• No results found

N (4 Bromo­benz­yl) 4 cyano­pyridinium bis­­(2 thioxo 1,3 di­thiole 4,5 di­thiol­ato)nickelate(III) acetone solvate

N/A
N/A
Protected

Academic year: 2020

Share "N (4 Bromo­benz­yl) 4 cyano­pyridinium bis­­(2 thioxo 1,3 di­thiole 4,5 di­thiol­ato)nickelate(III) acetone solvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1004

Zanget al. (C

13H10BrN2)[Ni(C3S5)2]C3H6O doi:10.1107/S1600536806012207 Acta Cryst.(2006). E62, m1004–m1005

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N

-(4-Bromobenzyl)-4-cyanopyridinium

bis(2-thioxo-1,3-dithiole-4,5-dithiolato)-nickelate(III) acetone solvate

Shuang-Quan Zang,aYang Sub and Ruo-Jie Taoa*

a

Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People’s Republic of China, andbCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China

Correspondence e-mail: rjtao@henu.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.009 A˚

Rfactor = 0.055

wRfactor = 0.105

Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 1 April 2006 Accepted 3 April 2006

#2006 International Union of Crystallography All rights reserved

The title compound, (C13H10BrN2)[Ni(C3S5)2]C3H6O, is a new

ionic complex in which the NiIIIatom exhibits a square-planar coordination involving four S atoms from two 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) ligands. In the crystal structure, weak S S and hydrogen-bonding interactions form a three-dimensional supramolecular network.

Comment

The syntheses and characterization of bis-dithiolate metal complexes and their analogs have been actively studied for a long time because of their properties and potential applica-tions such as in conducting or magnetic materials and non-linear optics (NLO) (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate (dmit) metal complexes are well known as molecular conductors (Akutagawa & Nakamura, 2000).

In order to study the interplay of magnetic properties, the title compound, (I), was synthesized. Its structure is found to comprise three separate components (Fig. 1), namely the [NiIII(dmit)2]

anion, the N -(4-bromobenzyl)-4-cyano-pyridinium cation and an actone solvent molecule. The NiIII ion adopts square-planar coordination involving four S atoms of two dmit ligands. All three components of the structure stack in columns down the a axis (Fig. 2). The columns are stabilized by hydrogen bonding (Table 2) and weak S N and S S interactions [S8 N2 = 3.192 (5) A˚ and S7 S7i = 3.582 (3) A˚ ; symmetry code: (i)x+ 2,-y+ 2,-z+ 1], resulting in a three-dimensional supramolecular network structure.

Experimental

4,5-Bis(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2.0 mmol; Wang

(2)

bromide (2 mmol, 0.380 g) in methanol at an interval of approxi-mately 20 min. The solution was stirred for a further 30 min and the resulting solid collected by filtration. Single crystals of (I) were obtained by evaporation of a dilute acetone solution over 1–2 weeks at room temperature.

Crystal data

(C13H10BrN2)[Ni(C3S5)2]C3H6O

Mr= 783.66

Triclinic,P1

a= 9.197 (2) A˚

b= 10.601 (3) A˚

c= 15.714 (4) A˚

= 98.265 (5) = 92.767 (4) = 95.821 (5)

V= 1505.3 (7) A˚3

Z= 2

Dx= 1.729 Mg m 3

MoKradiation

= 2.69 mm1

T= 293 (2) K Needle, black 0.30.10.1 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.739,Tmax= 0.760

7546 measured reflections 5213 independent reflections 2680 reflections withI> 2(I)

Rint= 0.063

max= 25.0

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.055

wR(F2) = 0.105

S= 0.99 5213 reflections 330 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.02P)2

+ 0.04P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.55 e A˚

3

min=0.49 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Ni1—S7 2.1545 (16) Ni1—S5 2.1547 (16)

Ni1—S4 2.1605 (16) Ni1—S6 2.1649 (16)

S7—Ni1—S5 86.20 (6) S7—Ni1—S4 178.59 (6) S5—Ni1—S4 93.18 (6)

S7—Ni1—S6 92.71 (6) S5—Ni1—S6 177.58 (7) S4—Ni1—S6 87.96 (6)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C15—H15 N2i

0.93 2.50 3.290 (8) 143 C14—H14 O1ii 0.93 2.55 3.135 (8) 121 C13—H13B O1ii

0.97 2.46 3.230 (9) 136

Symmetry codes: (i)x;yþ1;zþ1; (ii)x1;y;z.

All H atoms were refined using a riding model, with C—H = 0.93 A˚ andUiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.97 A˚ and

Uiso(H) = 1.2Ueq(C) for CH2 H atoms, and C—H = 0.96 A˚ and

Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTLandPLATON(Spek, 2003).

The authors thank the Natural Science Foundation of Henan Province for financial support.

References

Akutagawa, T. & Nakamura, T. (2000).Coord. Chem. Rev.198, 297–311. Bruker (2000).SADABS,SMART(Version 5.625),SAINT(Version 6.02) and

SHELXTL(Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA. Cassoux, P. (1999).Coord. Chem. Rev.185/186, 213–232.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

[image:2.610.312.564.75.156.2] [image:2.610.314.565.217.406.2]

Wang, C. S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998).Synthesis, pp. 1615–1618.

Figure 1

The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, m1004–m1005

supporting information

Acta Cryst. (2006). E62, m1004–m1005 [https://doi.org/10.1107/S1600536806012207]

N

-(4-Bromobenzyl)-4-cyanopyridinium

bis(2-thioxo-1,3-dithiole-4,5-dithiol-ato)nickelate(III) acetone solvate

Shuang-Quan Zang, Yang Su and Ruo-Jie Tao

N-(4-Bromobenzyl)-4-cyanopyridinium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)nickelate(III) acetone solvate

Crystal data

(C13H10BrN2)[Ni(C3S5)2]·C3H6O

Mr = 783.66

Triclinic, P1 Hall symbol: -P 1

a = 9.197 (2) Å

b = 10.601 (3) Å

c = 15.714 (4) Å

α = 98.265 (5)°

β = 92.767 (4)°

γ = 95.821 (5)°

V = 1505.3 (7) Å3

Z = 2

F(000) = 786.0

Dx = 1.729 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 804 reflections

θ = 2.5–22.4°

µ = 2.69 mm−1

T = 293 K Needle, black 0.3 × 0.1 × 0.1 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.739, Tmax = 0.760

7546 measured reflections 5213 independent reflections 2680 reflections with I > 2σ(I)

Rint = 0.063

θmax = 25.0°, θmin = 2.0°

h = −10→10

k = −7→12

l = −18→18

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.055

wR(F2) = 0.105

S = 0.99 5213 reflections 330 parameters 14 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.02P)2 + 0.04P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.55 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Two

DFIX restraints on two bonds (C16–C19 and C21–C22). Twelve DELU restraints on the pyridine ring (N1 C14 > C18).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, m1004–m1005

H20C 0.5580 0.5018 0.8785 0.300* C21 0.6025 (10) 0.3226 (9) 0.8689 (5) 0.123 (3) C22 0.4850 (11) 0.2644 (11) 0.9124 (7) 0.302 (9) H22A 0.3941 0.2626 0.8792 0.453* H22B 0.4797 0.3133 0.9683 0.453* H22C 0.5027 0.1784 0.9186 0.453* N1 −0.0145 (5) 0.1818 (4) 0.7244 (3) 0.0591 (12) S1 0.8584 (2) 1.48341 (17) 0.12731 (12) 0.1117 (7) S2 0.6668 (2) 1.26554 (16) 0.17419 (10) 0.0865 (5) S3 0.93637 (19) 1.35129 (14) 0.27390 (10) 0.0794 (5) S4 0.58654 (17) 1.05888 (15) 0.28470 (9) 0.0774 (5) S5 0.88065 (16) 1.15543 (13) 0.39461 (9) 0.0686 (4) S6 0.52012 (16) 0.86344 (14) 0.40212 (9) 0.0690 (4) S7 0.80795 (16) 0.97166 (14) 0.51400 (9) 0.0680 (4) S8 0.47060 (17) 0.66924 (15) 0.52389 (9) 0.0760 (5) S9 0.73328 (17) 0.77180 (15) 0.62845 (9) 0.0714 (5) S10 0.5507 (2) 0.55030 (18) 0.67645 (10) 0.1042 (7) Br1 0.27186 (10) 0.17125 (9) 1.13312 (5) 0.1400 (4) N2 0.1693 (5) 0.4865 (5) 0.5061 (3) 0.0831 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

S1 0.160 (2) 0.0857 (14) 0.1027 (13) 0.0311 (13) 0.0248 (14) 0.0397 (11) S2 0.1004 (14) 0.0845 (12) 0.0808 (11) 0.0303 (11) −0.0023 (10) 0.0217 (9) S3 0.0958 (13) 0.0594 (10) 0.0850 (11) 0.0099 (9) 0.0074 (10) 0.0156 (9) S4 0.0698 (11) 0.0772 (11) 0.0848 (11) 0.0089 (9) −0.0098 (9) 0.0150 (9) S5 0.0662 (10) 0.0615 (10) 0.0782 (10) 0.0047 (8) −0.0075 (8) 0.0162 (8) S6 0.0540 (10) 0.0744 (11) 0.0763 (10) 0.0048 (8) −0.0068 (8) 0.0088 (8) S7 0.0607 (10) 0.0616 (10) 0.0784 (10) −0.0011 (8) −0.0099 (8) 0.0098 (8) S8 0.0700 (11) 0.0807 (12) 0.0712 (10) −0.0129 (9) 0.0093 (9) 0.0045 (9) S9 0.0760 (11) 0.0745 (11) 0.0607 (9) −0.0018 (9) 0.0017 (8) 0.0076 (8) S10 0.1355 (17) 0.1062 (15) 0.0676 (11) −0.0177 (13) 0.0177 (11) 0.0199 (10) Br1 0.1362 (8) 0.1885 (9) 0.0855 (5) −0.0509 (7) −0.0260 (5) 0.0461 (5) N2 0.075 (4) 0.083 (4) 0.103 (4) 0.011 (3) 0.026 (3) 0.043 (3)

Geometric parameters (Å, º)

Ni1—S7 2.1545 (16) C10—H10 0.9300 Ni1—S5 2.1547 (16) C11—C12 1.363 (6) Ni1—S4 2.1605 (16) C11—H11 0.9300 Ni1—S6 2.1649 (16) C12—C13 1.487 (6) C1—S1 1.638 (6) C13—N1 1.477 (6) C1—S3 1.709 (6) C13—H13A 0.9700 C1—S2 1.730 (6) C13—H13B 0.9700 C2—C3 1.347 (7) C14—N1 1.323 (6) C2—S4 1.719 (6) C14—C15 1.371 (7) C2—S2 1.751 (5) C14—H14 0.9300 C3—S5 1.722 (6) C15—C16 1.384 (7) C3—S3 1.722 (6) C15—H15 0.9300 C4—C5 1.353 (6) C16—C17 1.365 (7) C4—S6 1.711 (5) C16—C19 1.367 (7) C4—S8 1.730 (5) C17—C18 1.384 (7) C5—S7 1.702 (5) C17—H17 0.9300 C5—S9 1.742 (5) C18—N1 1.308 (6) C6—S10 1.640 (6) C18—H18 0.9300 C6—S8 1.719 (5) C19—N2 1.146 (6) C6—S9 1.724 (5) O1—C21 1.165 (8) C7—C12 1.352 (7) C20—C21 1.430 (10) C7—C8 1.374 (7) C20—H20A 0.9600 C7—H7 0.9300 C20—H20B 0.9600 C8—C9 1.358 (8) C20—H20C 0.9600 C8—H8 0.9300 C21—C22 1.440 (14) C9—C10 1.325 (8) C22—H22A 0.9600 C9—Br1 1.876 (7) C22—H22B 0.9600 C10—C11 1.389 (7) C22—H22C 0.9600

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, m1004–m1005

S5—Ni1—S6 177.58 (7) N1—C14—H14 119.1 S4—Ni1—S6 87.96 (6) C15—C14—H14 119.1 S1—C1—S3 124.3 (4) C16—C15—C14 119.6 (6) S1—C1—S2 123.1 (4) C16—C15—H15 120.2 S3—C1—S2 112.6 (3) C14—C15—H15 120.2 C3—C2—S4 122.4 (5) C17—C16—C15 116.8 (5) C3—C2—S2 115.2 (5) C17—C16—C19 121.9 (6) S4—C2—S2 122.4 (4) C15—C16—C19 121.3 (6) C2—C3—S5 120.2 (5) C16—C17—C18 121.1 (6) C2—C3—S3 116.5 (5) C16—C17—H17 119.5 S5—C3—S3 123.2 (4) C18—C17—H17 119.5 C5—C4—S6 120.7 (4) N1—C18—C17 120.4 (6) C5—C4—S8 116.5 (4) N1—C18—H18 119.8 S6—C4—S8 122.9 (3) C17—C18—H18 119.8 C4—C5—S7 121.9 (4) N2—C19—C16 178.5 (7) C4—C5—S9 115.7 (4) C21—C20—H20A 109.5 S7—C5—S9 122.4 (3) C21—C20—H20B 109.5 S10—C6—S8 123.6 (3) H20A—C20—H20B 109.5 S10—C6—S9 122.9 (3) C21—C20—H20C 109.5 S8—C6—S9 113.5 (3) H20A—C20—H20C 109.5 C12—C7—C8 122.5 (6) H20B—C20—H20C 109.5 C12—C7—H7 118.7 O1—C21—C22 120.5 (10) C8—C7—H7 118.7 O1—C21—C20 122.8 (9) C9—C8—C7 118.6 (7) C22—C21—C20 116.2 (9) C9—C8—H8 120.7 C21—C22—H22A 109.5 C7—C8—H8 120.7 C21—C22—H22B 109.5 C10—C9—C8 120.6 (7) H22A—C22—H22B 109.5 C10—C9—Br1 119.8 (7) C21—C22—H22C 109.5 C8—C9—Br1 119.6 (6) H22A—C22—H22C 109.5 C9—C10—C11 120.2 (6) H22B—C22—H22C 109.5 C9—C10—H10 119.9 C18—N1—C14 120.3 (5) C11—C10—H10 119.9 C18—N1—C13 118.9 (5) C12—C11—C10 120.7 (6) C14—N1—C13 120.7 (5) C12—C11—H11 119.6 C1—S2—C2 97.4 (3) C10—C11—H11 119.6 C1—S3—C3 98.3 (3) C7—C12—C11 117.3 (6) C2—S4—Ni1 101.6 (2) C7—C12—C13 121.1 (6) C3—S5—Ni1 102.5 (2) C11—C12—C13 121.7 (6) C4—S6—Ni1 102.33 (18) N1—C13—C12 113.1 (4) C5—S7—Ni1 102.37 (18) N1—C13—H13A 109.0 C6—S8—C4 97.3 (3) C12—C13—H13A 109.0 C6—S9—C5 97.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

(8)

C14—H14···O1ii 0.93 2.55 3.135 (8) 121

C13—H13B···O1ii 0.97 2.46 3.230 (9) 136

Figure

Figure 1The asymmetric unit of (I), showing the atom-labelling scheme.Displacement ellipsoids are drawn at the 50% probability level and Hatoms are represented by circles of arbitrary size.

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical