(Nitrato κO)(1,10 phenanthroline κ2N,N′)(picolinato N oxide κ2O,O′)copper(II)

(1)metal-organic papers Acta Crystallographica Section E. Structure Reports Online. (Nitrato-jO)(1,10-phenanthroline-j2N,N0 )(picolinato N-oxide-j2O,O0 )copper(II). ISSN 1600-5368. Lei Gou,a Xiong-Wei Qu,b Bo Zheng,a Dao-Yong Wanga and Huai-Ming Hua* a. Department of Chemistry, Northwest University, Xi'an 710069, People's Republic of China, and bInstitute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China Correspondence e-mail: chemhu1@nwu.edu.cn. Key indicators Single-crystal X-ray study T = 298 K Ê Mean (C±C) = 0.003 A R factor = 0.034 wR factor = 0.079 Data-to-parameter ratio = 14.2 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. The coordination environment of copper(II) in the title compound, [Cu(C6H4NO3)(NO3)(C12H8N2)], is square pyramidal; the basal plane comprises the two N atoms of 1,10phenanthroline and the two O atoms of picolinate N-oxide, with the apical position occupied by a nitrate O atom.. Received 18 January 2005 Accepted 24 January 2005 Online 5 February 2005. Comment Picolinic acid N-oxide has a polar N!O group that provides a strongly basic O-atom site for coordination. Only a few complexes of this ligand have been crystallographically authenticated. In the binuclear compound La(6-mepicNO)66H2O, two LaIII atoms are bridged by two picolinate Noxide groups (Yan et al., 1995). In the ErIII±NaI mixed-metal coordination polymer, the main feature is a polymeric chain of two zigzag chains (Mao et al., 1998). The copper(II) nitrate derivative of the acid, (I), is a ®ve-coordinate compound as the phenanthroline (phen) adduct. The CuII atom is coordinated by the two N atoms of a phen ligand and the two O atoms of a picolinate N-oxide anion, these atoms forming the basal plane; one O atom of the nitrate group occupies the apical position. The distances involving the Cu atom are comparable with those found in, for example, [Cu(phen)(ox)(H2O)]H2O (Chen et al., 2001) and [Cu(phen)(gly)(Cl)]H2O (Solans et al., 1988). The CuÐOnitrate bond distance is signi®cantly longer than the other CuÐO bond distances, since the O atom of the nitrate occupies the apical position. Both the heterocycle and the anion are planar. The CuII atom lies out of the basal plane Ê in the direction of atom O4. by 0.1456 (5) A. Experimental # 2005 International Union of Crystallography Printed in Great Britain ± all rights reserved. To a solution of Cu(NO3)23H2O (242 mg, 1 mmol) and 1,10phenanthroline (180 mg, 1 mmol) in ethanol (20 ml) was added a solution of picolinic acid N-oxide (139 mg, 1 mmol) in tetrahydro-. Acta Cryst. (2005). E61, m441±m442. doi:10.1107/S1600536805002515. Lei Gou et al.. . [Cu(C6H4NO3)(NO3)(C12H8N2)]. m441.

(2) metal-organic papers furan (10 ml). The resulting solution was stirred for 4 h at room temperature. Crystals of (I) suitable for X-ray analysis were obtained after several days. Analysis found: C 48.56, H 2.57, N 12.86%; calculated for C18H12CuN4O6: C 48.71, H 2.73, N 12.62%. Crystal data [Cu(C6H4NO3)(NO3)(C12H8N2)] Mr = 443.86 Monoclinic, P21 =c Ê a = 9.2861 (11) A Ê b = 9.5829 (12) A Ê c = 18.438 (3) A

(3) = 90.750 (4) Ê3 V = 1640.7 (4) A Z=4. Dx = 1.797 Mg m 3 Mo K radiation Cell parameters from 6799 re¯ections  = 3.1±27.4  = 1.38 mm 1 T = 298 (2) K Block, blue 0.38  0.24  0.16 mm. Data collection Rigaku R-AXIS RAPID IP diffractometer Oscillation scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.678, Tmax = 0.802 6799 measured re¯ections. 3713 independent re¯ections 2699 re¯ections with I > 2(I) Rint = 0.033 max = 27.4 h = 11 ! 12 k = 12 ! 12 l = 23 ! 23. Refinement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.034 wR(F 2) = 0.079 S = 0.91 3713 re¯ections 262 parameters. H-atom parameters constrained w = 1/[ 2(Fo2) + (0.0434P)2] where P = (Fo2 + 2Fc2)/3 (/)max = 0.001 Ê 3 max = 0.39 e A Ê 3 min = 0.47 e A. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.. Data collection: RAPID-AUTO (Rigaku, 2001); cell re®nement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1995).. References. Table 1. Ê ,  ). Selected geometric parameters (A Cu1ÐO1 Cu1ÐO2 Cu1ÐO4. 1.8962 (16) 1.9018 (16) 2.2839 (16). O1ÐCu1ÐO2 O1ÐCu1ÐO4 O1ÐCu1ÐN2 O1ÐCu1ÐN3 O2ÐCu1ÐO4. 93.78 (7) 104.56 (7) 165.37 (7) 88.42 (7) 93.64 (7). Cu1ÐN2 Cu1ÐN3 O2ÐCu1ÐN2 O2ÐCu1ÐN3 O4ÐCu1ÐN2 O4ÐCu1ÐN3 N2ÐCu1ÐN3. 2.0113 (19) 2.0090 (19) 93.47 (7) 170.52 (7) 87.63 (7) 94.73 (7) 82.45 (7). H atoms were placed at calculated positions and re®ned using a Ê and with riding model, with CÐH distances in the range 0.93±0.96 A Uiso(H) = 1.2Ueq(C).. m442. Figure 1. Lei Gou et al.. . [Cu(C6H4NO3)(NO3)(C12H8N2)]. Chen, X. F., Cheng, P., Liu, X., Zhao, B., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2001). Inorg. Chem. 40, 2652±2659. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Mao, J. G., Zhang, H. J., Ni, J. Z. & Mak, T. C. W. (1998). J. Chem. Crystallogr. 28, 413±418. Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1990). Acta Cryst. A46, 467±473. Sheldrick, G. M. (1997). SHELXL97. University of GoÈttingen, Germany. Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Siemens (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Solans, X., Ruiz-Ramirez, L., Martinez, A., Gasque, L. & Brianso, J. L. (1988). Acta Cryst. C44, 628±631. Yan, L., Liu, J. M., Wang, X., Yang, R. D. & Song, F. L. (1995). Polyhedron, 14, 3543±3548.. Acta Cryst. (2005). E61, m441±m442.

(4) supporting information. supporting information Acta Cryst. (2005). E61, m441–m442. [https://doi.org/10.1107/S1600536805002515]. (Nitrato-κO)(1,10-phenanthroline-κ2N,N′)(picolinato N-oxideκ2O,O′)copper(II) Lei Gou, Xiong-Wei Qu, Bo Zheng, Dao-Yong Wang and Huai-Ming Hu (Nitrato-κO)(1,10-phenanthroline-κ2N,N′)(picolinato N-oxide- κ2O,O′)copper(II) Crystal data [Cu(C6H4NO3)(NO3)(C12H8N2)] Mr = 443.86 Monoclinic, P21/c a = 9.2861 (11) Å b = 9.5829 (12) Å c = 18.438 (3) Å β = 90.750 (4)° V = 1640.7 (4) Å3 Z=4. F(000) = 900 Dx = 1.797 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 6799 reflections θ = 3.1–27.4° µ = 1.38 mm−1 T = 298 K Block, blue 0.38 × 0.24 × 0.16 mm. Data collection 6799 measured reflections 3713 independent reflections 2699 reflections with I > 2σ(I) Rint = 0.033 θmax = 27.4°, θmin = 3.1° h = −11→12 k = −12→12 l = −23→23. Rigaku R-AXIS RAPID IP diffractometer Radiation source: rotating anode Graphite monochromator oscillation scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.678, Tmax = 0.802 Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.034 wR(F2) = 0.079 S = 0.91 3713 reflections 262 parameters 0 restraints Primary atom site location: structure-invariant direct methods. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0434P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.39 e Å−3 Δρmin = −0.47 e Å−3. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). Cu1 N1. x. y. z. Uiso*/Ueq. 0.66658 (3) 0.8553 (2). 0.59025 (3) 0.3662 (2). 0.453019 (14) 0.41059 (10). 0.02234 (9) 0.0238 (4). Acta Cryst. (2005). E61, m441–m442. sup-1.

(5) supporting information N2 N3 N4 O1 O2 O3 O4 O5 O6 C1 C2 C3 H3A C4 H4A C5 H5A C6 H6A C7 H7A C8 H8A C9 H9A C10 C11 H11A C12 H12A C13 C14 H14A C15 H15A C16 H16A C17 C18. 0.50419 (19) 0.66362 (19) 0.9079 (2) 0.79083 (18) 0.63850 (17) 0.7050 (2) 0.81773 (17) 0.9285 (3) 0.9709 (2) 0.7146 (3) 0.8245 (2) 0.8962 (3) 0.8771 0.9949 (3) 1.0406 1.0241 (3) 1.0909 0.9555 (3) 0.9775 0.4230 (3) 0.4359 0.3186 (3) 0.2630 0.2990 (3) 0.2301 0.3836 (2) 0.3709 (2) 0.3042 0.4545 (2) 0.4453 0.5565 (2) 0.6439 (2) 0.6399 0.7347 (3) 0.7905 0.7434 (3) 0.8069 0.5708 (2) 0.4837 (2). 0.7284 (2) 0.60701 (19) 0.7727 (2) 0.43446 (17) 0.56135 (17) 0.4924 (2) 0.77543 (17) 0.8807 (2) 0.66392 (19) 0.4877 (3) 0.3827 (2) 0.2983 (2) 0.3087 0.1998 (3) 0.1424 0.1882 (3) 0.1229 0.2724 (3) 0.2655 0.7838 (3) 0.7541 0.8854 (2) 0.9217 0.9309 (2) 0.9986 0.8749 (2) 0.9136 (3) 0.9812 0.8531 (2) 0.8814 0.7466 (2) 0.6758 (2) 0.6990 0.5727 (2) 0.5236 0.5412 (3) 0.4721 0.7077 (2) 0.7724 (2). 0.45946 (10) 0.56160 (10) 0.38519 (11) 0.46404 (8) 0.35177 (8) 0.24319 (9) 0.43708 (9) 0.35122 (14) 0.36937 (10) 0.30903 (13) 0.33891 (12) 0.28963 (13) 0.2403 0.31236 (13) 0.2791 0.38572 (14) 0.4023 0.43404 (13) 0.4833 0.40753 (13) 0.3601 0.42103 (13) 0.3832 0.49068 (13) 0.5003 0.54779 (12) 0.62238 (12) 0.6354 0.67456 (12) 0.7225 0.65719 (12) 0.70823 (13) 0.7571 0.68552 (13) 0.7191 0.61153 (13) 0.5968 0.58373 (12) 0.52883 (12). 0.0230 (4) 0.0222 (4) 0.0288 (5) 0.0300 (4) 0.0276 (4) 0.0485 (6) 0.0298 (4) 0.0711 (8) 0.0388 (5) 0.0267 (5) 0.0232 (5) 0.0264 (5) 0.032* 0.0305 (6) 0.037* 0.0329 (6) 0.039* 0.0292 (6) 0.035* 0.0267 (5) 0.032* 0.0286 (6) 0.034* 0.0271 (5) 0.032* 0.0240 (5) 0.0262 (5) 0.031* 0.0249 (5) 0.030* 0.0243 (5) 0.0265 (5) 0.032* 0.0287 (6) 0.034* 0.0255 (5) 0.031* 0.0215 (5) 0.0232 (5). Atomic displacement parameters (Å2). Cu1 N1 N2 N3 N4. U11. U22. U33. U12. U13. U23. 0.02700 (16) 0.0280 (11) 0.0256 (10) 0.0254 (10) 0.0317 (12). 0.02164 (15) 0.0219 (10) 0.0241 (11) 0.0202 (10) 0.0278 (12). 0.01845 (15) 0.0216 (10) 0.0193 (10) 0.0210 (9) 0.0271 (11). 0.00103 (13) 0.0013 (8) −0.0025 (8) −0.0024 (8) −0.0014 (9). 0.00293 (10) 0.0032 (8) 0.0028 (8) 0.0034 (8) 0.0026 (9). −0.00067 (13) 0.0002 (8) −0.0004 (8) 0.0000 (8) 0.0002 (9). Acta Cryst. (2005). E61, m441–m442. sup-2.

(6) supporting information O1 O2 O3 O4 O5 O6 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18. 0.0418 (10) 0.0302 (9) 0.0623 (13) 0.0353 (10) 0.1004 (19) 0.0436 (11) 0.0298 (13) 0.0253 (12) 0.0287 (13) 0.0293 (13) 0.0314 (14) 0.0312 (13) 0.0301 (13) 0.0326 (13) 0.0280 (13) 0.0264 (12) 0.0290 (12) 0.0292 (13) 0.0263 (12) 0.0306 (13) 0.0327 (13) 0.0288 (12) 0.0236 (12) 0.0278 (12). 0.0296 (10) 0.0320 (10) 0.0648 (14) 0.0279 (9) 0.0323 (12) 0.0305 (10) 0.0271 (13) 0.0216 (13) 0.0266 (13) 0.0289 (14) 0.0278 (13) 0.0296 (13) 0.0303 (14) 0.0271 (14) 0.0254 (13) 0.0208 (12) 0.0247 (12) 0.0269 (12) 0.0240 (12) 0.0301 (13) 0.0280 (14) 0.0233 (12) 0.0198 (12) 0.0208 (12). 0.0188 (8) 0.0207 (8) 0.0184 (9) 0.0266 (9) 0.0823 (18) 0.0424 (11) 0.0232 (12) 0.0227 (12) 0.0239 (12) 0.0334 (14) 0.0394 (15) 0.0267 (13) 0.0197 (12) 0.0262 (13) 0.0278 (12) 0.0248 (12) 0.0251 (12) 0.0186 (12) 0.0227 (12) 0.0187 (11) 0.0253 (12) 0.0243 (12) 0.0212 (11) 0.0210 (12). 0.0113 (8) 0.0092 (7) 0.0332 (11) −0.0046 (8) 0.0106 (12) 0.0127 (9) 0.0023 (11) −0.0019 (10) −0.0019 (10) 0.0037 (11) 0.0063 (11) 0.0038 (11) −0.0001 (11) 0.0007 (11) 0.0018 (10) −0.0034 (9) −0.0016 (11) −0.0055 (10) −0.0069 (10) −0.0056 (11) −0.0038 (11) −0.0001 (10) −0.0042 (9) −0.0054 (10). 0.0060 (7) 0.0005 (7) −0.0001 (9) 0.0097 (7) 0.0601 (15) 0.0116 (9) 0.0002 (10) 0.0034 (9) 0.0025 (10) 0.0083 (11) 0.0028 (11) −0.0006 (10) 0.0026 (10) 0.0021 (10) 0.0041 (10) 0.0056 (10) 0.0077 (9) 0.0056 (10) 0.0052 (9) 0.0013 (10) −0.0015 (10) 0.0018 (10) 0.0027 (9) 0.0060 (9). −0.0008 (7) −0.0024 (7) −0.0028 (9) −0.0022 (8) 0.0173 (12) 0.0024 (9) 0.0002 (11) 0.0007 (10) −0.0004 (10) −0.0038 (12) 0.0042 (12) 0.0061 (11) −0.0006 (10) 0.0031 (11) 0.0004 (11) 0.0016 (10) −0.0048 (11) −0.0032 (10) −0.0009 (10) −0.0017 (10) 0.0060 (11) 0.0017 (10) 0.0000 (10) 0.0002 (10). Geometric parameters (Å, º) Cu1—O1 Cu1—O2 Cu1—O4 Cu1—N2 Cu1—N3 N1—O1 N1—C2 N1—C6 N2—C7 N2—C18 N3—C16 N3—C17 N4—O5 N4—O6 N4—O4 O2—C1 O3—C1 C1—C2 C2—C3 C3—C4 C3—H3A. Acta Cryst. (2005). E61, m441–m442. 1.8962 (16) 1.9018 (16) 2.2839 (16) 2.0113 (19) 2.0090 (19) 1.332 (2) 1.358 (3) 1.361 (3) 1.322 (3) 1.363 (3) 1.333 (3) 1.360 (3) 1.226 (3) 1.232 (2) 1.280 (2) 1.278 (3) 1.217 (3) 1.531 (3) 1.393 (3) 1.377 (3) 0.9300. C5—C6 C5—H5A C6—H6A C7—C8 C7—H7A C8—C9 C8—H8A C9—C10 C9—H9A C10—C18 C10—C11 C11—C12 C11—H11A C12—C13 C12—H12A C13—C14 C13—C17 C14—C15 C14—H14A C15—C16 C15—H15A. 1.365 (3) 0.9300 0.9300 1.398 (3) 0.9300 1.371 (3) 0.9300 1.411 (3) 0.9300 1.400 (3) 1.431 (3) 1.358 (3) 0.9300 1.432 (3) 0.9300 1.409 (3) 1.413 (3) 1.368 (3) 0.9300 1.401 (3) 0.9300. sup-3.

(7) supporting information C4—C5 C4—H4A. 1.381 (3) 0.9300. C16—H16A C17—C18. 0.9300 1.429 (3). O1—Cu1—O2 O1—Cu1—O4 O1—Cu1—N2 O1—Cu1—N3 O2—Cu1—O4 O2—Cu1—N2 O2—Cu1—N3 O4—Cu1—N2 O4—Cu1—N3 N2—Cu1—N3 O1—N1—C2 O1—N1—C6 C2—N1—C6 C7—N2—C18 C7—N2—Cu1 C18—N2—Cu1 C16—N3—C17 C16—N3—Cu1 C17—N3—Cu1 O5—N4—O6 O5—N4—O4 O6—N4—O4 N1—O1—Cu1 C1—O2—Cu1 N4—O4—Cu1 O3—C1—O2 O3—C1—C2 O2—C1—C2 N1—C2—C3 N1—C2—C1 C3—C2—C1 C4—C3—C2 C4—C3—H3A C2—C3—H3A C3—C4—C5 C3—C4—H4A C5—C4—H4A C6—C5—C4 C6—C5—H5A C4—C5—H5A. 93.78 (7) 104.56 (7) 165.37 (7) 88.42 (7) 93.64 (7) 93.47 (7) 170.52 (7) 87.63 (7) 94.73 (7) 82.45 (7) 124.92 (19) 113.68 (18) 121.4 (2) 118.0 (2) 129.98 (16) 111.91 (15) 118.50 (19) 129.48 (16) 111.89 (15) 121.0 (2) 118.2 (2) 120.8 (2) 125.90 (13) 128.02 (16) 119.29 (14) 124.2 (2) 115.0 (2) 120.8 (2) 118.1 (2) 123.9 (2) 118.0 (2) 121.4 (2) 119.3 119.3 118.3 (2) 120.8 120.8 120.3 (2) 119.8 119.8. N1—C6—C5 N1—C6—H6A C5—C6—H6A N2—C7—C8 N2—C7—H7A C8—C7—H7A C9—C8—C7 C9—C8—H8A C7—C8—H8A C8—C9—C10 C8—C9—H9A C10—C9—H9A C18—C10—C9 C18—C10—C11 C9—C10—C11 C12—C11—C10 C12—C11—H11A C10—C11—H11A C11—C12—C13 C11—C12—H12A C13—C12—H12A C14—C13—C17 C14—C13—C12 C17—C13—C12 C15—C14—C13 C15—C14—H14A C13—C14—H14A C14—C15—C16 C14—C15—H15A C16—C15—H15A N3—C16—C15 N3—C16—H16A C15—C16—H16A N3—C17—C13 N3—C17—C18 C13—C17—C18 N2—C18—C10 N2—C18—C17 C10—C18—C17. 120.4 (2) 119.8 119.8 122.7 (2) 118.6 118.6 119.3 (2) 120.4 120.4 119.9 (2) 120.0 120.0 116.4 (2) 119.0 (2) 124.5 (2) 121.1 (2) 119.4 119.4 121.3 (2) 119.4 119.4 116.9 (2) 124.8 (2) 118.3 (2) 119.7 (2) 120.2 120.2 119.8 (2) 120.1 120.1 122.1 (2) 118.9 118.9 122.9 (2) 116.8 (2) 120.3 (2) 123.6 (2) 116.5 (2) 120.0 (2). Acta Cryst. (2005). E61, m441–m442. sup-4.

(8)

New documents

A dimension-reduction approach is proposed for both phases of the collision detection algorithm: A Broad Phase which culminates in the “grading” of the approximate collisions detected,

These resources are used for different purposes: the confusion sets provide the correction candidates; the compiled corpus provide the training data for the language model; Web-scale

In a second block of trials, participants completed the dual task RSVP paradigm in which they had to detect both a T1 image rotated landscape or building and a T2 image containing a

4.2 Attribute ownership decision By employing the above mentioned character recognition features to classify the sentences, we get two sentence sets, the description sentences with one

Capacity and capability Regulation 15: Staffing Regulation 16: Training and staff development Regulation 23: Governance and management Regulation 3: Statement of purpose Regulation 34:

Sinica corpus Part of Penn CTB7.0 Part of Penn CTB7.0 SIGHAN Bake-off 2013 test set Word base Sinica corpus and Tsai's list of Chinese words Training data released Word base Pinyin

The centre's statement of purpose had been reviewed following the previous inspection and the inspector found that the document reflected the services and facilities provided at the

the Chinese spelling check CSC task, in CLP-SIGHAN Bake-Off 2014 is developing the computer assisted tools to detect combining error checking and correction several kinds of grammatical

As is shown in Figure 1, our system gets the input sentences firstly, then the sentences will be segmented by word which is based on CRF model, after the step of word segmentation,

Ultimately, it is argued that the redistribution of surplus food, particularly food that has been prepared or cooked, is likely to become a growing practice within urban areas as food