• No results found

1 Oxo 3 phenyl 1,2 di­hydro­pyrido[1,2 a]pyrazin 5 ium hexa­fluoro­phosphate

N/A
N/A
Protected

Academic year: 2020

Share "1 Oxo 3 phenyl 1,2 di­hydro­pyrido[1,2 a]pyrazin 5 ium hexa­fluoro­phosphate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2438

Heet al. C

14H11N2O+PF6 doi:10.1107/S1600536806017272 Acta Cryst.(2006). E62, o2438–o2439 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-Oxo-3-phenyl-1,2-dihydropyrido[1,2-

a

]-pyrazin-5-ium hexafluorophosphate

Ting He,a,bYi-Zhi Liaand Hong-Wen Hua*

a

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China, andbDepartment of Chemistry,

Nanjing University, Nanjing 210093, People’s Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T= 295 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.067 wRfactor = 0.231

Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 31 March 2006 Accepted 10 May 2006

#2006 International Union of Crystallography All rights reserved

In the structure of the title compound, C14H11N2O +

PF6 , all

the bond lengths and angles have normal values. The pyrido[1,2-a]pyrazinium system and the phenyl ring are conjugated. In the crystal structure, the

phenylpyrido[1,2-a]pyrazinium rings are arranged in parallel layers.

Comment

Quaternary aza-aromatic salts are widely used in organic synthesis. The first representative of a pyrido[1,2-a]pyrazine system has been described by Schwabet al.(1954). Batoriet al.

(1990) obtained pyrido[1,2-a]pyrazinium-1- and -3-olates. Szafranet al.(2005) have described the stucture of

pyrido[1,2-a]pyrazinium bromide. We have confirmed the stucture of the title compound, (3), by1H NMR,13C NMR and single-crystal X-ray diffraction analysis.

All bond lengths and angles in (3) have normal values. The C7—O1 bond length [1.228 (3)A˚ ] and the O1—C7—C8 angle [120.2 (2)] show that the oxopyrido[1,2-a]pyrazinium system

is in the keto form and is conjugated. The repulsion of H5 and H10 results in an angle of 18.63 (3) between the

pyrido-[1,2-a]pyrazinium system and phenyl ring, and the repulsion of H4 and H5 results in an angle of 3.73 (3) between the

pyridinium and pyrazinium rings. Two cations are linked by an N—H O hydrogen bond and a weak C—H O interaction forms a dimer in the same layer. The pyrido[1,2-a]pyrazinium cations are arranged in parallel layers in the crystal structure. The layers are linked by – stacking [Cg1 Cg2i = 3.838 (13) A˚ , whereCg1 is the centroid of ring C1/C2/C3/C4/ N1/C8 andCg2 is the centroid of ring C9–C14; symmetry code: (i) x + 1, y, z] and N—H O hydrogen-bond interactions [N2—H2 O1ii: N—H = 0.86 A˚ , H O = 2.00 A˚ , N O =

2.838(6) A˚ and N—H O = 164; symmetry code: (ii) 1 x,

2 y, z], which produce a three-dimensional structure.

Experimental

(2)

potassium hexafluorophosphate (10 mmol) was added to an aqueous solution (30 ml) of the above solid (10 mmol) and stirred for 5 min. The precipitate was filtered off and washed with water. Single crystals of the product suitable for X-ray cystallographic analysis were obtained by recrystallization from acetonitrile and petroleum ether (1:10).1H NMR (300 MHz, DMSO-d6):11.44 (s,br, H2), 9.39–9.33 (m, H5), 8.81–8.76 (m, H4), 8.65–8.58 (m, H6, H7), 8.46–8.42 (m, H8), 7.87–7.62 (m, H10, H11, H12, H13, H14).

Crystal data

C14H11N2O+PF6

Mr= 368.22 Triclinic,P1 a= 8.036 (2) A˚ b= 8.724 (2) A˚ c= 11.881 (2) A˚ = 91.13 (2)

= 109.52 (2)

= 106.38 (2)

V= 747.2 (3) A˚3

Z= 2

Dx= 1.637 Mg m 3 MoKradiation = 0.26 mm 1 T= 295 (2) K Prism, colorless 0.250.250.15 mm

Data collection

Enraf–Nonius CAD-4 diffractometer !/2scans

Absorption correction: scan (Northet al., 1968) Tmin= 0.939,Tmax= 0.963

3315 measured reflections

2693 independent reflections 1580 reflections withI> 2(I) Rint= 0.016

max= 25.2

3 standard reflections frequency: 3600 min intensity decay: 0.001%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.067

wR(F2) = 0.231

S= 1.05 2693 reflections 218 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1102P)2

+ 1.1617P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.68 e A˚ 3

min= 0.46 e A˚ 3

Extinction correction:SHELXL97 Extinction coefficient: 0.051 (4)

All the H atoms were placed in calculated positions (N—H = 0.86, C—H = 0.93A˚ ) and refined using a riding model, withUiso(H) = 1.2Ueq(parent atom).

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication:SHELXTL.

We are grateful to the National Natural Science Foundation of China for financial support (No. 0205B026).

References

Batori, S. & Messmer, A. (1990).J. Heterocycl. Chem.27, 1673–1680. Bruker (2000).SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Enraf–Nonius (1989).CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The

Netherlands.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351–

359.

Schwab, A. W. (1954).J. Am. Chem.76, 1189–1189.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

[image:2.610.335.537.70.359.2]

Szafran, M., Nowak-Wydra, B., Jaskolski, M., Bartoszak-Adamska, E., Szwajca, A. & Dega-Szafran, Z. (2005).J. Mol. Struct.743, 7–20. Figure 1

The molecular structure of (3) with 30% probability displacement ellipsoids.

Figure 2

[image:2.610.47.300.70.185.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o2438–o2439

supporting information

Acta Cryst. (2006). E62, o2438–o2439 [https://doi.org/10.1107/S1600536806017272]

1-Oxo-3-phenyl-1,2-dihydropyrido[1,2-

a

]pyrazin-5-ium hexafluorophosphate

Ting He, Yi-Zhi Li and Hong-Wen Hu

1-Oxo-3-phenyl-1,2-dihydropyrido[1,2-a]pyrazin-5-ium hexafluorophosphate

Crystal data

C14H11N2O+·PF6−

Mr = 368.22 Triclinic, P1 Hall symbol: -P 1

a = 8.036 (2) Å

b = 8.724 (2) Å

c = 11.881 (2) Å

α = 91.13 (2)°

β = 109.52 (2)°

γ = 106.38 (2)°

V = 747.2 (3) Å3

Z = 2

F(000) = 372

Dx = 1.637 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 10.8–14.3°

µ = 0.26 mm−1

T = 295 K Prism, colorless 0.25 × 0.25 × 0.15 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.939, Tmax = 0.963

3315 measured reflections

2693 independent reflections 1580 reflections with I > 2σ(I)

Rint = 0.016

θmax = 25.2°, θmin = 1.8°

h = −1→9

k = −10→10

l = −14→13

3 standard reflections every 3600 min

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.067

wR(F2) = 0.231

S = 1.05 2693 reflections 218 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1102P)2 + 1.1617P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.68 e Å−3

Δρmin = −0.46 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Experimental. 13C NMR (300 MHz, DMSO-d

6) δ: 155.7, 142.4, 139.0, 138.2, 131.9, 130.4, 129.7, 127.7, 126.7, 110.5. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

P1 0.49980 (10) 0.75296 (9) 0.66184 (7) 0.0573 (2)

F1 0.6383 (3) 0.6646 (3) 0.6465 (2) 0.1383 (9)

F2 0.3418 (4) 0.6379 (3) 0.5503 (2) 0.1244 (11)

F3 0.4616 (4) 0.6298 (3) 0.7487 (2) 0.1349 (10)

F4 0.3604 (3) 0.8407 (3) 0.6708 (2) 0.1385 (9)

F5 0.5438 (4) 0.8652 (3) 0.5664 (2) 0.1382 (11)

F6 0.6613 (3) 0.8736 (3) 0.7645 (2) 0.1260 (11)

O1 −0.2855 (2) 1.0228 (2) 0.09445 (16) 0.0618 (6) N1 −0.3228 (2) 0.7780 (2) 0.32553 (16) 0.0397 (5) N2 −0.5408 (2) 0.8600 (2) 0.12084 (17) 0.0434 (5)

H2 −0.6116 0.8792 0.0540 0.052*

C1 −0.0478 (3) 0.9296 (3) 0.2960 (2) 0.0500 (7)

H1 0.0098 1.0009 0.2533 0.060*

C2 0.0569 (4) 0.8744 (3) 0.3933 (3) 0.0580 (8)

H2A 0.1853 0.9051 0.4157 0.070*

C3 −0.0310 (3) 0.7726 (3) 0.4576 (2) 0.0567 (8)

H3 0.0388 0.7360 0.5248 0.068*

C4 −0.2179 (3) 0.7257 (3) 0.4235 (2) 0.0514 (8)

H4 −0.2756 0.6570 0.4674 0.062*

C5 −0.5162 (3) 0.7244 (3) 0.2907 (2) 0.0444 (7)

H5 −0.5706 0.6620 0.3391 0.053*

C6 −0.6232 (3) 0.7610 (3) 0.1899 (2) 0.0398 (6)

C7 −0.3561 (3) 0.9277 (3) 0.1527 (2) 0.0442 (7)

C8 −0.2380 (3) 0.8798 (3) 0.2614 (2) 0.0408 (6)

C9 −0.8287 (3) 0.6990 (3) 0.1481 (2) 0.0446 (7)

C10 −0.9139 (4) 0.5623 (4) 0.1895 (3) 0.0652 (9)

H10 −0.8418 0.5094 0.2427 0.078*

C11 −1.1029 (4) 0.5045 (4) 0.1530 (3) 0.0791 (11)

H11 −1.1579 0.4138 0.1828 0.095*

C12 −1.2113 (4) 0.5775 (4) 0.0737 (3) 0.0766 (11)

H12 −1.3397 0.5376 0.0500 0.092*

C13 −1.1314 (4) 0.7097 (4) 0.0290 (3) 0.0730 (10)

H13 −1.2060 0.7573 −0.0275 0.088*

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o2438–o2439

H14 −0.8848 0.8667 0.0387 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

P1 0.0489 (3) 0.0542 (4) 0.0657 (4) 0.0157 (3) 0.0161 (3) 0.0127 (3) F1 0.1566 (13) 0.1739 (16) 0.1608 (18) 0.1183 (12) 0.0932 (12) 0.0695 (14) F2 0.1304 (18) 0.0836 (13) 0.1138 (18) 0.0258 (13) −0.0062 (15) −0.0209 (13) F3 0.1338 (16) 0.1516 (19) 0.1174 (14) 0.0138 (16) 0.0642 (12) 0.0617 (14) F4 0.0847 (10) 0.1804 (17) 0.1365 (18) 0.0804 (11) −0.0073 (12) −0.0579 (14) F5 0.150 (2) 0.1180 (15) 0.1327 (17) 0.0294 (15) 0.0397 (15) 0.0735 (13) F6 0.0773 (13) 0.1117 (16) 0.1315 (19) 0.0195 (12) −0.0254 (14) −0.0184 (15) O1 0.0470 (8) 0.0855 (11) 0.0589 (9) 0.0211 (8) 0.0240 (7) 0.0386 (8) N1 0.0387 (8) 0.0427 (9) 0.0374 (9) 0.0127 (8) 0.0123 (7) 0.0120 (8) N2 0.0353 (8) 0.0557 (10) 0.0410 (9) 0.0171 (8) 0.0124 (7) 0.0166 (8) C1 0.0424 (11) 0.0568 (14) 0.0529 (13) 0.0143 (10) 0.0198 (9) 0.0116 (11) C2 0.0412 (12) 0.0666 (16) 0.0602 (15) 0.0175 (11) 0.0097 (11) 0.0033 (13) C3 0.0491 (13) 0.0672 (15) 0.0486 (14) 0.0221 (12) 0.0068 (11) 0.0146 (12) C4 0.0520 (12) 0.0533 (13) 0.0446 (12) 0.0177 (11) 0.0100 (10) 0.0166 (11) C5 0.0387 (10) 0.0489 (12) 0.0475 (11) 0.0110 (9) 0.0194 (9) 0.0142 (10) C6 0.0381 (9) 0.0442 (11) 0.0424 (11) 0.0142 (9) 0.0192 (8) 0.0098 (9) C7 0.0417 (10) 0.0560 (12) 0.0408 (11) 0.0178 (10) 0.0189 (8) 0.0155 (10) C8 0.0409 (10) 0.0452 (11) 0.0402 (11) 0.0163 (9) 0.0165 (8) 0.0084 (9) C9 0.0383 (10) 0.0549 (13) 0.0437 (11) 0.0149 (10) 0.0180 (8) 0.0032 (10) C10 0.0457 (13) 0.0659 (16) 0.0809 (18) 0.0134 (12) 0.0209 (12) 0.0208 (14) C11 0.0514 (14) 0.0695 (19) 0.110 (2) 0.0011 (14) 0.0351 (14) 0.0091 (18) C12 0.0372 (13) 0.092 (2) 0.086 (2) 0.0046 (15) 0.0174 (13) −0.0165 (18) C13 0.0472 (12) 0.115 (2) 0.0562 (16) 0.0346 (14) 0.0102 (12) 0.0025 (16) C14 0.0402 (11) 0.0826 (17) 0.0500 (13) 0.0218 (12) 0.0145 (10) 0.0134 (13)

Geometric parameters (Å, º)

P1—F3 1.544 (3) C3—C4 1.352 (4)

P1—F6 1.549 (2) C3—H3 0.9300

P1—F4 1.554 (3) C4—H4 0.9300

P1—F1 1.575 (3) C5—C6 1.326 (3)

P1—F2 1.575 (2) C5—H5 0.9300

P1—F5 1.577 (3) C6—C9 1.484 (3)

O1—C7 1.228 (3) C7—C8 1.473 (3)

N1—C4 1.362 (3) C9—C10 1.386 (4)

N1—C8 1.366 (3) C9—C14 1.386 (4)

N1—C5 1.399 (3) C10—C11 1.367 (4)

N2—C7 1.348 (3) C10—H10 0.9300

N2—C6 1.387 (3) C11—C12 1.357 (5)

N2—H2 0.8600 C11—H11 0.9300

C1—C2 1.370 (4) C12—C13 1.363 (5)

C1—C8 1.376 (3) C12—H12 0.9300

(6)

C2—C3 1.381 (4) C13—H13 0.9300

C2—H2A 0.9300 C14—H14 0.9300

F3—P1—F6 92.48 (15) N1—C4—H4 119.6

F3—P1—F4 96.17 (17) C6—C5—N1 121.2 (2)

F6—P1—F4 91.81 (14) C6—C5—H5 119.4

F3—P1—F1 85.79 (17) N1—C5—H5 119.4

F6—P1—F1 89.75 (15) C5—C6—N2 119.0 (2)

F4—P1—F1 177.44 (16) C5—C6—C9 122.1 (2)

F3—P1—F2 91.83 (14) N2—C6—C9 118.87 (19)

F6—P1—F2 175.49 (17) O1—C7—N2 123.0 (2)

F4—P1—F2 89.04 (14) O1—C7—C8 120.2 (2)

F1—P1—F2 89.24 (15) N2—C7—C8 116.8 (2)

F3—P1—F5 174.08 (18) N1—C8—C1 120.1 (2)

F6—P1—F5 90.22 (15) N1—C8—C7 118.08 (19)

F4—P1—F5 89.00 (17) C1—C8—C7 121.8 (2)

F1—P1—F5 88.96 (17) C10—C9—C14 118.8 (2)

F2—P1—F5 85.37 (14) C10—C9—C6 119.9 (2)

C4—N1—C8 119.6 (2) C14—C9—C6 121.4 (2)

C4—N1—C5 119.5 (2) C11—C10—C9 120.6 (3)

C8—N1—C5 120.89 (19) C11—C10—H10 119.7

C7—N2—C6 123.69 (19) C9—C10—H10 119.7

C7—N2—H2 118.2 C12—C11—C10 120.8 (3)

C6—N2—H2 118.2 C12—C11—H11 119.6

C2—C1—C8 120.1 (3) C10—C11—H11 119.6

C2—C1—H1 120.0 C11—C12—C13 119.8 (3)

C8—C1—H1 120.0 C11—C12—H12 120.1

C1—C2—C3 119.0 (2) C13—C12—H12 120.1

C1—C2—H2A 120.5 C12—C13—C14 120.6 (3)

C3—C2—H2A 120.5 C12—C13—H13 119.7

C4—C3—C2 120.4 (2) C14—C13—H13 119.7

C4—C3—H3 119.8 C9—C14—C13 119.2 (3)

C2—C3—H3 119.8 C9—C14—H14 120.4

C3—C4—N1 120.8 (2) C13—C14—H14 120.4

C3—C4—H4 119.6

C8—C1—C2—C3 −2.0 (4) C2—C1—C8—C7 −175.9 (3)

C1—C2—C3—C4 1.3 (4) O1—C7—C8—N1 177.8 (2)

C2—C3—C4—N1 −0.1 (4) N2—C7—C8—N1 −3.5 (3)

C8—N1—C4—C3 −0.4 (4) O1—C7—C8—C1 −4.8 (4)

C5—N1—C4—C3 178.5 (3) N2—C7—C8—C1 173.9 (2)

C4—N1—C5—C6 −173.9 (2) C5—C6—C9—C10 −21.2 (4)

C8—N1—C5—C6 5.0 (4) N2—C6—C9—C10 158.5 (3)

N1—C5—C6—N2 −2.8 (4) C5—C6—C9—C14 159.3 (3)

N1—C5—C6—C9 176.9 (2) N2—C6—C9—C14 −20.9 (4)

C7—N2—C6—C5 −2.8 (4) C14—C9—C10—C11 −1.2 (5)

C7—N2—C6—C9 177.4 (2) C6—C9—C10—C11 179.3 (3)

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o2438–o2439

C6—N2—C7—C8 5.9 (4) C10—C11—C12—C13 0.5 (6)

C4—N1—C8—C1 −0.3 (4) C11—C12—C13—C14 −2.3 (5)

C5—N1—C8—C1 −179.2 (2) C10—C9—C14—C13 −0.6 (4)

C4—N1—C8—C7 177.1 (2) C6—C9—C14—C13 178.9 (3)

C5—N1—C8—C7 −1.7 (3) C12—C13—C14—C9 2.3 (5)

C2—C1—C8—N1 1.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2···O1i 0.86 2.00 2.838 (6) 164

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical