• No results found

Montanastatin, cyclo[–(Val D Hyv D Val Lac)2–]

N/A
N/A
Protected

Academic year: 2020

Share "Montanastatin, cyclo[–(Val D Hyv D Val Lac)2–]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o935±o936 DOI: 10.1107/S1600536802013259 Doi and Asano C36H60N4O12

o935

organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Montanastatin, cyclo[±(Val-

D

-Hyv-

D

-Val-Lac)

2

±]

Mitsunobu Doi* and Akiko Asano

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan

Correspondence e-mail: doit@gly.oups.ac.jp

Key indicators

Single-crystal X-ray study T= 100 K

Mean(C±C) = 0.003 AÊ Rfactor = 0.049 wRfactor = 0.111

Data-to-parameter ratio = 19.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

Crystals of montanastatin anhydride, C36H60N4O12, were grown from a hexylene glycol solution. A crystallographic twofold axis runs through the centre of the molecule. The aliphatic side chains located on one side of the peptide ring form a hydrophobic region. The shape of the whole molecule is rectangular and is similar to the structure of the valinomycin analogue,viz.cyclo[±(d-Val-l-Hyv-l-Val-d-Hyv)2±].

Comment

Montanastatin has been isolated from a Montana soil actinomycete,Streptomyces anulatus, as a cancer-cell-growth inhibitory cyclooctadepsipeptide (Pettit et al., 1999). This peptide contains -hydroxyisovaleric acid (Hyv) and lactic acid (Lac), and is composed of two repeating units of tetra-peptide, Val-d-Hyv-d-Val-Lac. Such a repeated sequence is similar to that in valinomycin, which has three repeating units. Montanastatin gives some solvated crystals (refcode KAHMAH in the Cambridge Structural Database; Allen & Kennard, 1993). An anhydrous form, (I), was obtained from hexylene glycol solution, and its structure is reported here.

A crystallographic twofold axis is located in the montan-astatin molecule; the asymmetric unit is thus one half mole-cule. The backbone shape is a rectangular ring (Fig. 1a). The Lac residues shift from the peptide ring (Fig. 1b) making a small loop with an intramolecular hydrogen bond betweend -Val3and Lac4: N_3 O_4 (Table 1). The aliphatic side chains of Val1, d-Hyv2 and d-Val3 are located on one side of the peptide ring (Fig. 1b), forming a hydrophobic region. Only the methyl groups of Lac residues are located on the other side. In this structure, the chiral sequence of (lÐdÐdÐl) is impor-tant for creating a hydrophobic region. However, the relative positions of the side chains are different from those of vali-nomycin (Duaxet al., 1972; Karle, 1975). The conformational characteristics of montanastatin are similar to those of a valinomycin analogue, cyclo[±d-Val-l-Hyv-l-Val-d-Hyv)2±] (Grochulskiet al., 1992).

(2)

Experimental

Hyv was synthesized according to a previously reported method (Gisinet al., 1969), and montanastatin was synthsized by a conven-tional liquid-phase method. Montanastatin (20 mg) was dissolved in 0.2±0.3 ml hexylene glycol, and crystals grew after about 30 d at room temperature. A crystal was mounted on a nylon loop (Hampton Research Inc., USA) with glycerol and was ¯ash-frozen under a nitrogen stream at 100 K.

Crystal data

C36H60N4O12

Mr= 740.88 Orthorhombic,C2221

a= 13.488 (6) AÊ

b= 17.868 (7) AÊ

c= 16.452 (7) AÊ

V= 3965 (3) AÊ3

Z= 4

Dx= 1.241 Mg mÿ3

MoKradiation Cell parameters from 3994

re¯ections = 2.3±28.0 = 0.09 mmÿ1

T= 100 (2) K Block, colourless 0.320.240.20 mm

Data collection

Bruker SMART APEX CCD diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.854,Tmax= 0.982

13003 measured re¯ections

4717 independent re¯ections 4545 re¯ections withI> 2(I)

Rint= 0.031

max= 28.6

h=ÿ17!17

k=ÿ15!23

l=ÿ22!22

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.049

wR(F2) = 0.111

S= 1.18 4717 re¯ections 242 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0472P)2 + 1.956P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.32 e AÊÿ3

min=ÿ0.22 e AÊÿ3

Absolute structure: (Flack, 1983), 1912 Friedel pairs

Flack parameter = 0.1 (9)

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N_1ÐH5_1 O_2i 0.880 2.037 2.901 (2) 167.1

N_3ÐH22_3 O_4ii 0.880 2.363 3.037 (2) 133.6

Symmetry codes: (i)1

2‡x;32ÿy;2ÿz; (ii) 1ÿx;y;32ÿz.

The structure of montanastatin is consistent with the absolute con®gurations of the amino acids and carboxylic acids, Val,d-Val,

d-Hyv and Lac, although the Flack test results are meaningless. Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction:SAINT-Plus(Bruker, 1998); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 2001); software used to prepare material for publication:PARST(Nardelli, 1995).

References

Allen, F. H. & Kennard, O. (1993).Chem. Des. Autom. News,8, 1, 31±37. Bruker (1998).SAINT-Plus(Version 5) andSMART(Version 5). Bruker AXS

Inc., Madison, Wisconsin, USA.

Duax, W. L., Hauptman, H., Weeks, C. M. & Norton, D. A. (1972).Science,

176, 911±914.

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Gisin, B. F., Merri®eld, R. B. & Tosteson, D. C. (1969).J. Am. Chem. Soc.91, 2691±2695.

Grochulski, P., Smith, G. D., Langs, D. A., Duax, W. L., Pletnev, V. Z. & Ivanov, V. T. (1992).Biopolymers,32, 757±764.

Karle, I. L. (1975).J. Am. Chem. Soc.97, 4379±4386. Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Pettit, G. R., Tan, R., Melody, N., Kielty, J. M., Pettit, R. K., Herald, D. L., Tucker, B. E., Mallavia, L. P., Doubek, D. L. & Schmidt, J. M. (1999).Bioorg. Med. Chem.7, 895±899.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of

GoÈttingen, Germany.

Spek, A. L. (2001).PLATON.Utrecht University, The Netherlands. Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2002). E58, o935–o936

supporting information

Acta Cryst. (2002). E58, o935–o936 [https://doi.org/10.1107/S1600536802013259]

Montanastatin, cyclo[

(Val-

D

-Hyv-

D

-Val-Lac)

2

]

Mitsunobu Doi and Akiko Asano

Montanastatin: cyclo(–Val-D-Hyv-D-Val-Lac-)2, Hyv=alpha-hydroxyisovaleric acid, Lac=lactic acid

Crystal data

C36H60N4O12

Mr = 740.88

Orthorhombic, C2221

a = 13.488 (6) Å

b = 17.868 (7) Å

c = 16.452 (7) Å

V = 3965 (3) Å3

Z = 4

F(000) = 1600

Dx = 1.241 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3994 reflections

θ = 2.3–28.0°

µ = 0.09 mm−1

T = 100 K Block, colourless 0.32 × 0.24 × 0.20 mm

Data collection

Bruker AXS SMART APEX CCD diffractometer

Radiation source: MacScience, M18XCE rotating anode

Graphite monochromator

Detector resolution: 8.366 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.854, Tmax = 0.982 13003 measured reflections 4717 independent reflections 4545 reflections with I > 2σ(I)

Rint = 0.031

θmax = 28.6°, θmin = 1.9°

h = −17→17

k = −15→23

l = −22→22

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.049

wR(F2) = 0.111

S = 1.18 4717 reflections 242 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0472P)2 + 1.956P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.32 e Å−3 Δρmin = −0.22 e Å−3

Absolute structure: (Flack, 1983), 1912 Friedel pairs

Absolute structure parameter: 0.1 (9)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

ON_4 0.75840 (10) 0.75068 (8) 0.64983 (7) 0.0171 (3) CA_4 0.71119 (15) 0.77521 (11) 0.72391 (11) 0.0182 (4)

H1_4 0.7622 0.7910 0.7646 0.022*

CB_4 0.64520 (19) 0.84027 (12) 0.70235 (13) 0.0272 (5)

H2_4 0.5964 0.8244 0.6617 0.041*

H3_4 0.6855 0.8810 0.6801 0.041*

H4_4 0.6107 0.8578 0.7512 0.041*

C_4 0.65235 (13) 0.70761 (10) 0.75589 (11) 0.0139 (4) O_4 0.62526 (11) 0.65716 (8) 0.71054 (8) 0.0187 (3) N_1 0.63456 (12) 0.71050 (9) 0.83575 (9) 0.0145 (3)

H5_1 0.6545 0.7501 0.8630 0.017*

CA_1 0.58414 (13) 0.65153 (10) 0.87941 (10) 0.0125 (4)

H6_1 0.5427 0.6227 0.8399 0.015*

CB_1 0.65766 (14) 0.59673 (11) 0.92044 (12) 0.0158 (4)

H7_1 0.6186 0.5624 0.9563 0.019*

CG1_1 0.73278 (15) 0.63802 (13) 0.97357 (12) 0.0212 (4)

H8_1 0.7744 0.6701 0.9393 0.032*

H9_1 0.7746 0.6016 1.0020 0.032*

H10_1 0.6976 0.6689 1.0134 0.032*

CG2_1 0.71070 (16) 0.54893 (12) 0.85690 (13) 0.0228 (4)

H11_1 0.7527 0.5119 0.8843 0.034*

H12_1 0.7519 0.5811 0.8225 0.034*

H13_1 0.6615 0.5231 0.8232 0.034*

C_1 0.51590 (13) 0.68775 (11) 0.94122 (10) 0.0127 (4) O_1 0.51084 (11) 0.75341 (8) 0.95480 (8) 0.0192 (3) ON_2 0.46187 (9) 0.63488 (7) 0.97993 (7) 0.0130 (3) CA_2 0.40142 (13) 0.65922 (10) 1.04793 (10) 0.0129 (3)

H14_2 0.4171 0.7130 1.0587 0.015*

CB_2 0.43088 (14) 0.61425 (11) 1.12323 (11) 0.0149 (4)

H15_2 0.3845 0.6282 1.1681 0.018*

CG1_2 0.42158 (16) 0.53035 (11) 1.10937 (12) 0.0215 (4)

H16_2 0.4730 0.5139 1.0713 0.032*

H17_2 0.3561 0.5191 1.0867 0.032*

H18_2 0.4296 0.5040 1.1612 0.032*

CG2_2 0.53535 (15) 0.63533 (14) 1.14983 (12) 0.0258 (5)

H19_2 0.5371 0.6885 1.1645 0.039*

H20_2 0.5818 0.6261 1.1051 0.039*

H21_2 0.5544 0.6050 1.1970 0.039*

(5)

supporting information

sup-3

Acta Cryst. (2002). E58, o935–o936

N_3 0.26771 (11) 0.63797 (9) 0.95056 (9) 0.0150 (3)

H22_3 0.3130 0.6197 0.9176 0.018*

CA_3 0.16727 (13) 0.65071 (11) 0.92056 (11) 0.0159 (4)

H23_3 0.1337 0.6850 0.9599 0.019*

CB_3 0.10523 (15) 0.57892 (12) 0.91610 (13) 0.0224 (4)

H24_3 0.1112 0.5540 0.9703 0.027*

CG1_3 0.14135 (18) 0.52245 (14) 0.85321 (15) 0.0321 (5)

H25_3 0.2139 0.5203 0.8543 0.048*

H26_3 0.1191 0.5378 0.7990 0.048*

H27_3 0.1142 0.4729 0.8659 0.048*

CG2_3 −0.00444 (18) 0.59678 (15) 0.90426 (16) 0.0347 (5)

H28_3 −0.0432 0.5505 0.9078 0.052*

H29_3 −0.0143 0.6197 0.8507 0.052*

H30_3 −0.0263 0.6316 0.9466 0.052*

C_3 0.82219 (14) 0.69313 (11) 0.65939 (12) 0.0172 (4) O_3 0.86226 (11) 0.67840 (9) 0.72215 (8) 0.0251 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

Geometric parameters (Å, º)

ON_4—C_3 1.350 (3) CA_2—C_2 1.518 (3)

ON_4—CA_4 1.443 (2) CA_2—CB_2 1.529 (3)

CA_4—CB_4 1.506 (3) CB_2—CG1_2 1.521 (3)

CA_4—C_4 1.538 (3) CB_2—CG2_2 1.523 (3)

C_4—O_4 1.226 (2) C_2—O_2 1.222 (2)

C_4—N_1 1.336 (2) C_2—N_3 1.342 (2)

N_1—CA_1 1.445 (2) N_3—CA_3 1.460 (2)

CA_1—C_1 1.517 (2) CA_3—C_3i 1.525 (3)

CA_1—CB_1 1.548 (3) CA_3—CB_3 1.533 (3)

CB_1—CG2_1 1.528 (3) CB_3—CG1_3 1.525 (3)

CB_1—CG1_1 1.528 (3) CB_3—CG2_3 1.526 (3)

C_1—O_1 1.196 (2) C_3—O_3 1.195 (2)

C_1—ON_2 1.353 (2) C_3—CA_3i 1.525 (3)

ON_2—CA_2 1.451 (2)

C_3—ON_4—CA_4 114.46 (15) ON_2—CA_2—CB_2 108.72 (15) ON_4—CA_4—CB_4 107.23 (16) C_2—CA_2—CB_2 113.31 (15) ON_4—CA_4—C_4 106.14 (15) CG1_2—CB_2—CG2_2 111.29 (17) CB_4—CA_4—C_4 112.43 (17) CG1_2—CB_2—CA_2 112.03 (16) O_4—C_4—N_1 124.97 (17) CG2_2—CB_2—CA_2 110.08 (16)

O_4—C_4—CA_4 121.54 (17) O_2—C_2—N_3 124.19 (17)

N_1—C_4—CA_4 113.49 (15) O_2—C_2—CA_2 118.62 (16)

C_4—N_1—CA_1 123.02 (15) N_3—C_2—CA_2 117.14 (15)

N_1—CA_1—C_1 107.92 (15) C_2—N_3—CA_3 120.84 (16)

N_1—CA_1—CB_1 112.11 (15) N_3—CA_3—C_3i 106.43 (15) C_1—CA_1—CB_1 111.49 (14) N_3—CA_3—CB_3 113.09 (16) CG2_1—CB_1—CG1_1 110.54 (17) C_3i—CA_3—CB_3 115.18 (16) CG2_1—CB_1—CA_1 110.80 (16) CG1_3—CB_3—CG2_3 111.19 (19) CG1_1—CB_1—CA_1 111.63 (16) CG1_3—CB_3—CA_3 114.31 (18) O_1—C_1—ON_2 124.50 (17) CG2_3—CB_3—CA_3 111.11 (18)

O_1—C_1—CA_1 125.34 (16) O_3—C_3—ON_4 123.83 (19)

ON_2—C_1—CA_1 110.16 (15) O_3—C_3—CA_3i 126.43 (19) C_1—ON_2—CA_2 117.15 (14) ON_4—C_3—CA_3i 109.73 (15) ON_2—CA_2—C_2 111.08 (14)

(7)

supporting information

sup-5

Acta Cryst. (2002). E58, o935–o936

N_1—Ca_1—Cb_1—Cg1_1 53.0 (2) Ca_2—C_2—N_3—Ca_3 −163.8 (2) N_1—Ca_1—Cb_1—Cg2_1 −70.7 (2) O_2—C_2—N_3—Ca_3 13.8 (3) C_1—Ca_1—Cb_1—Cg1_1 −68.1 (2) C_2—N_3—Ca_3—Cb_3 −101.1 (2) C_1—Ca_1—Cb_1—Cg2_1 168.2 (2) N_3—Ca_3—Cb_3—Cg1_3 −66.7 (2) N_1—Ca_1—C_1—O_1 −4.9 (3) N_3—Ca_3—Cb_3—Cg2_3 166.5 (2) N_1—Ca_1—C_1—ON_2 175.8 (1) C_2—N_3—Ca_3—C_3i 131.6 (2) Cb_1—Ca_1—C_1—O_1 118.6 (2) N_3—Ca_3—C_3i—ON_4i −47.7 (2) Cb_1—Ca_1—C_1—On_2 −60.7 (2) Ca_3—C_3i—ON_4i—Ca_4i 155.7 (1) Ca_1—C_1—ON_2—Ca_2 172.8 (1)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N_1—H5_1···O_2ii 0.88 2.04 2.901 (2) 167

N_3—H22_3···O_4i 0.88 2.36 3.037 (2) 134

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical