• No results found

Ethyl (3 ethyl 1 oxo 1,2,3,4 tetra­hydro­carbazol 2 yl)­acetate

N/A
N/A
Protected

Academic year: 2020

Share "Ethyl (3 ethyl 1 oxo 1,2,3,4 tetra­hydro­carbazol 2 yl)­acetate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o120

F. BetuÈl Kaynaket al. C18H21NO3 DOI: 10.1107/S1600536803028721 Acta Cryst.(2004). E60, o120±o122 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ethyl

(3-ethyl-1-oxo-1,2,3,4-tetrahydro-carbazol-2-yl)acetate

F. BetuÈl Kaynak,a* SuÈheyla OÈ zbey,aNesimi Uludagband SuÈleyman Patirb

aDepartment of Engineering Physics, Hacettepe

University, Faculty of Engineering, Beytepe 06532, Ankara, Turkey, andbDepartment of

Science, Hacettepe University, Faculty of Education, Beytepe 06532, Ankara, Turkey

Correspondence e-mail: gulsen@hacettepe.edu.tr

Key indicators Single-crystal X-ray study

T= 295 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.047

wRfactor = 0.145

Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C18H21NO3, consists of a carbazole skeleton with carboxyethyl and ethyl groups at positions 2 and 3, respectively. The heterocyclic ring and the benzene ring fused to it are nearly planar, while the cyclohexenone ring adopts a distorted sofa conformation. Molecules are linked in pairs about inversion centers by NÐH O hydrogen bonds [N O = 2.831 (3) AÊ and NÐH O = 158 (3)].

Comment

Tricyclic ring systems such as tetrahydrocarbazole with side chains are present in the framework of a number of indole-type alkaloids of biological interest. The introduction of the ketone on atom C4 (according to the carbazole numbering) and conversion of the ester group into amide following the ring cyclization could constitute a new entry into the total synthesis of ()-dasycarpidone and ()-uleine.

In the molecule of the title compound, (I), ringsAandBare almost planar [maximum deviations are 0.008 (2) AÊ for C8A and 0.005 (3) AÊ for C9A] and the dihedral angle between these two rings is 1.3 (2). Rings A and C in the carbazole

moiety are slightly bent away from the central ®ve-membered ring in the same direction, with torsion angles of 1.6 (4) (C5Ð C5AÐC8AÐC8) and 3.0 (4)(C4ÐC4AÐC9AÐC1). RingC

is not planar and adopts a distorted sofa conformation. The ring puckering parameters (Cremer & Pople, 1975) for this ring areQ= 0.472 (3) AÊ,= 52.7 (4)and'= 100.6 (4).

In the title compound, the bond lengths of the central ring of carbazole are shortened [N9ÐC8A= 1.360 (4) AÊ and N9Ð

Received 5 November 2003 Accepted 15 December 2003 Online 19 December 2003

Figure 1

(2)

C9A= 1.381 (3) AÊ] compared with the corresponding values in ethyl 4-methyl-9H-carbazole-3-carboxylate (HoÈkeleket al., 2002). The ethyl and carboxyethyl groups in the molecule are oriented out of the mean plane of ringC, with torsion angles of

70.6 (4) (C4ÐC3ÐC10ÐC11) and ÿ75.2 (3) (C1ÐC2Ð

C12ÐC13).

The crystal structure of the title compound is stabilized by intermolecular hydrogen bonds. The hydrogen-bonding geometry is given in Table 2. The intermolecular hydrogen bonds between the ketone O atoms and the indole NÐH groups of neighbouring molecules causes dimerization of the substituted carbazole molecules. As can be seen from the packing diagram (Fig. 2), the molecules are in a head-to-tail arrangement. In addition, there is an intermolecular CÐ H interaction between the H atom of C3 and theBring of a symmetry-related molecule. The distance between atom H3 and the centroid of the B ring is 2.598 AÊ (symmetry code: 1ÿx, 2ÿy, ÿz) and the C3ÐH3 centroid angle is 167

(Spek, 2000). No signi®cant intermolecular± interactions involving the aromatic rings are found in the crystal structure.

Experimental

The title compound was prepared from 3-ethyl-2-ethoxalyl-1,2,3,4-tetrahydrocarbazol-1-one (4 g, 12.76 mmol), zinc dust (5 g, 61.17 mmol) and acetic acid (40 ml). The resulting mixture was stirred at room temperature for 16 h. The mixture was diluted with ethyl acetate and ®ltered. The ®ltrate was poured into NaOH solution (150 ml, 10%), extracted with ethyl acetate, dried over MgSO4and

evaporated. The compound was obtained by column chromato-graphy, using silica gel and dichloromethane/ethyl acetate (1:1) according to the literature (Wenkert & Dave, 1962). It was recrys-tallized from diethyl ether [m.p. 431 K, 2.1 g (55%) yield].

Crystal data

C18H21NO3

Mr= 299.36 Monoclinic,C2=c a= 15.0923 (11) AÊ

b= 8.0510 (5) AÊ

c= 26.928 (2) AÊ

= 97.535 (8)

V= 3243.7 (4) AÊ3

Z= 8

Dx= 1.226 Mg mÿ3 MoKradiation Cell parameters from 22

re¯ections

= 9.3±18.1 = 0.08 mmÿ1

T= 295 (2) K Prism, colorless 0.480.420.12 mm

Data collection

Enraf±Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.961,Tmax= 0.990

5078 measured re¯ections 2619 independent re¯ections 1344 re¯ections withI> 2(I)

Rint= 0.052 max= 24.3

h=ÿ17!17

k= 0!9

l=ÿ31!31 3 standard re¯ections

frequency: 120 min intensity decay: none

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.047

wR(F2) = 0.145

S= 0.99 2619 re¯ections 203 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0725P)2 + 0.4277P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.21 e AÊÿ3

min=ÿ0.18 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O3ÐC13 1.324 (3) O3ÐC14 1.458 (3) N9ÐC8A 1.360 (3) N9ÐC9A 1.381 (3) O1ÐC1 1.228 (3) C9AÐC4A 1.367 (3) C9AÐC1 1.437 (4) C2ÐC12 1.528 (4) C2ÐC3 1.528 (4)

C2ÐC1 1.529 (4) C5AÐC8A 1.414 (4) C5AÐC4A 1.412 (4) C4AÐC4 1.487 (4) O2ÐC13 1.194 (3) C4ÐC3 1.525 (4) C12ÐC13 1.498 (4) C3ÐC10 1.533 (4)

C8AÐN9ÐC9A 108.0 (2) C4AÐC9AÐC1 124.5 (3) C12ÐC2ÐC3 115.9 (2) C12ÐC2ÐC1 109.2 (2) C8AÐC5AÐC4A 107.0 (2) N9ÐC8AÐC5A 108.2 (2) C9AÐC4AÐC4 121.6 (2)

O1ÐC1ÐC2 122.0 (2) C9AÐC1ÐC2 114.3 (2) C4AÐC4ÐC3 112.4 (2) C13ÐC12ÐC2 111.9 (2) C4ÐC3ÐC2 110.5 (2) C2ÐC3ÐC10 114.1 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N9ÐH9 O1i 0.94 (3) 1.94 (3) 2.831 (3) 158 (3)

C14ÐH14B O2ii 0.97 2.60 3.566 (4) 174 Symmetry codes: (i) 2ÿx;ÿy;1ÿz; (ii) 2ÿx;y;1

2ÿz.

The H atom of N9 was located in a difference Fourier map and re®ned freely. All other H atoms were positioned geometrically, with CÐH = 0.93, 0.96, 0.98 and 0.97 AÊ for aromatic, methyl, methine and methylene H atoms, respectively, and re®ned riding on their parent atoms, withUiso(H) = 1.3Ueq(C).

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell re®nement: CAD-4EXPRESS; data reduction:XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication:PARST(Nardelli, 1995).

References

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354±1358.

Acta Cryst.(2004). E60, o120±o122 F. BetuÈl Kaynaket al. C18H21NO3

o121

organic papers

Figure 2

(3)

organic papers

o122

F. BetuÈl Kaynaket al. C18H21NO3 Acta Cryst.(2004). E60, o120±o122

Enraf±Nonius (1994).CAD-4EXPRESS. Enraf±Nonius, Delft, The Nether-lands.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. HoÈkelek, T., Patõr, S., ErguÈn, Y., Okay, G. (2002).Acta Cryst.E58, o206±

o208.

Johnson, C. K. (1965).ORTEP.Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o120–o122

supporting information

Acta Cryst. (2004). E60, o120–o122 [https://doi.org/10.1107/S1600536803028721]

Ethyl (3-ethyl-1-oxo-1,2,3,4-tetrahydrocarbazol-2-yl)acetate

F. Bet

ü

l Kaynak, S

ü

heyla

Ö

zbey, Nesimi Uludag and S

ü

leyman Patir

(I)

Crystal data

C18H21NO3

Mr = 299.36

Monoclinic, C2/c

a = 15.0923 (11) Å

b = 8.0510 (5) Å

c = 26.928 (2) Å

β = 97.535 (8)°

V = 3243.7 (4) Å3

Z = 8

F(000) = 1280

Dx = 1.226 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 22 reflections

θ = 9.3–18.1°

µ = 0.08 mm−1

T = 295 K

Prism, colorless 0.48 × 0.42 × 0.12 mm

Data collection

Enraf-Nonius CAD-4 diffractometer

ω/2θ scans

Absorption correction: ψ scan

(North et al., 1968)

Tmin = 0.961, Tmax = 0.990

5078 measured reflections 2632 independent reflections

1344 reflections with I > 2σ(I)

Rint = 0.052

θmax = 24.3°, θmin = 2.7°

h = −17→17

k = 0→9

l = −31→31

3 standard reflections every 120 min intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.047

wR(F2) = 0.145

S = 0.99

2619 reflections 203 parameters 1 restraint

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0725P)2 + 0.4277P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.21 e Å−3

Δρmin = −0.18 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o120–o122

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

H9 1.079 (2) 0.070 (3) 0.5277 (11) 0.096 (11)*

O3 0.85728 (13) 0.1134 (2) 0.30699 (7) 0.0643 (6)

N9 1.09993 (15) 0.1774 (3) 0.52207 (8) 0.0507 (6)

O1 0.96495 (14) 0.1138 (3) 0.43607 (7) 0.0774 (7)

C9A 1.07889 (17) 0.2757 (3) 0.48015 (9) 0.0465 (7)

C2 1.01312 (18) 0.3555 (3) 0.39366 (10) 0.0551 (8)

H2 1.0641 0.326 0.3764 0.066*

C5A 1.18449 (17) 0.4081 (3) 0.53089 (10) 0.0501 (7)

C8A 1.16481 (16) 0.2559 (3) 0.55333 (10) 0.0478 (7)

C4A 1.12874 (17) 0.4180 (3) 0.48459 (10) 0.0466 (7)

C1 1.01429 (19) 0.2355 (3) 0.43778 (10) 0.0540 (7)

O2 1.00497 (16) 0.1055 (3) 0.31901 (9) 0.0982 (9)

C4 1.11668 (18) 0.5503 (3) 0.44575 (10) 0.0566 (8)

H4A 1.1654 0.5447 0.4256 0.068*

H4B 1.1193 0.658 0.4621 0.068*

C12 0.92915 (19) 0.3245 (4) 0.35656 (10) 0.0621 (8)

H12A 0.878 0.3153 0.3747 0.074*

H12B 0.9192 0.4186 0.334 0.074*

C8 1.20640 (17) 0.2098 (4) 0.60070 (10) 0.0565 (8)

H8 1.1921 0.1106 0.6155 0.068*

C3 1.02812 (19) 0.5346 (3) 0.41158 (11) 0.0584 (8)

H3 0.981 0.5595 0.4323 0.07*

C13 0.9367 (2) 0.1695 (4) 0.32660 (10) 0.0592 (8)

C5 1.24947 (19) 0.5126 (4) 0.55683 (12) 0.0649 (9)

H5 1.2645 0.6128 0.5429 0.078*

C7 1.26856 (18) 0.3151 (5) 0.62455 (11) 0.0671 (9)

H7 1.2973 0.2866 0.6561 0.081*

C10 1.0193 (2) 0.6634 (4) 0.36928 (12) 0.0717 (9)

H10A 0.9577 0.6642 0.3535 0.086*

H10B 1.032 0.7722 0.3839 0.086*

C6 1.2903 (2) 0.4643 (5) 0.60307 (13) 0.0744 (10)

H6 1.3335 0.5326 0.6204 0.089*

C14 0.8574 (2) −0.0242 (4) 0.27179 (12) 0.0784 (10)

H14A 0.8805 −0.1237 0.2892 0.094*

H14B 0.8951 0.0022 0.2463 0.094*

C15 0.7644 (2) −0.0514 (5) 0.24845 (13) 0.0897 (11)

H15A 0.7629 −0.1408 0.2247 0.134*

H15B 0.742 0.048 0.2316 0.134*

H15C 0.7279 −0.0792 0.2739 0.134*

C11 1.0787 (2) 0.6368 (5) 0.32932 (13) 0.0963 (12)

H11A 1.068 0.7226 0.3045 0.145*

H11B 1.066 0.5305 0.3138 0.145*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o120–o122 Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O3 0.0646 (13) 0.0604 (13) 0.0645 (13) 0.0028 (10) −0.0045 (10) −0.0134 (11)

N9 0.0625 (15) 0.0404 (14) 0.0477 (14) −0.0060 (13) 0.0020 (11) 0.0026 (12)

O1 0.0994 (16) 0.0530 (13) 0.0730 (14) −0.0328 (13) −0.0147 (12) 0.0107 (11)

C9A 0.0538 (16) 0.0417 (17) 0.0437 (15) −0.0052 (14) 0.0056 (13) −0.0009 (14)

C2 0.0639 (18) 0.0488 (19) 0.0509 (17) 0.0003 (14) 0.0015 (14) 0.0008 (14)

C5A 0.0460 (16) 0.0502 (19) 0.0551 (17) −0.0084 (14) 0.0099 (14) −0.0064 (15)

C8A 0.0459 (15) 0.0489 (18) 0.0490 (17) −0.0032 (14) 0.0082 (14) −0.0063 (15)

C4A 0.0513 (16) 0.0376 (16) 0.0527 (17) −0.0053 (13) 0.0139 (13) −0.0005 (13)

C1 0.0655 (18) 0.0394 (17) 0.0562 (18) −0.0058 (15) 0.0046 (15) 0.0006 (15)

O2 0.0641 (14) 0.124 (2) 0.1018 (18) 0.0163 (15) −0.0069 (13) −0.0421 (16)

C4 0.0594 (18) 0.0433 (17) 0.0686 (18) −0.0089 (14) 0.0142 (15) −0.0002 (15)

C12 0.0711 (19) 0.0525 (19) 0.0592 (18) 0.0054 (16) −0.0040 (15) 0.0060 (15)

C8 0.0548 (17) 0.062 (2) 0.0532 (18) 0.0046 (16) 0.0098 (15) −0.0011 (16)

C3 0.0611 (18) 0.0442 (18) 0.0706 (19) −0.0034 (14) 0.0118 (15) 0.0084 (15)

C13 0.0597 (19) 0.065 (2) 0.0494 (17) 0.0048 (17) −0.0052 (15) 0.0006 (16)

C5 0.0584 (18) 0.060 (2) 0.077 (2) −0.0142 (16) 0.0089 (17) −0.0048 (17)

C7 0.0546 (18) 0.084 (3) 0.0610 (19) 0.0024 (19) 0.0023 (15) −0.0109 (19)

C10 0.078 (2) 0.056 (2) 0.083 (2) −0.0035 (17) 0.0156 (18) 0.0206 (18)

C6 0.057 (2) 0.085 (3) 0.079 (2) −0.0156 (18) −0.0026 (18) −0.019 (2)

C14 0.089 (2) 0.073 (2) 0.070 (2) 0.0025 (19) −0.0023 (18) −0.0206 (19)

C15 0.104 (3) 0.077 (3) 0.084 (2) −0.016 (2) −0.006 (2) −0.009 (2)

C11 0.116 (3) 0.091 (3) 0.086 (2) 0.001 (2) 0.026 (2) 0.032 (2)

Geometric parameters (Å, º)

O3—C13 1.324 (3) C12—H12B 0.97

O3—C14 1.458 (3) C8—C7 1.362 (4)

N9—C8A 1.360 (3) C8—H8 0.93

N9—C9A 1.381 (3) C3—C10 1.533 (4)

N9—H9 0.939 (18) C3—H3 0.98

O1—C1 1.228 (3) C5—C6 1.371 (4)

C9A—C4A 1.367 (3) C5—H5 0.93

C9A—C1 1.437 (4) C7—C6 1.391 (4)

C2—C12 1.528 (4) C7—H7 0.93

C2—C3 1.528 (4) C10—C11 1.504 (4)

C2—C1 1.529 (4) C10—H10A 0.97

C2—H2 0.98 C10—H10B 0.97

C5A—C5 1.407 (4) C6—H6 0.93

C5A—C8A 1.414 (4) C14—C15 1.477 (4)

C5A—C4A 1.412 (4) C14—H14A 0.97

C8A—C8 1.396 (3) C14—H14B 0.97

C4A—C4 1.487 (4) C15—H15A 0.96

O2—C13 1.194 (3) C15—H15B 0.96

C4—C3 1.525 (4) C15—H15C 0.96

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o120–o122

C4—H4B 0.97 C11—H11B 0.96

C12—C13 1.498 (4) C11—H11C 0.96

C12—H12A 0.97

C13—O3—C14 116.1 (2) C4—C3—C10 112.1 (2)

C8A—N9—C9A 108.0 (2) C2—C3—C10 114.1 (2)

C8A—N9—H9 123.7 (19) C4—C3—H3 106.5

C9A—N9—H9 128.0 (19) C2—C3—H3 106.5

C4A—C9A—N9 110.1 (2) C10—C3—H3 106.5

C4A—C9A—C1 124.5 (3) O2—C13—O3 122.7 (3)

N9—C9A—C1 125.4 (2) O2—C13—C12 125.5 (3)

C12—C2—C3 115.9 (2) O3—C13—C12 111.7 (3)

C12—C2—C1 109.2 (2) C6—C5—C5A 118.9 (3)

C3—C2—C1 111.4 (2) C6—C5—H5 120.6

C12—C2—H2 106.6 C5A—C5—H5 120.6

C3—C2—H2 106.6 C8—C7—C6 121.8 (3)

C1—C2—H2 106.6 C8—C7—H7 119.1

C5—C5A—C8A 118.5 (3) C6—C7—H7 119.1

C5—C5A—C4A 134.5 (3) C11—C10—C3 115.7 (3)

C8A—C5A—C4A 107.0 (2) C11—C10—H10A 108.4

N9—C8A—C8 130.0 (3) C3—C10—H10A 108.4

N9—C8A—C5A 108.2 (2) C11—C10—H10B 108.4

C8—C8A—C5A 121.8 (3) C3—C10—H10B 108.4

C9A—C4A—C5A 106.7 (2) H10A—C10—H10B 107.4

C9A—C4A—C4 121.6 (2) C5—C6—C7 121.3 (3)

C5A—C4A—C4 131.7 (2) C5—C6—H6 119.3

O1—C1—C9A 123.7 (2) C7—C6—H6 119.3

O1—C1—C2 122.0 (2) O3—C14—C15 107.9 (3)

C9A—C1—C2 114.3 (2) O3—C14—H14A 110.1

C4A—C4—C3 112.4 (2) C15—C14—H14A 110.1

C4A—C4—H4A 109.1 O3—C14—H14B 110.1

C3—C4—H4A 109.1 C15—C14—H14B 110.1

C4A—C4—H4B 109.1 H14A—C14—H14B 108.4

C3—C4—H4B 109.1 C14—C15—H15A 109.5

H4A—C4—H4B 107.9 C14—C15—H15B 109.5

C13—C12—C2 111.9 (2) H15A—C15—H15B 109.5

C13—C12—H12A 109.2 C14—C15—H15C 109.5

C2—C12—H12A 109.2 H15A—C15—H15C 109.5

C13—C12—H12B 109.2 H15B—C15—H15C 109.5

C2—C12—H12B 109.2 C10—C11—H11A 109.5

H12A—C12—H12B 107.9 C10—C11—H11B 109.5

C7—C8—C8A 117.7 (3) H11A—C11—H11B 109.5

C7—C8—H8 121.2 C10—C11—H11C 109.5

C8A—C8—H8 121.2 H11A—C11—H11C 109.5

C4—C3—C2 110.5 (2) H11B—C11—H11C 109.5

C8A—N9—C9A—C4A −1.0 (3) C9A—C4A—C4—C3 17.6 (4)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o120–o122

C9A—N9—C8A—C8 178.0 (3) C3—C2—C12—C13 158.1 (2)

C9A—N9—C8A—C5A 0.6 (3) C1—C2—C12—C13 −75.2 (3)

C5—C5A—C8A—N9 179.3 (2) N9—C8A—C8—C7 −178.4 (3)

C4A—C5A—C8A—N9 −0.1 (3) C5A—C8A—C8—C7 −1.3 (4)

C5—C5A—C8A—C8 1.6 (4) C4A—C4—C3—C2 −47.2 (3)

C4A—C5A—C8A—C8 −177.7 (2) C4A—C4—C3—C10 −175.7 (2)

N9—C9A—C4A—C5A 0.9 (3) C12—C2—C3—C4 −176.5 (2)

C1—C9A—C4A—C5A −179.0 (2) C1—C2—C3—C4 57.9 (3)

N9—C9A—C4A—C4 −177.1 (2) C12—C2—C3—C10 −49.1 (3)

C1—C9A—C4A—C4 3.0 (4) C1—C2—C3—C10 −174.7 (2)

C5—C5A—C4A—C9A −179.7 (3) C14—O3—C13—O2 −5.0 (4)

C8A—C5A—C4A—C9A −0.5 (3) C14—O3—C13—C12 172.2 (2)

C5—C5A—C4A—C4 −2.0 (5) C2—C12—C13—O2 −23.2 (4)

C8A—C5A—C4A—C4 177.2 (3) C2—C12—C13—O3 159.6 (2)

C4A—C9A—C1—O1 −173.9 (3) C8A—C5A—C5—C6 −0.9 (4)

N9—C9A—C1—O1 6.2 (4) C4A—C5A—C5—C6 178.3 (3)

C4A—C9A—C1—C2 7.5 (4) C8A—C8—C7—C6 0.3 (4)

N9—C9A—C1—C2 −172.3 (2) C4—C3—C10—C11 70.6 (4)

C12—C2—C1—O1 14.4 (4) C2—C3—C10—C11 −56.0 (4)

C3—C2—C1—O1 143.6 (3) C5A—C5—C6—C7 −0.2 (4)

C12—C2—C1—C9A −167.1 (2) C8—C7—C6—C5 0.5 (5)

C3—C2—C1—C9A −37.8 (3) C13—O3—C14—C15 −171.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N9—H9···O1i 0.94 (3) 1.94 (3) 2.831 (3) 158 (3)

C14—H14B···O2ii 0.97 2.60 3.566 (4) 174

References

Related documents

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

Date of Birth Driver’s License Number State Marital Status Number of Dependents.. Corporation/LLC/Partnership Name Federal Tax Identification Number (EIN) D &

The distributor may seek to limit the producer’s right to terminate until distributor has recouped its advance (assuming it has given the producer an advance.) Another

It is possible that a segment is stored at multiple peers in the set cover, in this case the requesting client can pick a peer based on some other criteria such as delay or number

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

$1000 and a complimentary letter to Mary Patten for her heroic work in bringing the fast sailing clipper ship safely around the dangerous Cape Horn?. When Mary and Captain

While consumers in São Paulo and Piracicaba base their choice of store on attributes in the categories of price and convenience, customers in Ribeirão Preto place greater value

the chromatin, whereas in the former arrangement the entire force transmitted by the kinetochore would converge on a single Cse4 nucleosome (Santaguida and Musacchio 2009).