• No results found

(Nitrato κO)(1,10 phenanthroline κ2N,N′)(picolinato N oxide κ2O,O′)copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "(Nitrato κO)(1,10 phenanthroline κ2N,N′)(picolinato N oxide κ2O,O′)copper(II)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m441±m442 doi:10.1107/S1600536805002515 Lei Gouet al. [Cu(C6H4NO3)(NO3)(C12H8N2)]

m441

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(Nitrato-

j

O

)(1,10-phenanthroline-

j

2

N,N

000

)-(picolinato

N

-oxide-

j

2

O,O

000

)copper(II)

Lei Gou,aXiong-Wei Qu,bBo

Zheng,aDao-Yong Wangaand

Huai-Ming Hua*

aDepartment of Chemistry, Northwest University, Xi'an 710069, People's Republic of China, andbInstitute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China

Correspondence e-mail: chemhu1@nwu.edu.cn

Key indicators Single-crystal X-ray study

T= 298 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.034

wRfactor = 0.079

Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

The coordination environment of copper(II) in the title compound, [Cu(C6H4NO3)(NO3)(C12H8N2)], is square pyra-midal; the basal plane comprises the two N atoms of 1,10-phenanthroline and the two O atoms of picolinate N-oxide, with the apical position occupied by a nitrate O atom.

Comment

Picolinic acidN-oxide has a polar N!O group that provides a strongly basic O-atom site for coordination. Only a few complexes of this ligand have been crystallographically authenticated. In the binuclear compound La(6-mepic-NO)66H2O, two LaIIIatoms are bridged by two picolinateN -oxide groups (Yanet al., 1995). In the ErIII±NaImixed-metal coordination polymer, the main feature is a polymeric chain of two zigzag chains (Mao et al., 1998). The copper(II) nitrate derivative of the acid, (I), is a ®ve-coordinate compound as the phenanthroline (phen) adduct. The CuIIatom is coordinated by the two N atoms of a phen ligand and the two O atoms of a picolinateN-oxide anion, these atoms forming the basal plane; one O atom of the nitrate group occupies the apical position. The distances involving the Cu atom are comparable with those found in, for example, [Cu(phen)(ox)(H2O)]H2O (Chenet al., 2001) and [Cu(phen)(gly)(Cl)]H2O (Solanset al., 1988). The CuÐOnitrate bond distance is signi®cantly longer than the other CuÐO bond distances, since the O atom of the nitrate occupies the apical position. Both the heterocycle and the anion are planar. The CuIIatom lies out of the basal plane by 0.1456 (5) AÊ in the direction of atom O4.

Experimental

To a solution of Cu(NO3)23H2O (242 mg, 1 mmol) and 1,10-phenanthroline (180 mg, 1 mmol) in ethanol (20 ml) was added a solution of picolinic acid N-oxide (139 mg, 1 mmol) in

(2)

furan (10 ml). The resulting solution was stirred for 4 h at room temperature. Crystals of (I) suitable for X-ray analysis were obtained after several days. Analysis found: C 48.56, H 2.57, N 12.86%; calculated for C18H12CuN4O6: C 48.71, H 2.73, N 12.62%.

Crystal data

[Cu(C6H4NO3)(NO3)(C12H8N2)]

Mr= 443.86

Monoclinic,P21=c

a= 9.2861 (11) AÊ

b= 9.5829 (12) AÊ

c= 18.438 (3) AÊ

= 90.750 (4)

V= 1640.7 (4) AÊ3

Z= 4

Dx= 1.797 Mg m 3

MoKradiation Cell parameters from 6799

re¯ections

= 3.1±27.4

= 1.38 mm 1

T= 298(2) K Block, blue

0.380.240.16 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer

Oscillation scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.678,Tmax= 0.8 02 6799 measured re¯ections

3713 independent re¯ections 2699 re¯ections withI> 2(I)

Rint= 0.033 max= 27.4

h= 11!12

k= 12!12

l= 23!23

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.034

wR(F2) = 0.079

S= 0.91 3713 re¯ections 262 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0434P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.39 e AÊ 3

min= 0.47 e AÊ 3

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐO1 1.8962 (16)

Cu1ÐO2 1.9018(16)

Cu1ÐO4 2.2839 (16)

Cu1ÐN2 2.0113 (19)

Cu1ÐN3 2.0090 (19)

O1ÐCu1ÐO2 93.78(7)

O1ÐCu1ÐO4 104.56 (7)

O1ÐCu1ÐN2 165.37 (7)

O1ÐCu1ÐN3 88.42 (7)

O2ÐCu1ÐO4 93.64 (7)

O2ÐCu1ÐN2 93.47 (7)

O2ÐCu1ÐN3 170.52 (7)

O4ÐCu1ÐN2 87.63 (7)

O4ÐCu1ÐN3 94.73 (7)

N2ÐCu1ÐN3 82.45 (7)

H atoms were placed at calculated positions and re®ned using a riding model, with CÐH distances in the range 0.93±0.96 AÊ and with Uiso(H) = 1.2Ueq(C).

Data collection:RAPID-AUTO (Rigaku, 2001); cell re®nement: RAPID-AUTO; data reduction:RAPID-AUTO; program(s) used to solve structure: SHELXS97(Sheldrick, 1990); program(s) used to re®ne structure:SHELXL97(Sheldrick, 1997); molecular graphics: XP(Siemens, 1994); software used to prepare material for publica-tion:SHELXTL(Siemens, 1995).

References

Chen, X. F., Cheng, P., Liu, X., Zhao, B., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2001).Inorg. Chem.40, 2652±2659.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Mao, J. G., Zhang, H. J., Ni, J. Z. & Mak, T. C. W. (1998).J. Chem. Crystallogr. 28, 413±418.

Rigaku (2001).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Siemens (1994).XP.Version 5.03. Siemens Analytical X-ray Instruments Inc.,

Madison, Wisconsin, USA.

Siemens (1995).SHELXTL.Version 5.0. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

Solans, X., Ruiz-Ramirez, L., Martinez, A., Gasque, L. & Brianso, J. L. (1988).

Acta Cryst.C44, 628±631.

Yan, L., Liu, J. M., Wang, X., Yang, R. D. & Song, F. L. (1995).Polyhedron,14, 3543±3548.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, m441–m442

supporting information

Acta Cryst. (2005). E61, m441–m442 [https://doi.org/10.1107/S1600536805002515]

(Nitrato-

κ

O

)(1,10-phenanthroline-

κ

2

N,N

)(picolinato

N

-oxide-κ

2

O,O

)copper(II)

Lei Gou, Xiong-Wei Qu, Bo Zheng, Dao-Yong Wang and Huai-Ming Hu

(Nitrato-κO)(1,10-phenanthroline-κ2N,N)(picolinato N-oxide- κ2O,O)copper(II)

Crystal data

[Cu(C6H4NO3)(NO3)(C12H8N2)]

Mr = 443.86 Monoclinic, P21/c

a = 9.2861 (11) Å

b = 9.5829 (12) Å

c = 18.438 (3) Å

β = 90.750 (4)°

V = 1640.7 (4) Å3

Z = 4

F(000) = 900

Dx = 1.797 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6799 reflections

θ = 3.1–27.4°

µ = 1.38 mm−1

T = 298 K Block, blue

0.38 × 0.24 × 0.16 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer

Radiation source: rotating anode Graphite monochromator oscillation scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.678, Tmax = 0.802

6799 measured reflections 3713 independent reflections 2699 reflections with I > 2σ(I)

Rint = 0.033

θmax = 27.4°, θmin = 3.1°

h = −11→12

k = −12→12

l = −23→23

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.034

wR(F2) = 0.079

S = 0.91 3713 reflections 262 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0434P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.39 e Å−3

Δρmin = −0.47 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.66658 (3) 0.59025 (3) 0.453019 (14) 0.02234 (9)

(4)

N2 0.50419 (19) 0.7284 (2) 0.45946 (10) 0.0230 (4) N3 0.66362 (19) 0.60701 (19) 0.56160 (10) 0.0222 (4)

N4 0.9079 (2) 0.7727 (2) 0.38519 (11) 0.0288 (5)

O1 0.79083 (18) 0.43446 (17) 0.46404 (8) 0.0300 (4)

O2 0.63850 (17) 0.56135 (17) 0.35177 (8) 0.0276 (4)

O3 0.7050 (2) 0.4924 (2) 0.24319 (9) 0.0485 (6)

O4 0.81773 (17) 0.77543 (17) 0.43708 (9) 0.0298 (4)

O5 0.9285 (3) 0.8807 (2) 0.35122 (14) 0.0711 (8)

O6 0.9709 (2) 0.66392 (19) 0.36937 (10) 0.0388 (5)

C1 0.7146 (3) 0.4877 (3) 0.30903 (13) 0.0267 (5)

C2 0.8245 (2) 0.3827 (2) 0.33891 (12) 0.0232 (5)

C3 0.8962 (3) 0.2983 (2) 0.28963 (13) 0.0264 (5)

H3A 0.8771 0.3087 0.2403 0.032*

C4 0.9949 (3) 0.1998 (3) 0.31236 (13) 0.0305 (6)

H4A 1.0406 0.1424 0.2791 0.037*

C5 1.0241 (3) 0.1882 (3) 0.38572 (14) 0.0329 (6)

H5A 1.0909 0.1229 0.4023 0.039*

C6 0.9555 (3) 0.2724 (3) 0.43404 (13) 0.0292 (6)

H6A 0.9775 0.2655 0.4833 0.035*

C7 0.4230 (3) 0.7838 (3) 0.40753 (13) 0.0267 (5)

H7A 0.4359 0.7541 0.3601 0.032*

C8 0.3186 (3) 0.8854 (2) 0.42103 (13) 0.0286 (6)

H8A 0.2630 0.9217 0.3832 0.034*

C9 0.2990 (3) 0.9309 (2) 0.49068 (13) 0.0271 (5)

H9A 0.2301 0.9986 0.5003 0.032*

C10 0.3836 (2) 0.8749 (2) 0.54779 (12) 0.0240 (5)

C11 0.3709 (2) 0.9136 (3) 0.62238 (12) 0.0262 (5)

H11A 0.3042 0.9812 0.6354 0.031*

C12 0.4545 (2) 0.8531 (2) 0.67456 (12) 0.0249 (5)

H12A 0.4453 0.8814 0.7225 0.030*

C13 0.5565 (2) 0.7466 (2) 0.65719 (12) 0.0243 (5)

C14 0.6439 (2) 0.6758 (2) 0.70823 (13) 0.0265 (5)

H14A 0.6399 0.6990 0.7571 0.032*

C15 0.7347 (3) 0.5727 (2) 0.68552 (13) 0.0287 (6)

H15A 0.7905 0.5236 0.7191 0.034*

C16 0.7434 (3) 0.5412 (3) 0.61153 (13) 0.0255 (5)

H16A 0.8069 0.4721 0.5968 0.031*

C17 0.5708 (2) 0.7077 (2) 0.58373 (12) 0.0215 (5)

C18 0.4837 (2) 0.7724 (2) 0.52883 (12) 0.0232 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, m441–m442

O1 0.0418 (10) 0.0296 (10) 0.0188 (8) 0.0113 (8) 0.0060 (7) −0.0008 (7) O2 0.0302 (9) 0.0320 (10) 0.0207 (8) 0.0092 (7) 0.0005 (7) −0.0024 (7) O3 0.0623 (13) 0.0648 (14) 0.0184 (9) 0.0332 (11) −0.0001 (9) −0.0028 (9) O4 0.0353 (10) 0.0279 (9) 0.0266 (9) −0.0046 (8) 0.0097 (7) −0.0022 (8) O5 0.1004 (19) 0.0323 (12) 0.0823 (18) 0.0106 (12) 0.0601 (15) 0.0173 (12) O6 0.0436 (11) 0.0305 (10) 0.0424 (11) 0.0127 (9) 0.0116 (9) 0.0024 (9) C1 0.0298 (13) 0.0271 (13) 0.0232 (12) 0.0023 (11) 0.0002 (10) 0.0002 (11) C2 0.0253 (12) 0.0216 (13) 0.0227 (12) −0.0019 (10) 0.0034 (9) 0.0007 (10) C3 0.0287 (13) 0.0266 (13) 0.0239 (12) −0.0019 (10) 0.0025 (10) −0.0004 (10) C4 0.0293 (13) 0.0289 (14) 0.0334 (14) 0.0037 (11) 0.0083 (11) −0.0038 (12) C5 0.0314 (14) 0.0278 (13) 0.0394 (15) 0.0063 (11) 0.0028 (11) 0.0042 (12) C6 0.0312 (13) 0.0296 (13) 0.0267 (13) 0.0038 (11) −0.0006 (10) 0.0061 (11) C7 0.0301 (13) 0.0303 (14) 0.0197 (12) −0.0001 (11) 0.0026 (10) −0.0006 (10) C8 0.0326 (13) 0.0271 (14) 0.0262 (13) 0.0007 (11) 0.0021 (10) 0.0031 (11) C9 0.0280 (13) 0.0254 (13) 0.0278 (12) 0.0018 (10) 0.0041 (10) 0.0004 (11) C10 0.0264 (12) 0.0208 (12) 0.0248 (12) −0.0034 (9) 0.0056 (10) 0.0016 (10) C11 0.0290 (12) 0.0247 (12) 0.0251 (12) −0.0016 (11) 0.0077 (9) −0.0048 (11) C12 0.0292 (13) 0.0269 (12) 0.0186 (12) −0.0055 (10) 0.0056 (10) −0.0032 (10) C13 0.0263 (12) 0.0240 (12) 0.0227 (12) −0.0069 (10) 0.0052 (9) −0.0009 (10) C14 0.0306 (13) 0.0301 (13) 0.0187 (11) −0.0056 (11) 0.0013 (10) −0.0017 (10) C15 0.0327 (13) 0.0280 (14) 0.0253 (12) −0.0038 (11) −0.0015 (10) 0.0060 (11) C16 0.0288 (12) 0.0233 (12) 0.0243 (12) −0.0001 (10) 0.0018 (10) 0.0017 (10) C17 0.0236 (12) 0.0198 (12) 0.0212 (11) −0.0042 (9) 0.0027 (9) 0.0000 (10) C18 0.0278 (12) 0.0208 (12) 0.0210 (12) −0.0054 (10) 0.0060 (9) 0.0002 (10)

Geometric parameters (Å, º)

Cu1—O1 1.8962 (16) C5—C6 1.365 (3)

Cu1—O2 1.9018 (16) C5—H5A 0.9300

Cu1—O4 2.2839 (16) C6—H6A 0.9300

Cu1—N2 2.0113 (19) C7—C8 1.398 (3)

Cu1—N3 2.0090 (19) C7—H7A 0.9300

N1—O1 1.332 (2) C8—C9 1.371 (3)

N1—C2 1.358 (3) C8—H8A 0.9300

N1—C6 1.361 (3) C9—C10 1.411 (3)

N2—C7 1.322 (3) C9—H9A 0.9300

N2—C18 1.363 (3) C10—C18 1.400 (3)

N3—C16 1.333 (3) C10—C11 1.431 (3)

N3—C17 1.360 (3) C11—C12 1.358 (3)

N4—O5 1.226 (3) C11—H11A 0.9300

N4—O6 1.232 (2) C12—C13 1.432 (3)

N4—O4 1.280 (2) C12—H12A 0.9300

O2—C1 1.278 (3) C13—C14 1.409 (3)

O3—C1 1.217 (3) C13—C17 1.413 (3)

C1—C2 1.531 (3) C14—C15 1.368 (3)

C2—C3 1.393 (3) C14—H14A 0.9300

C3—C4 1.377 (3) C15—C16 1.401 (3)

(6)

C4—C5 1.381 (3) C16—H16A 0.9300

C4—H4A 0.9300 C17—C18 1.429 (3)

O1—Cu1—O2 93.78 (7) N1—C6—C5 120.4 (2)

O1—Cu1—O4 104.56 (7) N1—C6—H6A 119.8

O1—Cu1—N2 165.37 (7) C5—C6—H6A 119.8

O1—Cu1—N3 88.42 (7) N2—C7—C8 122.7 (2)

O2—Cu1—O4 93.64 (7) N2—C7—H7A 118.6

O2—Cu1—N2 93.47 (7) C8—C7—H7A 118.6

O2—Cu1—N3 170.52 (7) C9—C8—C7 119.3 (2)

O4—Cu1—N2 87.63 (7) C9—C8—H8A 120.4

O4—Cu1—N3 94.73 (7) C7—C8—H8A 120.4

N2—Cu1—N3 82.45 (7) C8—C9—C10 119.9 (2)

O1—N1—C2 124.92 (19) C8—C9—H9A 120.0

O1—N1—C6 113.68 (18) C10—C9—H9A 120.0

C2—N1—C6 121.4 (2) C18—C10—C9 116.4 (2)

C7—N2—C18 118.0 (2) C18—C10—C11 119.0 (2)

C7—N2—Cu1 129.98 (16) C9—C10—C11 124.5 (2)

C18—N2—Cu1 111.91 (15) C12—C11—C10 121.1 (2)

C16—N3—C17 118.50 (19) C12—C11—H11A 119.4

C16—N3—Cu1 129.48 (16) C10—C11—H11A 119.4

C17—N3—Cu1 111.89 (15) C11—C12—C13 121.3 (2)

O5—N4—O6 121.0 (2) C11—C12—H12A 119.4

O5—N4—O4 118.2 (2) C13—C12—H12A 119.4

O6—N4—O4 120.8 (2) C14—C13—C17 116.9 (2)

N1—O1—Cu1 125.90 (13) C14—C13—C12 124.8 (2)

C1—O2—Cu1 128.02 (16) C17—C13—C12 118.3 (2)

N4—O4—Cu1 119.29 (14) C15—C14—C13 119.7 (2)

O3—C1—O2 124.2 (2) C15—C14—H14A 120.2

O3—C1—C2 115.0 (2) C13—C14—H14A 120.2

O2—C1—C2 120.8 (2) C14—C15—C16 119.8 (2)

N1—C2—C3 118.1 (2) C14—C15—H15A 120.1

N1—C2—C1 123.9 (2) C16—C15—H15A 120.1

C3—C2—C1 118.0 (2) N3—C16—C15 122.1 (2)

C4—C3—C2 121.4 (2) N3—C16—H16A 118.9

C4—C3—H3A 119.3 C15—C16—H16A 118.9

C2—C3—H3A 119.3 N3—C17—C13 122.9 (2)

C3—C4—C5 118.3 (2) N3—C17—C18 116.8 (2)

C3—C4—H4A 120.8 C13—C17—C18 120.3 (2)

C5—C4—H4A 120.8 N2—C18—C10 123.6 (2)

C6—C5—C4 120.3 (2) N2—C18—C17 116.5 (2)

C6—C5—H5A 119.8 C10—C18—C17 120.0 (2)

References

Related documents

~ur business trend over the next six months, excluding purely seasonal variations, will The consumer confidence indicator is the arithmetic average of the answers

(2014) Knowledge, Attitude, Utilization of Emergency Contraceptive and Associated Factors among Female Students of Debre Markos Higher Institutions, Northwest Ethiopia.

De: im (in+dem) internationalen , these words often remain unaligned resulting in gaps in the sequences, and so fragmented paral- lel segments are formed. To allow a small num- ber

This study aims to study impact of personality traits- Openness, Conscientiousness, Extraversion, Agreeableness ad Neuroticism- on Impulse Buying

3.1 Vanilla Transformer Language Models In order to apply Transformer or self-attention to language modeling, the central problem is how to train a Transformer to effectively encode

More precisely, the paper develops a positive model of government behavior in order to define the intertemporal fiscal policies that are optimal for a country,

These features define six aspectual classes: Only dynamic predicates can be bounded or not, and only bounded predicates can be extended or punctual, and introduce an explicit change

We demon- strate a speed-up of several orders of magni- tude when predicting word similarity by vector operations on our embeddings as opposed to directly computing the