• No results found

trans Bis­[(2E) 3 (N,N di­methyl­amino) 1 (2 pyridyl)­prop 2 en 1 one]­diiso­thio­cyanato­nickel(II)

N/A
N/A
Protected

Academic year: 2020

Share "trans Bis­[(2E) 3 (N,N di­methyl­amino) 1 (2 pyridyl)­prop 2 en 1 one]­diiso­thio­cyanato­nickel(II)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m410

Li, Li and Kang [Ni(NCS)2(C10H12N2O)2] doi:10.1107/S1600536805002795 Acta Cryst.(2005). E61, m410±m411 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

trans

-Bis[(2

E

)-3-(

N,N

-dimethylamino)-1-(2-pyridyl)-prop-2-en-1-one]diisothiocyanatonickel(II)

Gai-Xian Li,* Jian-Qing Li and Xu-Zhen Kang

Department of Chemistry, Jinzhong University, Yuci 030600, People's Republic of China

Correspondence e-mail: ligaixian201@sina.com

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C±C) = 0.007 AÊ

Rfactor = 0.070

wRfactor = 0.145

Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title complex, [Ni(NCS)2(C10H12N2O)2], the Ni atom

is trans-coordinated by two pairs of N and O atoms from two bidentate chelating (2E)-3-(N,N -dimethylamino)-1-(2-pyridyl)prop-2-en-1-one ligands, and by two N atoms from two isothiocyanate ligands, in a distorted octahedral geometry. The complex is located on an inversion center.

Comment

2±Pyridyl ketones are potentially bidentate ligands which may show interesting coordination properties towards metal ions. Some structures have been studied by X-ray diffraction, in which the ligands adopt either a mono- (Kovala-Demertzi et al., 1992 Yanget al., 2000) or bidentate chelating (Sommereret al., 1998; Goheret al., 1993) coordination mode, depending on the central ions and anions. We report here a nickel complex,

trans-bis[(2E)-3-(N,N -dimethylamino)-1-(2-pyridyl)prop-2-en-1-one]diisothiocyanatonickel(II), (I), in which the prope-none ligand adopts a bidentate coordination mode.

Complex (I) is located on an inversion center, as shown in Fig. 1. The Ni atom istrans-coordinated by two pairs of N and O atoms from two bidentate chelating (2E)-3-(N,N -di-methylamino)-1-(2-pyridyl)prop-2-en-1-one (L) ligands, and by two N atoms from two isothiocyanate ligands, in a distorted octahedral geometry. The ®ve-membered chelate ring formed by the Ni atom and the bidentate ligandLis almost planar, the largest deviation being 0.037 (3) AÊ for atom O1. Atoms C6, C7, C8, N2, C9 and C10 form a plane, the largest deviation being 0.040 (4) AÊ for C7; this plane is twisted by 12.6 (3)with

respect to the chelate ring. The terminal isothiocyanate group is nearly linear, with an NÐCÐS angle of 178.7 (5), but it is

slightly bent at the N atom, making an NiÐNÐC angle of

171.9 (5). These values may be compared to other nickel

complexes containing isothiocyanate ligands (Clemente-Juan

et al., 2000).

(2)

Experimental

The (2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one (L) ligand was synthesized by a modi®ed literature method (Amorosoet al., 1994). A solution of Ni(NCS)2 (18 mg, 0.1 mmol) in MeOH (10 ml) was carefully layered on top of a solution of L (36 mg, 0.2 mmol) in CHCl3 (10 ml) in a test-tube. After 10 d at room temperature, orange single crystals of (I) appeared at the boundary (yield: 30%). IR (KBr pellet, cmÿ1): 2874 (w), 2093 (s), 1632 (s), 1596 (m), 1575 (m), 1519 (s), 1469 (m), 1418 (s), 1296 (m), 1278 (m), 1258 (s), 1156 (m), 1114 (m), 1051 (m), 1025 (m), 989 (w), 905 (m), 760 (m), 694 (m), 648 (w), 590 (m), 472 (w).

Crystal data

[Ni(NCS)2(C10H12N2O)2]

Mr= 527.30

Monoclinic,P21=c

a= 8.086 (4) AÊ

b= 10.635 (5) AÊ

c= 14.519 (7) AÊ

= 103.614 (8)

V= 1213.5 (10) AÊ3

Z= 2

Dx= 1.443 Mg mÿ3

MoKradiation Cell parameters from 912

re¯ections

= 3.4±22.7

= 1.00 mmÿ1

T= 298 (2) K Block, orange 0.160.070.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin= 0.856,Tmax= 0.942 6213 measured re¯ections

2217 independent re¯ections 1325 re¯ections withI> 2(I)

Rint= 0.090

max= 25.5

h=ÿ7!9

k=ÿ12!12

l=ÿ17!17

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.070

wR(F2) = 0.145

S= 0.98 2217 re¯ections 153 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0482P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.041

max= 0.40 e AÊÿ3

min=ÿ0.39 e AÊÿ3

H atoms were placed in calculated positions [CÐH = 0.93 and 0.96 AÊ, andUiso(H) = 1.2Ueq(C)] and were included in the re®nement in the riding-model approximation.

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker,

1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEPIII(Burnett & Johnson, 1996) and

ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:SHELXTL.

The authors thank Jinzhong University for supporting this work.

References

Amoroso, A. J., Thompson, A. M. C., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1994).J. Chem. Soc. Chem. Commun.pp. 2751±2752. Bruker (1998).SMART(Version 5.051),SAINT(Version 5.01) andSADABS

(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K.(1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Clemente-Juan, J. M., Chansou, B., Donnadieu, B. & Tuchagues, J.-P. (2000).

Inorg. Chem.39, 5515±5519.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Goher, M. A. S., Abdou, A. E. H., Yip, W.-H. & Mak, T. C. W. (1993).

Polyhedron,12, 2981±2987.

Kovala-Demertzi, D., Michaelides, A. & Aubry, A. (1992).Inorg. Chim. Acta,

194, 189±194.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Sommerer, S. O., Friebe, T. L., Jircitano, A. J., MacBeth, C. E. & Abboud, K. A. (1998).Acta Cryst.C54, 178±179.

Yang, G., Zheng, S.-L., Chen, X.-M., Lee, H. K., Zhou, Z.-Y. & Mak, T. C. W. (2000).Inorg. Chim. Acta,303, 86±93.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, m410–m411

supporting information

Acta Cryst. (2005). E61, m410–m411 [https://doi.org/10.1107/S1600536805002795]

trans

-Bis[(2

E

)-3-(

N,N

-dimethylamino)-1-(2-pyridyl)prop-2-en-1-one]diisothio-cyanatonickel(II)

Gai-Xian Li, Jian-Qing Li and Xu-Zhen Kang

trans-Bis[(2E)-3-(N,N-dimethylamino)-1-(2-pyridyl)prop-2-en-1- one]diisothiocyanatonickel(II)

Crystal data

[Ni(NCS)2(C10H12N2O)2] Mr = 527.30

Monoclinic, P21/c Hall symbol: -P 2ybc a = 8.086 (4) Å b = 10.635 (5) Å c = 14.519 (7) Å β = 103.614 (8)° V = 1213.5 (10) Å3 Z = 2

F(000) = 548 Dx = 1.443 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 912 reflections θ = 3.4–22.7°

µ = 1.00 mm−1 T = 298 K Block, orange

0.16 × 0.07 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998) Tmin = 0.856, Tmax = 0.942

6213 measured reflections 2217 independent reflections 1325 reflections with I > 2σ(I) Rint = 0.090

θmax = 25.5°, θmin = 2.4° h = −7→9

k = −12→12 l = −17→17

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.070 wR(F2) = 0.145 S = 0.98 2217 reflections 153 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0482P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.041

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 −0.1093 (7) 0.1639 (5) 0.1449 (4) 0.0495 (15)

H1 −0.0022 0.1484 0.1838 0.059*

C2 −0.2178 (8) 0.2426 (5) 0.1765 (4) 0.0607 (16)

H2 −0.1834 0.2811 0.2354 0.073*

C3 −0.3760 (7) 0.2644 (5) 0.1216 (4) 0.0587 (16)

H3 −0.4510 0.3176 0.1423 0.070*

C4 −0.4236 (7) 0.2053 (5) 0.0333 (3) 0.0468 (14)

H4 −0.5318 0.2176 −0.0052 0.056*

C5 −0.3096 (6) 0.1297 (4) 0.0047 (3) 0.0370 (12)

C6 −0.3403 (6) 0.0616 (5) −0.0887 (4) 0.0390 (12)

C7 −0.4967 (6) 0.0784 (5) −0.1549 (3) 0.0418 (13)

H7 −0.5756 0.1364 −0.1434 0.050*

C8 −0.5313 (6) 0.0084 (5) −0.2365 (4) 0.0467 (13)

H8 −0.4489 −0.0502 −0.2422 0.056*

C9 −0.8030 (7) 0.1016 (6) −0.3107 (4) 0.0674 (18)

H9A −0.8802 0.0684 −0.2757 0.101*

H9B −0.8625 0.1147 −0.3755 0.101*

H9C −0.7576 0.1801 −0.2834 0.101*

C10 −0.6897 (7) −0.0735 (6) −0.3865 (4) 0.0659 (18)

H10A −0.5860 −0.1189 −0.3837 0.099*

H10B −0.7201 −0.0274 −0.4449 0.099*

H10C −0.7789 −0.1316 −0.3833 0.099*

C11 −0.1241 (6) −0.2524 (6) 0.0860 (3) 0.0451 (14)

N1 −0.1516 (5) 0.1090 (4) 0.0607 (3) 0.0410 (11)

N2 −0.6656 (5) 0.0135 (4) −0.3072 (3) 0.0476 (11)

N3 −0.0731 (6) −0.1605 (5) 0.0623 (3) 0.0605 (14)

Ni1 0.0000 0.0000 0.0000 0.0442 (3)

O1 −0.2233 (4) −0.0064 (3) −0.1032 (2) 0.0525 (10)

S1 −0.1984 (2) −0.38194 (15) 0.12175 (11) 0.0674 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.038 (3) 0.062 (4) 0.040 (3) −0.012 (3) −0.008 (3) −0.004 (3)

C2 0.066 (4) 0.071 (4) 0.045 (3) −0.004 (3) 0.015 (3) −0.013 (3)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, m410–m411

C4 0.050 (4) 0.051 (3) 0.034 (3) 0.014 (3) 0.001 (3) 0.001 (3)

C5 0.035 (3) 0.040 (3) 0.036 (3) 0.008 (2) 0.008 (2) 0.010 (2)

C6 0.023 (3) 0.046 (3) 0.046 (3) 0.002 (2) 0.002 (2) 0.006 (3)

C7 0.035 (3) 0.047 (3) 0.042 (3) 0.002 (2) 0.005 (3) −0.008 (2)

C8 0.028 (3) 0.054 (3) 0.056 (3) 0.004 (3) 0.006 (3) 0.010 (3)

C9 0.039 (4) 0.088 (5) 0.068 (4) 0.019 (3) −0.001 (3) 0.000 (4)

C10 0.057 (4) 0.075 (4) 0.060 (4) 0.006 (3) 0.003 (3) −0.024 (3)

C11 0.033 (3) 0.068 (4) 0.031 (3) 0.018 (3) 0.000 (2) 0.000 (3)

N1 0.030 (2) 0.046 (3) 0.043 (2) 0.0008 (19) 0.001 (2) −0.001 (2)

N2 0.039 (3) 0.055 (3) 0.044 (2) 0.005 (2) 0.001 (2) −0.007 (2)

N3 0.049 (3) 0.065 (3) 0.070 (3) 0.013 (3) 0.019 (3) 0.017 (3)

Ni1 0.0278 (5) 0.0547 (6) 0.0474 (6) 0.0080 (5) 0.0034 (4) 0.0018 (5)

O1 0.035 (2) 0.069 (3) 0.050 (2) 0.0165 (19) 0.0020 (18) −0.005 (2)

S1 0.0591 (11) 0.0664 (11) 0.0717 (11) −0.0026 (8) 0.0054 (9) 0.0135 (9)

Geometric parameters (Å, º)

C1—N1 1.324 (6) C9—N2 1.445 (6)

C1—C2 1.368 (7) C9—H9A 0.9600

C1—H1 0.9300 C9—H9B 0.9600

C2—C3 1.358 (7) C9—H9C 0.9600

C2—H2 0.9300 C10—N2 1.454 (6)

C3—C4 1.397 (7) C10—H10A 0.9600

C3—H3 0.9300 C10—H10B 0.9600

C4—C5 1.360 (6) C10—H10C 0.9600

C4—H4 0.9300 C11—N3 1.145 (6)

C5—N1 1.362 (5) C11—S1 1.635 (6)

C5—C6 1.506 (7) N1—Ni1 2.033 (4)

C6—O1 1.247 (5) N3—Ni1 2.081 (5)

C6—C7 1.408 (6) Ni1—N1i 2.033 (4)

C7—C8 1.372 (6) Ni1—O1i 2.058 (3)

C7—H7 0.9300 Ni1—O1 2.058 (3)

C8—N2 1.308 (6) Ni1—N3i 2.081 (5)

C8—H8 0.9300

N1—C1—C2 122.1 (5) N2—C10—H10A 109.5

N1—C1—H1 118.9 N2—C10—H10B 109.5

C2—C1—H1 118.9 H10A—C10—H10B 109.5

C3—C2—C1 119.9 (5) N2—C10—H10C 109.5

C3—C2—H2 120.1 H10A—C10—H10C 109.5

C1—C2—H2 120.1 H10B—C10—H10C 109.5

C2—C3—C4 118.7 (5) N3—C11—S1 178.7 (5)

C2—C3—H3 120.7 C1—N1—C5 118.9 (4)

C4—C3—H3 120.7 C1—N1—Ni1 126.9 (4)

C5—C4—C3 119.1 (5) C5—N1—Ni1 114.2 (3)

C5—C4—H4 120.5 C8—N2—C9 122.9 (5)

C3—C4—H4 120.5 C8—N2—C10 121.8 (4)

(6)

C4—C5—C6 125.5 (4) C11—N3—Ni1 171.9 (5)

N1—C5—C6 113.1 (4) N1i—Ni1—N1 180.0 (2)

O1—C6—C7 123.7 (5) N1i—Ni1—O1i 79.60 (15)

O1—C6—C5 117.4 (4) N1—Ni1—O1i 100.40 (15)

C7—C6—C5 118.9 (4) N1i—Ni1—O1 100.40 (15)

C8—C7—C6 119.2 (5) N1—Ni1—O1 79.60 (15)

C8—C7—H7 120.4 O1i—Ni1—O1 180.0 (3)

C6—C7—H7 120.4 N1i—Ni1—N3i 91.00 (18)

N2—C8—C7 128.2 (5) N1—Ni1—N3i 89.00 (18)

N2—C8—H8 115.9 O1i—Ni1—N3i 89.92 (16)

C7—C8—H8 115.9 O1—Ni1—N3i 90.08 (16)

N2—C9—H9A 109.5 N1i—Ni1—N3 89.00 (18)

N2—C9—H9B 109.5 N1—Ni1—N3 91.00 (18)

H9A—C9—H9B 109.5 O1i—Ni1—N3 90.08 (16)

N2—C9—H9C 109.5 O1—Ni1—N3 89.92 (16)

H9A—C9—H9C 109.5 N3i—Ni1—N3 180.0 (3)

H9B—C9—H9C 109.5 C6—O1—Ni1 115.4 (3)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical