• No results found

Chloro­bis­­(di­methyl­glyoximato)(isonicotinic acid)­cobalt(III) monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Chloro­bis­­(di­methyl­glyoximato)(isonicotinic acid)­cobalt(III) monohydrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1156

Shenet al. [Co(C

4H7N2O2)2Cl(C6H5NO2)]H2O doi:10.1107/S1600536805015424 Acta Cryst.(2005). E61, m1156–m1158

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Chlorobis(dimethylglyoximato)(isonicotinic

acid)cobalt(III) monohydrate

Xu-Jie Shen, Li-Ping Xiao and Ru-Ren Xu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China

Correspondence e-mail: rrxu@zju.edu.cn

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.008 A˚ H-atom completeness 96%

Rfactor = 0.044

wRfactor = 0.085

Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [Co(C4H7N2O2)2Cl(C6H5NO2)]H2O,

the two crystallographically distinct Co atoms are both coordinated by a chloride anion, an N-bonded isonicotinic acid ligand and twoN,N-bidentate dimethylglyoximate ligands in a distorted octahedral geometry. A network of O—H O and O—H N hydrogen bonds helps to establish the crystal packing.

Comment

In recent years, the crystal engineering of supramolecular architectures based on metal complexes has been rapidly expanding due to their ability to afford functional materials with potentially useful properties, as well as fascinating molecular structures (Lehn, 1995, 1999; Khlobystov et al., 2001). Dimethylglyoximate (dmg) is a familiar ligand with excellent coordination capability to generate mono-, bi- or trinuclear complexes, which are commonly used as precursors for the formation of supramolecular architectures (Chaudhuri

et al., 1991; Kubiaket al., 1995; Cerveraet al., 1997). Isonico-tinic acid is also a good mono- or bidentate ligand for the construction of supramolecular complexes with versatile binding modes (Covaet al., 2001; Sekiya & Nishikiori, 2001). However, crystal structures of complexes containing both these ligands have been less well documented thus far (Hashizume & Ohashi, 1998). In order to explore the coord-ination behaviour of these two ligands, we synthesized the title compound, a new cobalt(III) complex, (I), and determined its structure.

As shown in Fig. 1, the asymmetric unit of (I) consists of two Co-centred complexes and two uncoordinated water mol-ecules. Both of the Co atoms are hexacoordinated with a slightly distorted octahedral geometry (Table 1). Each Co

(2)

atom is coordinated by four N atoms from two bidentate di-methylglyoximate ligands, where the two dmg ligands aretrans

to each other. The Co—N(dmg) bonds range in length from 1.885 (5) to 1.931 (5) A˚ . A chloride anion and an N atom from the isonicotinic acid ligand occupy the other two coordination positions of each Co atom. Intramolecular hydrogen bonds between the two dmg ligands of each Co-centred complex (Fig. 1) enhance the stability of the structure. Intermolecular hydrogen bonds between water molecules and isonicotinic acid O atoms support the molecular packing (Table 2). Fig. 2 shows the packing arrangement of the complex.

Experimental

To a 95% ethanol solution (40 ml) containing [CoCl2(dmg)2]H

[0.36 g, 1 mmol; synthesized according to the method of Heeg & Elder (1980)], isonicotinic acid (0.123 g, 1 mmol) was added. After being stirred for 15 min, the resulting dark-red solution was filtered and allowed to evaporate at room temperature. After 7 d, dark-red crystals of (I) suitable for X-ray analysis were obtained.

Crystal data

[Co(C4H7N2O2)2Cl(C6H5NO2)]

-H2O

Mr= 465.74 Monoclinic, P21

a= 8.2904 (6) A˚

b= 14.2195 (8) A˚

c= 16.9550 (7) A˚ = 90.615 (4)

V= 1998.6 (2) A˚3

Z= 4

Dx= 1.515 Mg m 3

MoKradiation Cell parameters from 2570

reflections = 2.4–22.4 = 1.04 mm1

T= 295 (2) K Block, dark red 0.430.210.15 mm

Data collection

Bruker SMART APEX area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.665,Tmax= 0.860

11 170 measured reflections

6172 independent reflections 4394 reflections withI> 2(I)

Rint= 0.052

max= 25.0

h=9!6

k=14!16

l=20!20

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.085

S= 0.90 6172 reflections 511 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0281P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.017

max= 0.51 e A˚

3

min=0.31 e A˚

3

Absolute structure: Flack (1983), 2502 Friedel pairs

[image:2.610.47.293.70.185.2]

Flack parameter =0.005 (16)

Table 1

Selected geometric parameters (A˚ ,).

Co1—N4 1.887 (5)

Co1—N3 1.895 (4)

Co1—N1 1.901 (5)

Co1—N2 1.914 (5)

Co1—N5 1.962 (4)

Co1—Cl1 2.2190 (15)

Co2—N6 1.891 (5)

Co2—N8 1.896 (5)

Co2—N9 1.898 (4)

Co2—N7 1.900 (5)

Co2—N10 1.977 (4) Co2—Cl2 2.2444 (15)

N4—Co1—N3 80.96 (18) N4—Co1—N1 99.6 (2) N3—Co1—N2 99.0 (2) N1—Co1—N2 80.45 (19) N3—Co1—N5 91.11 (18) N1—Co1—N5 89.08 (18) N5—Co1—Cl1 177.53 (13)

[image:2.610.314.565.74.260.2]

N6—Co2—N9 98.6 (2) N8—Co2—N9 80.6 (2) N6—Co2—N7 81.8 (2) N8—Co2—N7 98.9 (2) N6—Co2—N10 90.42 (18) N8—Co2—N10 90.64 (17) N10—Co2—Cl2 178.98 (14)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 O4 0.82 1.72 2.515 (5) 161

O3—H3 O2 0.82 1.72 2.514 (5) 163

O5—H5 O1W 0.82 1.74 2.550 (5) 171

O7—H7 O10 0.82 1.72 2.511 (6) 162

O9—H9 O8 0.82 1.70 2.495 (6) 162

O11—H11 O4i

0.82 1.89 2.669 (5) 159 O1W—H1W O7ii

0.85 (3) 1.95 (3) 2.797 (6) 172 (5) O1W—H2W Cl2iii

0.84 (2) 2.64 (5) 3.188 (6) 125 (4)

Symmetry codes: (i)x;1

2þy;z; (ii)x;y;1þz; (iii) 1x; 1 2þy;1z.

The H atoms attached to O1Wwere located in a difference Fourier map and refined with the distance restraint O—H = 0.85 (1) A˚ . The H atoms attached to O2Wwere not found in the difference map. The other H atoms were positioned geometrically (C—H = 0.93–0.96 A˚ and O—H = 0.82 A˚ ) and refined as riding on their carrier atoms. All H atoms were assigned a fixed isotropic displacement parameter of

Uiso(H) = 0.08 A˚2.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine

metal-organic papers

Acta Cryst.(2005). E61, m1156–m1158 Shenet al. [Co(C

4H7N2O2)2Cl(C6H5NO2)]H2O

m1157

Figure 1

View of the asymmetric unit of (I), with displacement ellipsoids drawn at the 40% probability level (arbitrary spheres for the H atoms).

Figure 2

[image:2.610.314.566.335.474.2] [image:2.610.314.561.524.614.2]
(3)

structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

The authors acknowledge the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry for the support of this work. We also thank Professor Long-Guan Zhu for his help.

References

Bruker (2002).SADABS(Version 2.03),SAINT(Version 6.02a),SHELXTL

(Version 5.03) andSMART(Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.

Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997).J. Chem. Soc. Dalton Trans.pp. 395–402.

Chaudhuri, P., Winter, M., Della Vedova, B. P. C., Fleischhauer, P., Haase, W., Floerke, U. & Haupt, H. J. (1991).Inorg. Chem.30, 4777–4783.

Cova, B., Briceno, A. & Atencio, R. (2001).New J. Chem.25, 1516–1519. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Hashizume, D. & Ohashi, Y. (1998).J. Chem. Soc. Perkin Trans.2, pp. 1931– 1935.

Heeg, M. J. & Elder, R. C. (1980).Inorg. Chem.19, 932–934.

Khlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V. & Schroder, M. (2001).Coord. Chem. Rev.222, 155–192.

Kubiak, M., Głowiak, T., Moszner, M., Zio´łkowski, J. J., Asaro, F., Costa, G., Pellizer, G. & Tavagnacco, C. (1995).Inorg. Chim. Acta,236, 141–147. Lehn, J.-M. (1995). Supramolecular Chemistry. Concepts and Perspectives.

Weinheim: VCH.

Lehn, J.-M. (1999).Chem. Eur. J.5, 2455–2563.

Sekiya, R. & Nishikiori, S. (2001).Chem. Commun.pp. 2612–2613.

metal-organic papers

m1158

Shenet al. [Co(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1156–m1158

supporting information

Acta Cryst. (2005). E61, m1156–m1158 [https://doi.org/10.1107/S1600536805015424]

Chlorobis(dimethylglyoximato)(isonicotinic acid)cobalt(III) monohydrate

Xu-Jie Shen, Li-Ping Xiao and Ru-Ren Xu

Chlorobis(dimethylglyoximato)(isonicotinic acid)cobalt(III) monohydrate

Crystal data

[Co(C4H7N2O2)2Cl(C6H5NO2)]·H2O Mr = 465.74

Monoclinic, P21

Hall symbol: P 2yb a = 8.2904 (6) Å b = 14.2195 (8) Å c = 16.9550 (7) Å β = 90.615 (4)° V = 1998.6 (2) Å3 Z = 4

F(000) = 936 Dx = 1.515 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2570 reflections θ = 2.4–22.4°

µ = 1.04 mm−1 T = 295 K Block, dark red 0.43 × 0.21 × 0.15 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.665, Tmax = 0.860

11170 measured reflections 6172 independent reflections 4394 reflections with I > 2σ(I) Rint = 0.052

θmax = 25.0°, θmin = 2.4° h = −9→6

k = −14→16 l = −20→20

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.044 wR(F2) = 0.085 S = 0.90 6172 reflections 511 parameters 4 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0281P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.017

Δρmax = 0.51 e Å−3

Δρmin = −0.31 e Å−3

Absolute structure: Flack (1983), 2502 Friedel pairs

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1156–m1158

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1156–m1158

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1156–m1158

C28 −0.1275 (8) 0.3018 (4) −0.2863 (3) 0.0437 (16) N1 −0.0915 (6) 0.0767 (3) 0.4834 (2) 0.0329 (12) N2 −0.1282 (6) 0.2428 (3) 0.4458 (2) 0.0347 (12) N3 0.1806 (6) 0.2398 (3) 0.3676 (2) 0.0309 (11) N4 0.2128 (6) 0.0729 (3) 0.4015 (2) 0.0321 (12) N5 0.1532 (5) 0.1937 (3) 0.5247 (2) 0.0282 (11) N6 0.3835 (6) 0.2035 (3) 0.0014 (2) 0.0377 (12) N7 0.2759 (6) 0.0450 (3) −0.0313 (2) 0.0401 (13) N8 −0.0146 (6) 0.0896 (3) 0.0529 (2) 0.0345 (12) N9 0.0965 (6) 0.2440 (3) 0.0886 (2) 0.0346 (12) N10 0.0868 (5) 0.1975 (3) −0.0720 (2) 0.0251 (11) H2W 0.601 (2) 0.416 (4) 0.897 (3) 0.038* H1W 0.482 (5) 0.371 (3) 0.9370 (16) 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1156–m1158

C14 0.057 (5) 0.047 (4) 0.026 (3) −0.012 (3) −0.004 (3) 0.005 (3) C15 0.030 (3) 0.083 (5) 0.034 (3) 0.009 (5) 0.004 (3) 0.034 (4) C16 0.047 (4) 0.051 (4) 0.038 (4) 0.030 (4) 0.014 (3) 0.015 (3) C17 0.034 (4) 0.122 (7) 0.051 (4) 0.010 (4) −0.001 (3) 0.041 (4) C18 0.110 (8) 0.086 (6) 0.086 (6) 0.068 (6) 0.042 (5) 0.018 (5) C19 0.030 (3) 0.046 (4) 0.027 (3) 0.009 (3) 0.001 (2) 0.007 (3) C20 0.041 (4) 0.038 (4) 0.030 (3) 0.016 (3) 0.002 (3) 0.008 (3) C21 0.035 (4) 0.106 (6) 0.042 (4) −0.010 (4) 0.002 (3) 0.014 (4) C22 0.089 (6) 0.058 (5) 0.056 (4) 0.031 (4) 0.025 (4) 0.012 (3) C23 0.038 (3) 0.028 (3) 0.027 (3) 0.005 (3) 0.000 (2) −0.001 (2) C24 0.049 (4) 0.037 (4) 0.030 (3) −0.002 (3) −0.001 (3) −0.006 (3) C25 0.035 (4) 0.035 (3) 0.027 (3) 0.001 (3) 0.006 (3) 0.004 (2) C26 0.049 (4) 0.027 (3) 0.032 (3) −0.004 (3) −0.002 (3) −0.002 (2) C27 0.044 (4) 0.025 (3) 0.032 (3) 0.003 (3) 0.000 (3) −0.002 (2) C28 0.050 (4) 0.042 (4) 0.039 (4) 0.003 (3) −0.003 (3) 0.010 (3) N1 0.035 (3) 0.029 (3) 0.035 (3) 0.001 (2) −0.003 (2) −0.003 (2) N2 0.033 (3) 0.036 (3) 0.035 (3) 0.003 (2) −0.005 (2) −0.003 (2) N3 0.038 (3) 0.025 (3) 0.029 (3) −0.008 (2) 0.002 (2) 0.001 (2) N4 0.038 (3) 0.032 (3) 0.027 (2) 0.003 (2) −0.005 (2) −0.005 (2) N5 0.023 (3) 0.033 (3) 0.029 (2) 0.001 (2) 0.005 (2) 0.001 (2) N6 0.032 (3) 0.053 (3) 0.029 (3) 0.000 (3) 0.003 (2) 0.007 (2) N7 0.046 (4) 0.043 (3) 0.031 (3) 0.013 (3) −0.002 (3) 0.007 (2) N8 0.038 (3) 0.033 (3) 0.032 (3) −0.005 (3) −0.005 (2) 0.012 (2) N9 0.046 (3) 0.036 (3) 0.021 (2) 0.007 (3) 0.000 (2) 0.003 (2) N10 0.022 (3) 0.028 (3) 0.026 (2) 0.000 (2) 0.007 (2) 0.0022 (19)

Geometric parameters (Å, º)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1156–m1158

O6—C14 1.213 (7) C16—C18 1.482 (8) O7—N6 1.347 (5) C17—H17A 0.9600 O7—H7 0.8200 C17—H17B 0.9600 O8—N7 1.350 (6) C17—H17C 0.9600 O9—N8 1.328 (5) C18—H18A 0.9600 O9—H9 0.8200 C18—H18B 0.9600 O10—N9 1.357 (6) C18—H18C 0.9600 O11—C28 1.319 (7) C19—N8 1.303 (6) O11—H11 0.8200 C19—C20 1.462 (8) O12—C28 1.170 (7) C19—C21 1.478 (8) O1W—H2W 0.843 (10) C20—N9 1.299 (7) O1W—H1W 0.85 (3) C20—C22 1.504 (7) C1—N1 1.304 (7) C21—H21A 0.9600 C1—C2 1.469 (7) C21—H21B 0.9600 C1—C3 1.498 (8) C21—H21C 0.9600 C2—N2 1.285 (7) C22—H22A 0.9600 C2—C4 1.474 (8) C22—H22B 0.9600 C3—H3A 0.9600 C22—H22C 0.9600 C3—H3B 0.9600 C23—N10 1.344 (6) C3—H3C 0.9600 C23—C24 1.371 (7) C4—H4A 0.9600 C23—H23 0.9300 C4—H4B 0.9600 C24—C25 1.387 (8) C4—H4C 0.9600 C24—H24 0.9300 C5—N3 1.292 (7) C25—C26 1.394 (7) C5—C6 1.445 (7) C25—C28 1.508 (7) C5—C7 1.501 (8) C26—C27 1.379 (7) C6—N4 1.298 (7) C26—H26 0.9300 C6—C8 1.492 (8) C27—N10 1.333 (6) C7—H7A 0.9600 C27—H27 0.9300

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m1156–m1158

(11)

supporting information

sup-8

Acta Cryst. (2005). E61, m1156–m1158

H7B—C7—H7C 109.5 C6—N4—O4 122.2 (5) C6—C8—H8A 109.5 C6—N4—Co1 116.5 (4) C6—C8—H8B 109.5 O4—N4—Co1 121.2 (4) H8A—C8—H8B 109.5 C9—N5—C13 117.5 (4) C6—C8—H8C 109.5 C9—N5—Co1 121.0 (3) H8A—C8—H8C 109.5 C13—N5—Co1 121.5 (3) H8B—C8—H8C 109.5 C15—N6—O7 120.5 (5) N5—C9—C10 123.4 (5) C15—N6—Co2 116.2 (5) N5—C9—H9A 118.3 O7—N6—Co2 123.3 (4) C10—C9—H9A 118.3 C16—N7—O8 122.7 (5) C9—C10—C11 119.1 (5) C16—N7—Co2 115.8 (5) C9—C10—H10 120.5 O8—N7—Co2 121.5 (4) C11—C10—H10 120.5 C19—N8—O9 119.4 (5) C12—C11—C10 117.7 (5) C19—N8—Co2 117.9 (4) C12—C11—C14 123.3 (5) O9—N8—Co2 122.7 (4) C10—C11—C14 119.0 (5) C20—N9—O10 120.7 (5) C13—C12—C11 119.5 (5) C20—N9—Co2 116.6 (4) C13—C12—H12 120.2 O10—N9—Co2 122.6 (4) C11—C12—H12 120.2 C27—N10—C23 118.3 (4) N5—C13—C12 122.8 (5) C27—N10—Co2 121.4 (4) N5—C13—H13 118.6 C23—N10—Co2 120.3 (3) C12—C13—H13 118.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···O4 0.82 1.72 2.515 (5) 161 O1—H1···N4 0.82 2.46 3.045 (6) 129 O3—H3···O2 0.82 1.72 2.514 (5) 163 O3—H3···N2 0.82 2.39 2.998 (6) 131 O5—H5···O1W 0.82 1.74 2.550 (5) 171 O7—H7···O10 0.82 1.72 2.511 (6) 162 O7—H7···N9 0.82 2.42 3.011 (6) 129 O9—H9···O8 0.82 1.70 2.495 (6) 162 O9—H9···N7 0.82 2.41 3.007 (7) 130 O11—H11···O4i 0.82 1.89 2.669 (5) 159

O1W—H1W···O7ii 0.85 (3) 1.95 (3) 2.797 (6) 172 (5)

O1W—H2W···Cl2iii 0.84 (2) 2.64 (5) 3.188 (6) 125 (4)

Figure

Figure 2

References

Related documents

More specifically, we harness cues in Twitter data in the form of emo- tion hashtags as a way to build a labeled emotion dataset that we then exploit using distant supervi- sion (

from the Speaker- Addressee model on the TV-series dataset using different ad- dressees and speakers.. responses to be consistent if the persona model

However, when students face harder competitors, males respond by lowering performance while the performance of females does not vary significantly by level of competition..

The toolkit in- cludes two standalone command-line tools that do not require any knowledge of the Python pro- gramming language: one that can be used for automatically obtaining

Structural functionalism sees society or other social objects as a system, as a structurally dissected integrity, in which each system unit performs a specific

We have presented a method that converts word vectors obtained using any state-of-the-art word vector model into sparse and optionally binary word vectors.. These transformed

The available pitch accent and boundary an- notations allow us to automatically derive a sec- ondary layer of prosodic information which rep- resents a mapping of the pitch accents

Keywords: Education, economic growth; ARDL model; cointegration, South Africa...