trans Bis­[(2E) 3 (N,N di­methyl­amino) 1 (2 pyridyl)­prop 2 en 1 one]­diiso­thio­cyanato­nickel(II)

(1)metal-organic papers trans-Bis[(2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one]diisothiocyanatonickel(II). Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. Gai-Xian Li,* Jian-Qing Li and Xu-Zhen Kang Department of Chemistry, Jinzhong University, Yuci 030600, People's Republic of China Correspondence e-mail: ligaixian201@sina.com. In the title complex, [Ni(NCS)2(C10H12N2O)2], the Ni atom is trans-coordinated by two pairs of N and O atoms from two bidentate chelating (2E)-3-(N,N-dimethylamino)-1-(2pyridyl)prop-2-en-1-one ligands, and by two N atoms from two isothiocyanate ligands, in a distorted octahedral geometry. The complex is located on an inversion center.. Received 20 January 2005 Accepted 25 January 2005 Online 29 January 2005. Comment Key indicators Single-crystal X-ray study T = 298 K Ê Mean (C±C) = 0.007 A R factor = 0.070 wR factor = 0.145 Data-to-parameter ratio = 14.5 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2005 International Union of Crystallography Printed in Great Britain ± all rights reserved. m410. Li, Li and Kang. . 2±Pyridyl ketones are potentially bidentate ligands which may show interesting coordination properties towards metal ions. Some structures have been studied by X-ray diffraction, in which the ligands adopt either a mono- (Kovala-Demertzi et al., 1992 Yang et al., 2000) or bidentate chelating (Sommerer et al., 1998; Goher et al., 1993) coordination mode, depending on the central ions and anions. We report here a nickel complex, trans-bis[(2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2en-1-one]diisothiocyanatonickel(II), (I), in which the propenone ligand adopts a bidentate coordination mode.. Complex (I) is located on an inversion center, as shown in Fig. 1. The Ni atom is trans-coordinated by two pairs of N and O atoms from two bidentate chelating (2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one (L) ligands, and by two N atoms from two isothiocyanate ligands, in a distorted octahedral geometry. The ®ve-membered chelate ring formed by the Ni atom and the bidentate ligand L is almost planar, the Ê for atom O1. Atoms C6, largest deviation being 0.037 (3) A C7, C8, N2, C9 and C10 form a plane, the largest deviation Ê for C7; this plane is twisted by 12.6 (3) with being 0.040 (4) A respect to the chelate ring. The terminal isothiocyanate group is nearly linear, with an NÐCÐS angle of 178.7 (5) , but it is slightly bent at the N atom, making an NiÐNÐC angle of 171.9 (5) . These values may be compared to other nickel complexes containing isothiocyanate ligands (Clemente-Juan et al., 2000).. [Ni(NCS)2(C10H12N2O)2]. doi:10.1107/S1600536805002795. Acta Cryst. (2005). E61, m410±m411.

(2) metal-organic papers Experimental The (2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one (L) ligand was synthesized by a modi®ed literature method (Amoroso et al., 1994). A solution of Ni(NCS)2 (18 mg, 0.1 mmol) in MeOH (10 ml) was carefully layered on top of a solution of L (36 mg, 0.2 mmol) in CHCl3 (10 ml) in a test-tube. After 10 d at room temperature, orange single crystals of (I) appeared at the boundary (yield: 30%). IR (KBr pellet, cmÿ1): 2874 (w), 2093 (s), 1632 (s), 1596 (m), 1575 (m), 1519 (s), 1469 (m), 1418 (s), 1296 (m), 1278 (m), 1258 (s), 1156 (m), 1114 (m), 1051 (m), 1025 (m), 989 (w), 905 (m), 760 (m), 694 (m), 648 (w), 590 (m), 472 (w). Figure 1. Crystal data [Ni(NCS)2(C10H12N2O)2] Mr = 527.30 Monoclinic, P21 =c Ê a = 8.086 (4) A Ê b = 10.635 (5) A Ê c = 14.519 (7) A

(3) = 103.614 (8) Ê3 V = 1213.5 (10) A Z=2. Dx = 1.443 Mg mÿ3 Mo K radiation Cell parameters from 912 re¯ections  = 3.4±22.7  = 1.00 mmÿ1 T = 298 (2) K Block, orange 0.16  0.07  0.06 mm. Data collection Bruker SMART CCD area-detector diffractometer ' and ! scans Absorption correction: multi-scan (SADABS; Bruker, 1998) Tmin = 0.856, Tmax = 0.942 6213 measured re¯ections. 2217 independent re¯ections 1325 re¯ections with I > 2(I) Rint = 0.090 max = 25.5 h = ÿ7 ! 9 k = ÿ12 ! 12 l = ÿ17 ! 17. Refinement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.070 wR(F 2) = 0.145 S = 0.98 2217 re¯ections 153 parameters. H-atom parameters constrained w = 1/[ 2(Fo2) + (0.0482P)2] where P = (Fo2 + 2Fc2)/3 (/)max = 0.041 Ê ÿ3 max = 0.40 e A Ê ÿ3 min = ÿ0.39 e A. H atoms were placed in calculated positions [CÐH = 0.93 and Ê , and Uiso(H) = 1.2Ueq(C)] and were included in the re®nement 0.96 A in the riding-model approximation. Data collection: SMART (Bruker, 1998); cell re®nement: SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker,. Acta Cryst. (2005). E61, m410±m411. View of the title compound, shown with 50% probability ellipsoids [symmetry code: (i) ÿx, ÿy, ÿz].. 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.. The authors thank Jinzhong University for supporting this work.. References Amoroso, A. J., Thompson, A. M. C., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994). J. Chem. Soc. Chem. Commun. pp. 2751±2752. Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA. Burnett, M. N. & Johnson, C. K.(1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Clemente-Juan, J. M., Chansou, B., Donnadieu, B. & Tuchagues, J.-P. (2000). Inorg. Chem. 39, 5515±5519. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Goher, M. A. S., Abdou, A. E. H., Yip, W.-H. & Mak, T. C. W. (1993). Polyhedron, 12, 2981±2987. Kovala-Demertzi, D., Michaelides, A. & Aubry, A. (1992). Inorg. Chim. Acta, 194, 189±194. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany. Sommerer, S. O., Friebe, T. L., Jircitano, A. J., MacBeth, C. E. & Abboud, K. A. (1998). Acta Cryst. C54, 178±179. Yang, G., Zheng, S.-L., Chen, X.-M., Lee, H. K., Zhou, Z.-Y. & Mak, T. C. W. (2000). Inorg. Chim. Acta, 303, 86±93.. Li, Li and Kang. . [Ni(NCS)2(C10H12N2O)2]. m411.

(4) supporting information. supporting information Acta Cryst. (2005). E61, m410–m411. [https://doi.org/10.1107/S1600536805002795]. trans-Bis[(2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one]diisothiocyanatonickel(II) Gai-Xian Li, Jian-Qing Li and Xu-Zhen Kang trans-Bis[(2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1- one]diisothiocyanatonickel(II) Crystal data [Ni(NCS)2(C10H12N2O)2] Mr = 527.30 Monoclinic, P21/c Hall symbol: -P 2ybc a = 8.086 (4) Å b = 10.635 (5) Å c = 14.519 (7) Å β = 103.614 (8)° V = 1213.5 (10) Å3 Z=2. F(000) = 548 Dx = 1.443 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 912 reflections θ = 3.4–22.7° µ = 1.00 mm−1 T = 298 K Block, orange 0.16 × 0.07 × 0.06 mm. Data collection Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1998) Tmin = 0.856, Tmax = 0.942. 6213 measured reflections 2217 independent reflections 1325 reflections with I > 2σ(I) Rint = 0.090 θmax = 25.5°, θmin = 2.4° h = −7→9 k = −12→12 l = −17→17. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.070 wR(F2) = 0.145 S = 0.98 2217 reflections 153 parameters 0 restraints Primary atom site location: structure-invariant direct methods. Acta Cryst. (2005). E61, m410–m411. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0482P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.041 Δρmax = 0.40 e Å−3 Δρmin = −0.39 e Å−3. sup-1.

(5) supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). C1 H1 C2 H2 C3 H3 C4 H4 C5 C6 C7 H7 C8 H8 C9 H9A H9B H9C C10 H10A H10B H10C C11 N1 N2 N3 Ni1 O1 S1. x. y. z. Uiso*/Ueq. −0.1093 (7) −0.0022 −0.2178 (8) −0.1834 −0.3760 (7) −0.4510 −0.4236 (7) −0.5318 −0.3096 (6) −0.3403 (6) −0.4967 (6) −0.5756 −0.5313 (6) −0.4489 −0.8030 (7) −0.8802 −0.8625 −0.7576 −0.6897 (7) −0.5860 −0.7201 −0.7789 −0.1241 (6) −0.1516 (5) −0.6656 (5) −0.0731 (6) 0.0000 −0.2233 (4) −0.1984 (2). 0.1639 (5) 0.1484 0.2426 (5) 0.2811 0.2644 (5) 0.3176 0.2053 (5) 0.2176 0.1297 (4) 0.0616 (5) 0.0784 (5) 0.1364 0.0084 (5) −0.0502 0.1016 (6) 0.0684 0.1147 0.1801 −0.0735 (6) −0.1189 −0.0274 −0.1316 −0.2524 (6) 0.1090 (4) 0.0135 (4) −0.1605 (5) 0.0000 −0.0064 (3) −0.38194 (15). 0.1449 (4) 0.1838 0.1765 (4) 0.2354 0.1216 (4) 0.1423 0.0333 (3) −0.0052 0.0047 (3) −0.0887 (4) −0.1549 (3) −0.1434 −0.2365 (4) −0.2422 −0.3107 (4) −0.2757 −0.3755 −0.2834 −0.3865 (4) −0.3837 −0.4449 −0.3833 0.0860 (3) 0.0607 (3) −0.3072 (3) 0.0623 (3) 0.0000 −0.1032 (2) 0.12175 (11). 0.0495 (15) 0.059* 0.0607 (16) 0.073* 0.0587 (16) 0.070* 0.0468 (14) 0.056* 0.0370 (12) 0.0390 (12) 0.0418 (13) 0.050* 0.0467 (13) 0.056* 0.0674 (18) 0.101* 0.101* 0.101* 0.0659 (18) 0.099* 0.099* 0.099* 0.0451 (14) 0.0410 (11) 0.0476 (11) 0.0605 (14) 0.0442 (3) 0.0525 (10) 0.0674 (5). Atomic displacement parameters (Å2). C1 C2 C3. U11. U22. U33. U12. U13. U23. 0.038 (3) 0.066 (4) 0.053 (4). 0.062 (4) 0.071 (4) 0.073 (4). 0.040 (3) 0.045 (3) 0.051 (4). −0.012 (3) −0.004 (3) 0.010 (3). −0.008 (3) 0.015 (3) 0.014 (3). −0.004 (3) −0.013 (3) −0.003 (3). Acta Cryst. (2005). E61, m410–m411. sup-2.

(6) supporting information C4 C5 C6 C7 C8 C9 C10 C11 N1 N2 N3 Ni1 O1 S1. 0.050 (4) 0.035 (3) 0.023 (3) 0.035 (3) 0.028 (3) 0.039 (4) 0.057 (4) 0.033 (3) 0.030 (2) 0.039 (3) 0.049 (3) 0.0278 (5) 0.035 (2) 0.0591 (11). 0.051 (3) 0.040 (3) 0.046 (3) 0.047 (3) 0.054 (3) 0.088 (5) 0.075 (4) 0.068 (4) 0.046 (3) 0.055 (3) 0.065 (3) 0.0547 (6) 0.069 (3) 0.0664 (11). 0.034 (3) 0.036 (3) 0.046 (3) 0.042 (3) 0.056 (3) 0.068 (4) 0.060 (4) 0.031 (3) 0.043 (2) 0.044 (2) 0.070 (3) 0.0474 (6) 0.050 (2) 0.0717 (11). 0.014 (3) 0.008 (2) 0.002 (2) 0.002 (2) 0.004 (3) 0.019 (3) 0.006 (3) 0.018 (3) 0.0008 (19) 0.005 (2) 0.013 (3) 0.0080 (5) 0.0165 (19) −0.0026 (8). 0.001 (3) 0.008 (2) 0.002 (2) 0.005 (3) 0.006 (3) −0.001 (3) 0.003 (3) 0.000 (2) 0.001 (2) 0.001 (2) 0.019 (3) 0.0034 (4) 0.0020 (18) 0.0054 (9). 0.001 (3) 0.010 (2) 0.006 (3) −0.008 (2) 0.010 (3) 0.000 (4) −0.024 (3) 0.000 (3) −0.001 (2) −0.007 (2) 0.017 (3) 0.0018 (5) −0.005 (2) 0.0135 (9). Geometric parameters (Å, º) C1—N1 C1—C2 C1—H1 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5 C4—H4 C5—N1 C5—C6 C6—O1 C6—C7 C7—C8 C7—H7 C8—N2 C8—H8. 1.324 (6) 1.368 (7) 0.9300 1.358 (7) 0.9300 1.397 (7) 0.9300 1.360 (6) 0.9300 1.362 (5) 1.506 (7) 1.247 (5) 1.408 (6) 1.372 (6) 0.9300 1.308 (6) 0.9300. C9—N2 C9—H9A C9—H9B C9—H9C C10—N2 C10—H10A C10—H10B C10—H10C C11—N3 C11—S1 N1—Ni1 N3—Ni1 Ni1—N1i Ni1—O1i Ni1—O1 Ni1—N3i. 1.445 (6) 0.9600 0.9600 0.9600 1.454 (6) 0.9600 0.9600 0.9600 1.145 (6) 1.635 (6) 2.033 (4) 2.081 (5) 2.033 (4) 2.058 (3) 2.058 (3) 2.081 (5). N1—C1—C2 N1—C1—H1 C2—C1—H1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4 C4—C5—N1. 122.1 (5) 118.9 118.9 119.9 (5) 120.1 120.1 118.7 (5) 120.7 120.7 119.1 (5) 120.5 120.5 121.4 (4). N2—C10—H10A N2—C10—H10B H10A—C10—H10B N2—C10—H10C H10A—C10—H10C H10B—C10—H10C N3—C11—S1 C1—N1—C5 C1—N1—Ni1 C5—N1—Ni1 C8—N2—C9 C8—N2—C10 C9—N2—C10. 109.5 109.5 109.5 109.5 109.5 109.5 178.7 (5) 118.9 (4) 126.9 (4) 114.2 (3) 122.9 (5) 121.8 (4) 115.2 (4). Acta Cryst. (2005). E61, m410–m411. sup-3.

(7) supporting information C4—C5—C6 N1—C5—C6 O1—C6—C7 O1—C6—C5 C7—C6—C5 C8—C7—C6 C8—C7—H7 C6—C7—H7 N2—C8—C7 N2—C8—H8 C7—C8—H8 N2—C9—H9A N2—C9—H9B H9A—C9—H9B N2—C9—H9C H9A—C9—H9C H9B—C9—H9C. 125.5 (4) 113.1 (4) 123.7 (5) 117.4 (4) 118.9 (4) 119.2 (5) 120.4 120.4 128.2 (5) 115.9 115.9 109.5 109.5 109.5 109.5 109.5 109.5. C11—N3—Ni1 N1i—Ni1—N1 N1i—Ni1—O1i N1—Ni1—O1i N1i—Ni1—O1 N1—Ni1—O1 O1i—Ni1—O1 N1i—Ni1—N3i N1—Ni1—N3i O1i—Ni1—N3i O1—Ni1—N3i N1i—Ni1—N3 N1—Ni1—N3 O1i—Ni1—N3 O1—Ni1—N3 N3i—Ni1—N3 C6—O1—Ni1. 171.9 (5) 180.0 (2) 79.60 (15) 100.40 (15) 100.40 (15) 79.60 (15) 180.0 (3) 91.00 (18) 89.00 (18) 89.92 (16) 90.08 (16) 89.00 (18) 91.00 (18) 90.08 (16) 89.92 (16) 180.0 (3) 115.4 (3). Symmetry code: (i) −x, −y, −z.. Acta Cryst. (2005). E61, m410–m411. sup-4.

(8)

New documents

The proposed system has four main components: 1 a Form 10-K risk- sentiment dataset, consisting of a set of risk- labeled financial sentences and pre-trained sen- tence embeddings; 2

The current authors included randomized controlled trails RCTs focused on the efficacy and safety of acupuncture in women who were undergoing pregnancy or postpartum period and

Using the re- solved entity mentions we detect relationship sig- nals between entities and characterize the signal type Section 3.. In addition, we perform targeted sentiment and

VEMV is essentially a multi-metric evaluation tool that uses three tokenised text files source, ref- erence, and hypothesis as input parameters and scores the hypothesis translation MT

To confirm the association between aggrecan VNTR polymor- phism and IDD, we performed a case-control study for the association of the above gene polymorphisms with risk of IDD in

where x represents a sample from the real data dis- tribution pd and z is a noise vector sampled from the distribution pz, typically a random normal dis- tribution, which serves as the

We searched the EBSCO, PubMed, Springer, Ovid, Wiley, CNKI, VIP, Wanfang, Google schol- ar, and Cochrane Library databases updated to March, 2016 for studies in which the perioperative

We demonstrate a prototype implementation of a convolutional neural network for sentence classi- fication, applied to sentiment analysis—the model of Kim 2014—in JavaScript, running

Our VnCoreNLP supports key natural language processing NLP tasks including word segmentation, part-of-speech POS tagging, named entity recognition NER and dependency parsing, and

Effec- tiveness and safety of selected bone marrow stem cells on left ventricular function in pa- tients with acute myocardial infarction: a meta- analysis of randomized controlled