• No results found

1 [(Phen­yl)(p tolyl­imino)meth­yl] 3 (p tol­yl)thio­urea

N/A
N/A
Protected

Academic year: 2020

Share "1 [(Phen­yl)(p tolyl­imino)meth­yl] 3 (p tol­yl)thio­urea"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2544

Xing and Zhao C

22H21N3S doi:10.1107/S1600536806019271 Acta Cryst.(2006). E62, o2544–o2545 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-[(Phenyl)(

p

-tolylimino)methyl]-3-(

p

-tolyl)thiourea

Zhi-Yong Xing and Wen-Tao Zhao*

Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People’s Republic of China

Correspondence e-mail: wqzhang@tju.edu.cn

Key indicators

Single-crystal X-ray study T= 294 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.045 wRfactor = 0.127

Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 8 May 2006 Accepted 23 May 2006

#2006 International Union of Crystallography All rights reserved

In the title molecule, C22H21N3S, an intramolecular N—H N

hydrogen bond appears to influence the overall conformation. In the crystal structure, pairs of molecules are linked into centrosymmetric dimersviaN—H S hydrogen bonds.

Comment

Thiourea derivatives have been widely used in many fields due to their biological activity (Cranket al., 1973; Landreauet al., 2003). Since our group has been working in the area of the photochemistry of some heterocycles (Zhanget al., 2000), we became interested in the synthesis of thiourea derivatives in order to study their characteristics with respect to their photochemistry. Here, the preparation and the crystal struc-ture of 1-[(phenyl)(p-tolylimino)methyl]-3-(p-tolyl)thiourea (TPTMT), (I), are described.

An intramolecular hydrogen bond (Table 1 and Fig. 1) appears to influence the conformation of the molecule. The resulting six-membered ring (C7/N1/C8/N2/N3/H2) is essen-tially planar, with an r.m.s. deviation for the fitted atoms of 0.043 A˚ . The C1–C6 phenyl ring and the C9–C14 and C16–C21 benzene rings make dihedral angles of 74.1 (3), 40.0 (3) and 79.2 (2), respectively, with the C7/N1/C8/N2/N3/H2 ring. In

the crystal structure, pairs of molecules form centrosymmetric dimersviaintermolecular N—H S hydrogen bonds (Table 1 and Fig. 2).

Experimental

(2)

acetone in an ethanol cooling bath at 258 K. The reaction mixture was continuously stirred in the bath until the temperature rose to 273 K. The precipitate (NaCl) was removed by filtration. The filtrate was stirred in an ice bath and a solution of 1.48 g (13.8 mmol)p-toluidine in 50 ml acetone was added dropwise. After warming to room temperature, the solvent was removed by evaporation and the residue was recrystallized from acetonitrile to give the pure product. Single crystals of the title compound suitable for X-ray analysis were recrystallized from acetonitrile.

Crystal data

C22H21N3S

Mr= 359.49 Triclinic,P1

a= 6.0370 (12) A˚

b= 10.372 (2) A˚

c= 16.286 (3) A˚ = 92.473 (3)

= 94.729 (4)

= 106.100 (4)

V= 974.1 (3) A˚3

Z= 2

Dx= 1.226 Mg m3 MoKradiation = 0.18 mm1

T= 294 (2) K Block, light yellow 0.200.140.10 mm

Data collection

Bruker SMART CCD diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.948,Tmax= 0.983

4945 measured reflections 3411 independent reflections 2342 reflections withI> 2(I)

Rint= 0.022

max= 25.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.045

wR(F2) = 0.127

S= 1.03 3411 reflections 236 parameters

H-atom parameters constrained

w= 1/[2

(Fo 2

) + (0.0532P)2 + 0.2903P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.21 e A˚3

min=0.24 e A˚3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1 S1i 0.86 2.53 3.370 (2) 167

N2—H2 N3 0.86 1.95 2.661 (3) 139

Symmetry code: (i)xþ1;yþ1;zþ1.

All H atoms were initially located in a difference Fourier map but were then constrained to an ideal geometry, with methyl C—H = 0.96 A˚ , aromatic C—H = 0.93 A˚, N—H = 0.86 A˚ and Uiso(H) =

1.2Ueq(C,N) or 1.5Ueq(methyl C).

Data collection:SMART(Bruker, 1997); cell refinement:SAINT

(Bruker, 1997); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

References

Bruker (1997).SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Crank, G., Neville, M. & Ryden, R. (1973).J. Med. Chem.16, 1402–1405. Landreau, C., Deniaud, D. & Meslin, C. (2003).J. Org. Chem.68, 4912–4917. Nieuwendijk, A. M. C. H van der, Pietra, D., Heitman, L., Go¨blyo¨s, A. &

IJzerman, A. P. (2004).J. Med. Chem.47, 663–672.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

[image:2.610.48.296.71.242.2]

Zhang, W. Q., Wang, S. L., Zhao, H. T., Zhuang, J. P., Sun, H., Zhao, S. N., Zheng, Y. & Li, C. B. (2000).J. Chin. Univ.21, 1211–1215.

Figure 1

[image:2.610.71.264.290.567.2]

The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level and H atoms drawn as small spheres. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2544–o2545

supporting information

Acta Cryst. (2006). E62, o2544–o2545 [https://doi.org/10.1107/S1600536806019271]

1-[(Phenyl)(

p

-tolylimino)methyl]-3-(

p

-tolyl)thiourea

Zhi-Yong Xing and Wen-Tao Zhao

1-[(Phenyl)(p-tolylimino)methyl]-3-(p-tolyl)thiourea

Crystal data

C22H21N3S

Mr = 359.49

Triclinic, P1 Hall symbol: -P 1

a = 6.0370 (12) Å

b = 10.372 (2) Å

c = 16.286 (3) Å

α = 92.473 (3)°

β = 94.729 (4)°

γ = 106.100 (4)°

V = 974.1 (3) Å3

Z = 2

F(000) = 380

Dx = 1.226 Mg m−3

Melting point: 415 K

Mo radiation, λ = 0.71073 Å Cell parameters from 1747 reflections

θ = 2.3–26.1°

µ = 0.18 mm−1

T = 294 K

Block, light yellow 0.20 × 0.14 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.948, Tmax = 0.983

4945 measured reflections 3411 independent reflections 2342 reflections with I > 2σ(I)

Rint = 0.022

θmax = 25.0°, θmin = 2.1°

h = −4→7

k = −12→9

l = −19→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.045

wR(F2) = 0.127

S = 1.03 3411 reflections 236 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0532P)2 + 0.2903P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.21 e Å−3

Δρmin = −0.24 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.55653 (15) 0.32279 (7) 0.44847 (4) 0.0608 (3) N1 0.4130 (3) 0.50499 (18) 0.36869 (11) 0.0427 (5)

H1 0.4088 0.5356 0.4183 0.051*

N2 0.5376 (3) 0.35844 (18) 0.28683 (11) 0.0418 (5)

H2 0.4932 0.4006 0.2472 0.050*

N3 0.3241 (4) 0.5348 (2) 0.23127 (12) 0.0493 (5)

C1 0.2563 (4) 0.6890 (2) 0.34124 (13) 0.0389 (5)

C2 0.0583 (5) 0.6707 (3) 0.38105 (17) 0.0591 (7)

H2A −0.0403 0.5847 0.3835 0.071*

C3 0.0061 (6) 0.7808 (4) 0.4175 (2) 0.0748 (9)

H3 −0.1286 0.7686 0.4438 0.090*

C4 0.1528 (7) 0.9073 (3) 0.41479 (19) 0.0780 (10)

H4 0.1175 0.9809 0.4394 0.094*

C5 0.3494 (7) 0.9260 (3) 0.3764 (2) 0.0776 (9)

H5 0.4491 1.0121 0.3753 0.093*

C6 0.4022 (5) 0.8172 (2) 0.33892 (17) 0.0578 (7)

H6 0.5362 0.8306 0.3121 0.069*

C7 0.3287 (4) 0.5728 (2) 0.30746 (14) 0.0391 (5)

C8 0.5028 (4) 0.3962 (2) 0.36305 (14) 0.0393 (5)

C9 0.6405 (4) 0.2557 (2) 0.26433 (14) 0.0382 (5)

C10 0.8416 (4) 0.2418 (2) 0.30535 (15) 0.0478 (6)

H10 0.9136 0.2995 0.3511 0.057*

C11 0.9354 (4) 0.1423 (2) 0.27839 (17) 0.0522 (6)

H11 1.0700 0.1338 0.3069 0.063*

C12 0.8356 (4) 0.0547 (2) 0.21019 (17) 0.0502 (6) C13 0.6382 (5) 0.0722 (3) 0.16906 (17) 0.0568 (7)

H13 0.5685 0.0158 0.1226 0.068*

C14 0.5408 (4) 0.1711 (2) 0.19492 (15) 0.0483 (6)

H14 0.4082 0.1809 0.1656 0.058*

C15 0.9393 (5) −0.0547 (3) 0.1827 (2) 0.0763 (9)

H15A 0.8777 −0.1338 0.2113 0.114*

H15B 1.1046 −0.0245 0.1949 0.114*

H15C 0.9018 −0.0753 0.1243 0.114*

C16 0.2086 (4) 0.5919 (2) 0.16877 (14) 0.0445 (6) C17 0.3282 (5) 0.6854 (3) 0.11988 (18) 0.0663 (8)

H17 0.4881 0.7196 0.1305 0.080*

C18 0.2135 (5) 0.7294 (3) 0.05485 (18) 0.0701 (8)

H18 0.2984 0.7942 0.0231 0.084*

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2544–o2545

H20 −0.2961 0.5529 0.0733 0.084*

C21 −0.0254 (5) 0.5425 (3) 0.14984 (19) 0.0705 (9)

H21 −0.1109 0.4777 0.1815 0.085*

C22 −0.1455 (6) 0.7280 (3) −0.03620 (18) 0.0801 (10)

H22A −0.2951 0.6649 −0.0503 0.120*

H22B −0.0565 0.7345 −0.0828 0.120*

H22C −0.1640 0.8147 −0.0211 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.1037 (6) 0.0537 (4) 0.0405 (4) 0.0477 (4) 0.0054 (4) 0.0086 (3) N1 0.0587 (13) 0.0416 (11) 0.0343 (10) 0.0258 (10) 0.0016 (9) 0.0016 (8) N2 0.0539 (13) 0.0406 (11) 0.0378 (11) 0.0248 (9) 0.0032 (9) 0.0052 (8) N3 0.0667 (14) 0.0509 (12) 0.0397 (11) 0.0336 (11) −0.0005 (10) 0.0038 (9) C1 0.0440 (14) 0.0400 (12) 0.0374 (12) 0.0203 (11) 0.0002 (10) 0.0045 (10) C2 0.0505 (17) 0.0574 (16) 0.0738 (19) 0.0211 (13) 0.0133 (14) 0.0008 (14) C3 0.073 (2) 0.089 (2) 0.081 (2) 0.0484 (19) 0.0227 (17) 0.0067 (18) C4 0.124 (3) 0.065 (2) 0.067 (2) 0.062 (2) 0.018 (2) 0.0044 (16) C5 0.116 (3) 0.0412 (16) 0.080 (2) 0.0252 (17) 0.025 (2) 0.0054 (15) C6 0.0709 (19) 0.0435 (15) 0.0641 (17) 0.0203 (13) 0.0201 (15) 0.0072 (12) C7 0.0404 (13) 0.0384 (12) 0.0407 (13) 0.0158 (10) 0.0003 (10) 0.0040 (10) C8 0.0448 (14) 0.0344 (12) 0.0408 (13) 0.0157 (10) 0.0009 (11) 0.0022 (10) C9 0.0416 (13) 0.0327 (11) 0.0433 (13) 0.0140 (10) 0.0068 (11) 0.0058 (10) C10 0.0482 (15) 0.0428 (13) 0.0523 (15) 0.0153 (11) −0.0015 (12) −0.0037 (11) C11 0.0435 (15) 0.0482 (14) 0.0690 (17) 0.0205 (12) 0.0024 (13) 0.0038 (13) C12 0.0471 (15) 0.0397 (13) 0.0675 (17) 0.0152 (11) 0.0167 (13) 0.0031 (12) C13 0.0639 (18) 0.0516 (15) 0.0545 (16) 0.0187 (13) 0.0038 (14) −0.0118 (12) C14 0.0497 (15) 0.0520 (15) 0.0454 (14) 0.0211 (12) −0.0040 (12) −0.0011 (12) C15 0.068 (2) 0.0558 (18) 0.110 (3) 0.0269 (15) 0.0174 (19) −0.0143 (17) C16 0.0575 (17) 0.0457 (14) 0.0372 (12) 0.0270 (12) 0.0022 (11) 0.0018 (11) C17 0.0545 (18) 0.0693 (19) 0.0690 (19) 0.0089 (14) −0.0076 (15) 0.0221 (15) C18 0.071 (2) 0.075 (2) 0.0620 (18) 0.0139 (16) 0.0015 (16) 0.0329 (15) C19 0.0678 (19) 0.0569 (16) 0.0386 (14) 0.0302 (14) −0.0040 (13) 0.0009 (12) C20 0.0485 (17) 0.082 (2) 0.081 (2) 0.0219 (15) −0.0040 (15) 0.0233 (17) C21 0.0554 (19) 0.086 (2) 0.076 (2) 0.0223 (16) 0.0136 (15) 0.0412 (17) C22 0.102 (3) 0.091 (2) 0.0564 (18) 0.048 (2) −0.0122 (17) 0.0096 (16)

Geometric parameters (Å, º)

S1—C8 1.665 (2) C11—C12 1.386 (4)

N1—C8 1.384 (3) C11—H11 0.9300

N1—C7 1.387 (3) C12—C13 1.378 (4)

N1—H1 0.8600 C12—C15 1.509 (3)

N2—C8 1.336 (3) C13—C14 1.384 (3)

N2—C9 1.424 (3) C13—H13 0.9300

N2—H2 0.8600 C14—H14 0.9300

(6)

N3—C16 1.428 (3) C15—H15B 0.9600

C1—C2 1.378 (3) C15—H15C 0.9600

C1—C6 1.381 (3) C16—C21 1.366 (4)

C1—C7 1.490 (3) C16—C17 1.367 (4)

C2—C3 1.388 (4) C17—C18 1.381 (4)

C2—H2A 0.9300 C17—H17 0.9300

C3—C4 1.370 (5) C18—C19 1.370 (4)

C3—H3 0.9300 C18—H18 0.9300

C4—C5 1.358 (4) C19—C20 1.354 (4)

C4—H4 0.9300 C19—C22 1.508 (3)

C5—C6 1.385 (4) C20—C21 1.380 (4)

C5—H5 0.9300 C20—H20 0.9300

C6—H6 0.9300 C21—H21 0.9300

C9—C10 1.383 (3) C22—H22A 0.9600

C9—C14 1.385 (3) C22—H22B 0.9600

C10—C11 1.380 (3) C22—H22C 0.9600

C10—H10 0.9300

C8—N1—C7 130.56 (19) C13—C12—C11 117.0 (2)

C8—N1—H1 114.7 C13—C12—C15 121.8 (3)

C7—N1—H1 114.7 C11—C12—C15 121.2 (2)

C8—N2—C9 126.76 (19) C12—C13—C14 121.9 (2)

C8—N2—H2 116.6 C12—C13—H13 119.0

C9—N2—H2 116.6 C14—C13—H13 119.0

C7—N3—C16 120.11 (19) C13—C14—C9 120.1 (2)

C2—C1—C6 119.3 (2) C13—C14—H14 119.9

C2—C1—C7 121.6 (2) C9—C14—H14 119.9

C6—C1—C7 118.9 (2) C12—C15—H15A 109.5

C1—C2—C3 120.0 (3) C12—C15—H15B 109.5

C1—C2—H2A 120.0 H15A—C15—H15B 109.5

C3—C2—H2A 120.0 C12—C15—H15C 109.5

C4—C3—C2 120.0 (3) H15A—C15—H15C 109.5

C4—C3—H3 120.0 H15B—C15—H15C 109.5

C2—C3—H3 120.0 C21—C16—C17 117.7 (2)

C5—C4—C3 120.3 (3) C21—C16—N3 120.1 (2)

C5—C4—H4 119.8 C17—C16—N3 121.8 (2)

C3—C4—H4 119.8 C16—C17—C18 120.5 (3)

C4—C5—C6 120.2 (3) C16—C17—H17 119.8

C4—C5—H5 119.9 C18—C17—H17 119.8

C6—C5—H5 119.9 C19—C18—C17 122.3 (3)

C1—C6—C5 120.1 (3) C19—C18—H18 118.9

C1—C6—H6 119.9 C17—C18—H18 118.9

C5—C6—H6 119.9 C20—C19—C18 116.3 (2)

N3—C7—N1 120.1 (2) C20—C19—C22 121.6 (3)

N3—C7—C1 127.2 (2) C18—C19—C22 122.1 (3)

N1—C7—C1 112.73 (18) C19—C20—C21 122.4 (3)

N2—C8—N1 115.26 (19) C19—C20—H20 118.8

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o2544–o2545

N1—C8—S1 119.30 (16) C16—C21—C20 120.8 (3)

C10—C9—C14 118.8 (2) C16—C21—H21 119.6

C10—C9—N2 123.2 (2) C20—C21—H21 119.6

C14—C9—N2 117.9 (2) C19—C22—H22A 109.5

C11—C10—C9 119.9 (2) C19—C22—H22B 109.5

C11—C10—H10 120.0 H22A—C22—H22B 109.5

C9—C10—H10 120.0 C19—C22—H22C 109.5

C10—C11—C12 122.2 (2) H22A—C22—H22C 109.5

C10—C11—H11 118.9 H22B—C22—H22C 109.5

C12—C11—H11 118.9

C6—C1—C2—C3 0.7 (4) C14—C9—C10—C11 −2.0 (4)

C7—C1—C2—C3 174.8 (2) N2—C9—C10—C11 −177.9 (2)

C1—C2—C3—C4 −0.8 (4) C9—C10—C11—C12 0.6 (4)

C2—C3—C4—C5 0.1 (5) C10—C11—C12—C13 0.9 (4)

C3—C4—C5—C6 0.6 (5) C10—C11—C12—C15 −179.1 (3)

C2—C1—C6—C5 0.1 (4) C11—C12—C13—C14 −0.9 (4)

C7—C1—C6—C5 −174.2 (3) C15—C12—C13—C14 179.0 (3)

C4—C5—C6—C1 −0.8 (5) C12—C13—C14—C9 −0.5 (4)

C16—N3—C7—N1 171.3 (2) C10—C9—C14—C13 2.0 (4)

C16—N3—C7—C1 −10.3 (4) N2—C9—C14—C13 178.1 (2)

C8—N1—C7—N3 0.8 (4) C7—N3—C16—C21 −83.3 (3)

C8—N1—C7—C1 −177.8 (2) C7—N3—C16—C17 104.4 (3)

C2—C1—C7—N3 109.0 (3) C21—C16—C17—C18 1.3 (4)

C6—C1—C7—N3 −76.8 (3) N3—C16—C17—C18 173.8 (3)

C2—C1—C7—N1 −72.5 (3) C16—C17—C18—C19 −1.1 (5)

C6—C1—C7—N1 101.7 (3) C17—C18—C19—C20 0.6 (5)

C9—N2—C8—N1 175.9 (2) C17—C18—C19—C22 −179.2 (3)

C9—N2—C8—S1 −4.6 (3) C18—C19—C20—C21 −0.4 (5)

C7—N1—C8—N2 8.1 (4) C22—C19—C20—C21 179.5 (3)

C7—N1—C8—S1 −171.4 (2) C17—C16—C21—C20 −1.1 (4)

C8—N2—C9—C10 −45.6 (3) N3—C16—C21—C20 −173.7 (3)

C8—N2—C9—C14 138.4 (2) C19—C20—C21—C16 0.7 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···S1i 0.86 2.53 3.370 (2) 167

N2—H2···N3 0.86 1.95 2.661 (3) 139

Figure

Figure 2Partial packing plot showing three hydrogen-bonded (dashed lines)dimers.

References

Related documents

The objective of this work was to investigate the synergistic effects of addition of different molecular weights of polyDADMAC on the flocculation of pollut- ants present in

study, to add spatially correlated statistical noise to the recon- structed (DICOM) reference CT images (before processing to generate perfusion maps), thereby simulating a

The same trend can be seen for simazine at both pH 6 and 8, only in this case the adsorption on the surface of aluminum is better than NPS of iron (III) oxide and iron (III) oxide

Imaging and survival data from the current study converge to further support the hypothesis that the development of geo- graphic well-defined regions of persistent diffusion

Objective: The objective of this study was to evaluate the relationship between circulating levels of visfatin and other adipocytokines in patients with type 2 diabetes (DM)

Datos de meteorología agraria - Agrarmeteorologiske data - Agrarmeteorologische Angaben - Έκθεση για τη γεωργική μετεωρολογία - Data on agricultural meteorology - Données

такая система отбора и найма неэффективна и вовсе обходится очень дорого. Специалисты в области трудовых ресурсов уже давно ощущают потребность в более надежных

Histologically, three cases showed similar dense infiltration of polymor- phic composition including variable reactive components such as plasma cells and histiocytes as well