9) O10iii—Mg2—O9 86.84 (4)

O4ii—P2—O4 112.92 (6) O9iii—Mg2—O9 180.00 (4)

O4ii—P2—O3 111.67 (4) O9iv—Mg2—O9 90.45 (5)

O4—P2—O3 111.67 (4) O10—Mg2—O9ii 93.16 (4)

O4ii—P2—H2 106.6 (4) O10iii—Mg2—O9ii 86.84 (4)

O4—P2—H2 106.6 (4) O9iii—Mg2—O9ii 90.45 (5)

O3—P2—H2 106.8 (9) O9iv—Mg2—O9ii 180.00 (4)

O6i—Mg1—O6 92.10 (6) O9—Mg2—O9ii 89.55 (5)

O6i—Mg1—O7 91.29 (4) Mg1—O5—H5 123.7 (10)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, i129–i131

O6i—Mg1—O8i 178.34 (4) Mg1—O6—H62 124.8 (12)

O6—Mg1—O8i 86.36 (4) H61—O6—H62 106.9 (18)

O7—Mg1—O8i 89.35 (4) Mg1—O7—H71 124 (2)

O6i—Mg1—O8 86.36 (4) Mg1—O7—H72 131.0 (15)

O6—Mg1—O8 178.34 (4) H71—O7—H72 105 (2) O7—Mg1—O8 89.35 (4) Mg1—O8—H81 109.7 (13) O8i—Mg1—O8 95.18 (6) Mg1—O8—H82 121.2 (13)

O6i—Mg1—O5 90.11 (4) H81—O8—H82 109.1 (17)

O6—Mg1—O5 90.11 (4) Mg2—O9—H91 122.4 (11) O7—Mg1—O5 177.98 (6) Mg2—O10—H100 124.3 (11) O8i—Mg1—O5 89.29 (4) H110—N1—H112 109.0 (14)

O8—Mg1—O5 89.29 (4) H110—N1—H113 109 (2) O10—Mg2—O10iii 180.00 (7) H112—N1—H113 110.0 (15)

O10—Mg2—O9iii 86.84 (4)

Symmetry codes: (i) x, −y, z; (ii) x, −y+1, z; (iii) −x, −y+1, −z; (iv) −x, y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O8—H81···O3 0.751 (19) 1.983 (19) 2.7227 (12) 168.2 (18) O8—H82···O1 0.766 (17) 1.927 (18) 2.6883 (12) 172.5 (18) O10—H100···O1 0.848 (17) 1.833 (18) 2.6707 (10) 169.2 (16) N1—H110···O3 0.90 (3) 1.90 (3) 2.799 (2) 179 (2) O5—H5···O4i 0.874 (17) 1.812 (17) 2.6758 (10) 169.0 (16)

O6—H62···O4v 0.798 (19) 1.938 (19) 2.7193 (12) 166.0 (17)

O6—H61···O4vi 0.753 (19) 1.999 (19) 2.7436 (12) 170.3 (19)

O7—H71···O5vii 0.71 (3) 2.23 (3) 2.9363 (19) 172 (3)

O7—H72···O2vii 0.87 (3) 1.80 (3) 2.6657 (18) 172 (2)

O9—H91···O2iv 0.85 (2) 1.87 (2) 2.7207 (12) 173.0 (17)

N1—H112···O8viii 0.87 (2) 2.20 (2) 3.0242 (17) 157.3 (17)

Figure

Figure 1
Figure 2Projection of the crystal structure along c. Dashed lines indicate hydrogenbonds.
Table 2Hydrogen-bond geometry (A˚ , �).

References

Related documents

In this paper, we design the methods for es- timating marginal distribution for data in NLG and NLU tasks: language modeling is utilized for sequential data (natural

Findings show that external debt positively and significantly affect the real exchange rate at 5% significant level.. Moreover, debt servicing affects negatively and

Because de facto states can’t win independence struggle against thier parent state without an external support, their patron states’ involvement would become inevitable. Such

Instructor, Department of Communicable Diseases, Khuzestan Province Health Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran. Instructor, Department

This research analyzed the influence of emotional intelligence which consists of self-awareness, self-regulation, motivation, empathy and social skills on the

 A flattening yield curve highlights Federal Reserve rate hikes’ inability to tighten financial conditions, as low long- term interest rates continued to induce

In this paper, we investigate the effec- tiveness of training a multimodal neu- ral machine translation (MNMT) sys- tem with image features for a low- resource language pair, Hindi

common price ending, (2) shoppers make larger errors when recalling 90-ending prices than.. other prices, and (3) the likelihood of noticing a price change is smaller for