• No results found

Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation

N/A
N/A
Protected

Academic year: 2021

Share "Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Journal

of

Asian

Ceramic

Societies

HOSTED BY

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c at e / j a s c e r

Development

of

hydrophobic

clay–alumina

based

capillary

membrane

for

desalination

of

brine

by

membrane

distillation

Rakhi

Das

a

,

Kartik

Sondhi

b

,

Swachchha

Majumdar

a

,

Sandeep

Sarkar

a,∗

aCeramicMembraneDivision,CSIR-CentralGlassandCeramicResearchInstitute,Kolkata700032,India bChemicalEngineeringDepartment,JadavpurUniversity,Kolkata,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14January2016

Receivedinrevisedform11April2016 Accepted15April2016

Availableonline13May2016 Keywords:

Surfacemodification Membranedistillation Ceramichydrophobic

a

b

s

t

r

a

c

t

Clay–aluminacompositionsof0,20,40and55weightpercent(wt%)clayandrestaluminawere main-tainedinporoussupportpreparationbyextrusionfollowedbysinteringat1300◦Cfor2.5htoobtain

3mm/2mm (outer diameter/inner diameter) capillary. 1H,1H,2H,2H-perfluorodecyltriethoxysilane (97%)(C8)wasusedtomodifythecapillarysurfaceofallcompositionswithoutanyintermediate mem-branelayertoimparthydrophobiccharacteristicsandcomparedintermsofcontactangleproducedby thecapillarieswithwaterandliquidentrypressure(LEPw).FTIRanalysisshowedthatthehydrophilic

surfaceofthecapillarymembraneswasefficientlymodifiedbytheproposedgraftingmethod.Capillary with55wt%clayproducedaporesizeof1.43micronandwasconsideredasanidealcandidateforgrafting withC8polymertoimpartsurfacehydrophobicity.ThecontactangleandLEPwvalueobtainedforthis

modifiedmembrane(C-55-M)were145◦and1bar,respectively.Themodifiedcapillarymembranewas appliedfordesalinationofbrinebyairgapmembranedistillation(AGMD)atafeedpressureof0.85bar. MaximumfluxobtainedforC-55-Mmembranewas98.66L/m2dayatatemperaturedifferenceof60C

withsaltrejectionof99.96%.MasstransfercoefficientofC-55-Mwas16×10−3mm/satfeedtemperature of70◦C.

©2016TheCeramicSocietyofJapanandtheKoreanCeramicSociety.Productionandhostingby ElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Theoceanrepresentsanendlesswaterresource.Despitethat, there is lack of potable water, which raises the need for sus-tainabletechnologiestoproducefreshpotablewater.Considering that,attentionhasbeengiven ondesalination ofseawater and brackish water to produce fresh water by various techniques, suchasreverseosmosis(RO),electro-dialysis,distillation,etc.RO andelectro-dialysisaremembrane-basedseparationprocessesfor desalinationofbrine[1,2].ROisoneofthemosteffectiveand pop-ularmembrane-basedtechniquesfordesalination,buttheprocess isveryenergyintensive[3]andeconomicallynotviable, particu-larlyintheunderdevelopedanddevelopingcountries.Membrane distillation(MD)isverylowenergyintensivedistillationprocess, whichhasadvantagesoverconventionaldesalinationprocess[4].It requireslesssurfaceareaperunitvolumethanconventional

distil-∗ Correspondingauthor.Tel.:+919432849210.

E-mailaddress:sandeepsarkar123@gmail.com(S.Sarkar).

PeerreviewunderresponsibilityofTheCeramicSocietyofJapanandtheKorean CeramicSociety.

lation[5]andcanbeclubbedwithrenewableenergysourceowing tolowenergyconsumingprocess[4].

MDisathermal,vapourdriventransportationprocessthrough hydrophobicorganic/inorganicmembrane,asshowninFig.1.The drivingforceofMDiscreatedbythedifferenceofvapourpressure, resultingfromthetemperaturedifferencebetweenthefeedand permeateside[6–10].Brineisheatedtogeneratevapourpressure, whichcreatesapartialpressuredifferenceacrossthemembrane. Ahydrophobicmembrane ispermeableonly tovapour andnot to liquids[11]. Hot water evaporates through thepores of the hydrophobicmembrane, asshown inFig.1, leavingbehind the brine(liquid)asaretentate,whichisimpermeable throughthe poresofthehydrophobicmembrane[11].

The permeating vapour is then condensed to produce fresh water[12–14].Thetechniqueishighlyefficientinsalt rejection andtherejectionratesarearound99–100%.Itisanefficient tech-niquefortreatinghighlyconcentratedbrine,whichisofparticular interest,comparingwithRO,wheretheosmoticpressureincreases withthesaltconcentration[15].

Generally, allthe ongoing MDprocesses are basedon com-merciallyavailablehydrophobicpolymericmembrane[16,17]but ceramicmembranehasadvantageoverpolymericmembranedue

http://dx.doi.org/10.1016/j.jascer.2016.04.004

2187-0764©2016TheCeramicSocietyofJapanandtheKoreanCeramicSociety.ProductionandhostingbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Condensed Permeate Porous

Membrane

Fig.1. Principalofairgapmembranedistillation.

toitsintrinsicproperties,suchashighmechanicalstrengthandlong life[18].Alsopolymericmembranesaresubjectedtofoulingmore thanceramicmembranes.Thusceramicmembraneshave numer-ousadvantagesoverpolymericmembranesbutcannotbeusedfor MDprocessassuch,sincetheyarehydrophilicinnature.Another limitationofceramicmembraneisthattheyhavehighmembrane thickness,whichincreasesthemembraneresistanceandthereby makingit notasuitablecandidatefortheMDprocess[19].The surfaceoftheceramicmembraneneedstobemodifiedbygrafting withasuitablepolymertoimparthydrophobicity[20].Toimpart hydrophobiccharacteristicsonthehydrophilicceramicsubstrates, themetaloxidesubstratesaremodifiedbyvarioushydrophobic polymers,asreportedinliterature[4,21–25].

Duringgraftingprocess,thehydroxylgroups(–OH)ofthemetal oxidesurfaceofceramicmembranereactswithpolymersolution andformsastablecovalentbond[26]andbehavelike hydropho-bicinnature.Thus,ceramicmembranesbecomehydrophobicand canbeusedforMDprocess.Anotherimportantcharacteristicofa hydrophobicmembranerequiredforMDprocessistheresistance itofferstoliquid(water)toenteritspores.Thispropertyis char-acterisedbypressurerequiredbyliquidtoenteritsporesandis termedasliquidwaterentrypressure(LEPw)measurement.Itis

importanttomaintainarequiredLEPwforeffectiveMD.Poresize

ofahydrophobicmembraneplaysapredominantrolein maintain-inghighLEPw.Therelationbetweenporesizeofahydrophobic

membrane and the LEPw is inversely proportional considering

othersimilarfactors.Mulder[27]andDriolietal.[28]suggested thata membranewithpore sizeintherange of0.2–0.3micron and0.2–1micronrespectivelyisidealforsuchapplications.But reducingtheporesizewillalsoincreasethemembraneresistance, therebyreducingthemembraneefficiency.Anoptimumporesize isanimportantparameterforproperMDapplication.

Mostoftheceramicmembranesusedforsurfacemodificationto imparthydrophobiccharacterforMDprocessareofcommercially availableexpensivemembranemadeofzirconia[29]andtitania

[30]overmacro-porousaluminasupport.Thesemembraneshave variousintermediatelayerofdifferentporesizeinbetweenthe supportandthetopmembranelayerinordertosuccessivelyreduce theporesize.Thetopmembranelayermadeofzirconiahasapore sizeof50nm[15],titaniahas5nm[31]and␥aluminahas5nm poresizemembranelayerovermacro-porous␣aluminasupport tube[21].Thesupporttubesizeusedforsurfacemodification,in general,isof10mmouterdiameterand1.5mmthicknesswitha lengthof120mm[32]and150mm[15].Thesesupportsaremade ofhighpurityaluminawithhighprocessingcost[32]asitsintersat hightemperature(1700◦C)[33].Moreover,preparationofmultiple micro-porousmembrane layeroversuchsupporttubeincreases themembranethickness,alongwiththeoverallmembranecost. Alsothereductionofporesizeandincreaseinmembranethickness willincreasethemembraneresistance,whicheventuallyreduce themembraneefficiency.

Thisstudyinvolves surfacemodificationof theindigenously preparedmacro porousclay aluminabased membranewithout anyintermediatelayertoimparthydrophobiccharacteristic.The macroporousclayaluminabasedmembranewaspreparedin capil-laryconfigurationwithlessthan0.5mmwallthicknessinaneffort toreducethemembraneresistanceandtherebyincreaseits effi-ciency.Themembranewasappliedfordesalinationofbrinebyair gapmembranedistillation(AGMD)process.Theresultswere com-paredwithderivedmodelandthepublishedresultsofdifferent modifiedceramicmembraneforoverallMDperformance. 2. Materialsandmethods

2.1. Materials

Alpha alumina (99% purity) with a mean particle size of 7micronswaspurchasedfromHindalco,India,andkaoliniteclay withameanparticlesizeof10micronwasprocuredlocallyfrom Kolkata,India.Methocel,usedasorganicbinderfor preparation ofporousceramicmembrane,waspurchasedfromDow Chemi-cal,USA.1H,1H,2H,2H-perfluorodecyltriethoxysilane(97%),which hasachemicalformulaofC8F17C2H4Si(OC2H5)3(C8)wasusedas graftingagent(SigmaAldrich,USA),ethanol(C2H5OH)andsodium chloride(NaCl)werepurchasedfromMerck,Germany.

2.2. Preparationofmacro-porousceramiccapillarymembrane Thecapillarymembraneswerepreparedfromclayandalumina ceramicpasteswithdifferentcompositionssimilartotheprevious work[34].Aluminawaspartiallysubstitutedbynaturalmineral clayandusedasbasicrawmaterial.Clayandaluminaweremixed withdifferentweightpercent(Table1)alongwithbinders (metho-cel)anddistilledwater(18Mcmat25◦C).Ineachcomposition, 96wt%ofthemixedrawclay–aluminapowderwasmixedwith 4wt%methocelandthen20–25mlwaterwasaddedtothetotal mixtureof100gtoobtainanextrudablepaste.

The pastes werethen extrudedin a plungertype extrusion machinethroughacapillarydyetopreparegreentubeof3.5mm outerdiameter(OD) and0.5mmthickness.Theextruded tubes weredriedatroomtemperatureinarollerdrierat10revolution perminute(rpm)for24htoremovethefreewaterfromsample beforesinteringitat1300◦Cfor2.5haspersinteringschedule illus-tratedinFig.2,tohaveafinalcapillarydiameterof3mmODand

(3)

Fig.3.Chemicalstructureoffluoroalkylsilane(C8)molecule(a)2Dstructure,(b)

3Dstructure.

0.45mmthicknesswithvariousporecharacteristicsdependingon thecompositionasdescribedinSection5.1.3.

2.3. Surfacemodificationofceramiccapillarymembrane

Fluoroalkylsilane(C8)wasconsideredasaverysuccessful can-didateformodifyingthemetaloxidesurface[4,22–25]toimpart hydrophobiccharacteristic bygraftingprocess. Thegeneral for-mulaofFASisR-C2H4-Si(R1)R3,whereRrepresentsthechainof

fluorocarbonandR1asmethylethoxyorchlorinegroup(Fig.3a). Themembraneswerecleanedbyacetonefor10minanddried inovenatatemperatureof110◦Cfor12hbeforegraftingthem withC8.AC8solutionwaspreparedbymixingC8withethanol ataconcentrationof10−2molofC8perlitreofethanolininert atmospherebecauseapoly-condensationreactionof 1H,1H,2H,2H-perfluorodecyltriethoxysilaneoccursduetopresenceofmoisture inair[35].Fourcapillarymembranesof150mmlengthwere com-pletelyimmersedandsoakedin45mlC8solutiontakeninaglass tube(50mlculturetube)andgentlyrolledinaneccentricroller ata speed of30rpmfor 75htocarry out thegraftingprocess. Aftergrafting,themembranesweredriedat105◦Cfor12hinan oven.Theprocesswasrepeated3timestoobtainanon-wetting hydrophobicmembrane.

2.4. Characterisationmethods

The porosity and pore size of the firedmembranes (shown in Table 1) were measured by mercury intrusion porosimetry (Micromeritics,AutoPoreIV9500).

Fig.4. Singlecapillarymoduleofceramichydrophobicmembrane.

Fouriertransforminfraredspectroscopy(FTIR)analysis (Perkin-Elmer Spectrum 200 instrument) was used to determine the presence of per-fluorinated groups on membrane surface after grafting. The analysis was done with thewavelength range of 400–1400cm−1.

Contactangle(CA)measurementhasbeenperformedon mem-branestoevaluateitssurfacehydrophobicity.CAmeasurementof thesample wasperformedbysessile dropmethodusing Kruss (Germany)apparatusatroomtemperature.AllCAreadingswere taken15minafter0.5mlwaterdropletwasplacedonthe mem-branesurface.

Theefficiencyofhydrophobicmembraneswasdeterminedby measuringthepressure atwhich water penetratesthrough the membrane pores (LEPw). The experiments werecarried out by

subjectingthemembranetubesidewithwaterataconstant par-ticularpressureforatleast2handcheckedforanywaterdroplet appearingatthemembranesurface(shellside)beforeincreasing thepressurefurther.Theprocessiscontinueduntilthefirstwater dropletappearedinthemembraneshellsidesurface.LEPw was

measuredbycross-flowfiltrationusingahomemadepilotwith appliedN2pressureasdescribedinMohammadiandSafavi[12].

2.5. Membranedistillation

Airgapmembrane distillation(AGMD)wascarriedout with thepreparedceramichydrophobiccapillarymembraneof150mm length. The MD was performed at different feed temperature and temperature difference (T) across the membrane. Feed solutions for MD have been prepared by using distilled water (18Mcm)andsalt(NaCl)similartothesea-watersalt concen-tration(0.5mol/L),whichcorrespondedtothetotaldissolvedsolid (TDS)of1912.476ppm(partspermillion).Permeatefluxwas cal-culatedby weighingthevolumeof liquidpermeatethat comes withinafixedtimeintervalduringexperiment.Permeateflux cal-culationwasstartedwhentheMDprocessreachedatsteadystate, i.e.after30minfromexperimentinitiation.Rejectionofsaltand otherimpuritieswasanalysedbymeasuringtotaldissolvedsolid (TDS)infeedandinpermeate.TheTDSrejection(RNaCl)duringthe

(4)

Fig.6.FlowgeometryofMDmodule.

MDprocesswascalculatedaccordingtoEq.(1),whereCp andCf

denotetheTDSinpermeateandfeedsolution[24,29]. RNaCl=



1−Cp Cf



×100 (1)

AGMDwasperformedwithdifferentfeedtemperatures, start-ingfrom40◦Ctoamaximumof70◦C.Ceramichydrophobicsingle capillarymodule(Fig.4)with6.78×10−2m2effectivesurfacearea

and2mmairgaphasbeenindigenouslydesignedandfabricated forMDprocessalongwithaMDexperimentalset-up(Fig.5).

HotbrinewillbepumpedtotheMDmodule,whichhousedthe ceramichydrophobiccapillarymembranefromthefeedtankbythe feedpumpatapredeterminedflowrate.Themoduleinnerwallis beingkeptatatemperaturelowerthanthefeedtemperatureby circulatingcoldwaterinthemodulejacketfromthechiller.This istoensurethatthetemperatureoftheairgapinbetweenthe membranesurface(shellside)andtheinnermodulewallbecomes lowerthanthefeedtemperature,forcondensingthevapour,which comesoutofthemembranesurfaceinthemodule.

3. Modeldevelopmentandderivation

TheflowgeometryofMDmodulewasillustratedinFig.6,based onwhich modelswere developed. The overall convective heat transfercoefficientfortheouterwallofmembraneisgivenbyEq.

(2), 1 U = 1 hmern+ d1 d2hfeed+ 1 hcoolingwater+ x k (2)

WhereUisoverallconvectiveheattransfercoefficientforouter wallofmembraneandhmemisconvectiveheattransfercoefficient

oftheinnerwallof membrane.Here, d2,d1,hcoolingwater,x, and

karetheouterdiameterofmembrane,innerdiameterof mem-brane,heattransfercoefficientofthecoolingwater,thicknessofthe membrane,andthermalconductivityofmembrane,respectively.

Substitutingthevalue ofUfromEq. (2),themassof vapour permeatingfromthemembranecanbecalculatedfromEq.(3). UAdT=mCp(Tboiling−Tf(in))+m (3)

Wherem,Cp,Tboiling,Tf(in),,andm arethemassofthefeed

stream,specificheatcapacityofthefeed,boilingtemperatureof thefeed,temperatureoftheinletfeedstream,latentheatofthe watervapour,andmassofvapourpermeatingfromthemembrane, respectively.SolvingEq.(3),valueofmwasobtained.Thepermeate fluxhasbeencalculatedfromthevalueofm.

Theheatfluxalongthesurfaceofmembraneisrepresentedby Eq.(4)[36].

Q=mCp(Tf(out)−Tf(in)) (4)

Where,QisthetotalheatfluxalongdistancezandTf(out)isthe

temperatureoftheoutletstreamfromthemembrane.

Forthecalculationoftheamountofheattransferalongtheradial direction(fromthecoolingjacketsurfacetotheairgapinterfacein MDmodule),weconsideracylindricalcoordinatessystemforthe tubularmembranewhichhasaunidirectionalflowalongtheradial direction,asshowninEq.(5).

T

t +

v

r

T

r +

v

 r

T

+

v

z

T

z =K



1 r

r



r

T

r



+ 1 r2

2T

2 +

2T

z2



+hmem 0cp (5)

Theothercomponentsoftheequationfromthecylindrical coor-dinatesystem(Fig.7)havebeencancelledoutasthevariationalong theandzarenotobservedandalsothevelocityalongany direc-tionhasnotbeenconsidered.Asthereisnointernalheatsource withinthesystem,thetermhmem/(0cp)=0.Thereforeforheat

bal-ance,theequationincylindricalcoordinatesystemcanbederived asEq.(6)[37]. dT dt = K r



d dr



rdT dr



+d2T dz2



(6) Simplifyingitforz,asthicknessofthemembraneisverysmall consideredtolengthofthemembrane.Thus,wehaveanaveraging componentforthetemperatureobservedinthemembrane,which isdenotedbyT .

Thefinalform,bymakingthetimederivativeEq.(7),hasbeen obtained. d ¯T dt =K



2 R( ¯T−Tsv)+ d2¯T dz2



(7) Intheaboveequation,rrepresentsthedirectioninradial posi-tionasshowninFig.6.

TheboundaryconditionshavebeengivenasB.C.1,2, 3and areinaccordancewiththetemperaturevariationwhichshouldbe observedinthemembrane.

B.C.1:t=0,T=Tf(in) B.C.2:r=R1,T= ¯T

(5)

Fig.7.Representationofaxialgeometryconsideredforthestudy.

TsvisthetemperatureoftheairgapinterfaceinMDmodule.

ThereisanegligibletemperaturedifferencebetweenTf(in)andTf(out)

foroursystem(asthemembranelengthwassmallandflowrate was0.492L/min),sotheheattransferalongzdirectionisnot con-sideredhere.

Thevelocityvariationalongtheradialdirection(

v

r)canbegiven

byEq.(8).

v

r=

v

F− PL 



ln



R2 2−R 2 1 R−R2 1



(8)

Variationofvelocityalongtheradialdirectiondependson pres-suredrop(P)betweenanytwopoints(R1andR2)alongtheradial

positionofthemembrane,whereistheviscosityofthefeed. ForthecalculationofNaClrejectionpercentage,weconsiderthe massbalanceequationalongtheradialdirectionbasedonEq.(9) [37]. 



dV r dt + dVr dr



=dP dr − 1 r drVr dr (9)

BoundaryconditionsforEq.(9)areB.C.4,5,6. B.C.4:t=0,=0,

v

=

v

F,

B.C.5:r=R1,=,

v

=

v

F,

B.C.6:r=R2,=,

v

=

v

r,

Intheaboveequation,0isthedensityoffeedstream,isthe

densityofthepermeatingvapour,and

v

Fisthefeedstreamvelocity.

AftersolvingEqs.(8)and(9)simultaneously,atwodimensional matrixisobtainedforEq.(9)bytakingR1astheinnerradiusand

R2astheouterradiusofthemembrane.ConcentrationatradiusR1

andR2wascalculated,andfromthedifferenceinconcentration,

therejectionpercentagewasobtained.

4. Masstransfercoefficient

Themasstransfercoefficientshavebeencalculatedusingthe Sherwoodnumber.TheWilkeChangequationfordilutesolutions (Eq.(10))[38]wasusedfirstforcalculationofdiffusivity(D)inthe NaClsolution.

D=7.40×10−8×(ϕM)

1/2

×T

V0.6 (10)

Whereϕistheassociationparameterofsolvent,whichinthis studyhasbeenconsideredtobewater,thevalueis2.6[39],Misthe molecularweightofthesolventandhasbeenconsideredas18,Tis thetemperatureinKatwhichtheexperimentisbeingconducted

(feedtemperature),istheviscosityofthesolutionattheparticular temperature.

Themolarvolume(V)wascalculatedusingEq.(11).

V= M (11)

HereMisthemassoftheNaClsolutionandisthedensityofthe solution.

Thisdiffusivity(D)wasderivedasinthemethoddescribedby Saltzmanetal.[39].ValuesweresubstitutedinEq.(12)toevaluate theSherwoodnumber(Sh).

Sh=0.646×



d

v



0.5

×



D



0.33 (12)

Wheredistheporediameter,

v

isconsideredtobethefluxin thiscase.

Basedontheabove,themasstransfercoefficientwascalculated byEq.(13).

K= Sh×D

L (13)

WhereListhelengthofthemembrane.Thefinalmasstransfer coefficientvaluesarepresentedasinTable3.

Sh=0.646×



d

v



0.5

×



D



0.333

5. Resultsanddiscussion

5.1. Porecharacteristicsofmembraneandtheireffectonsurface modification

5.1.1. Porecharacteristicsofmembrane

Fig.8revealedthattheaverageporediameterandporosity grad-uallyreducewiththeincreaseinclaycontentinthemembrane composition.

Thesilica present inclay (Al2O3–2SiO2–2H2O) actsasa low

meltingphaseduringthesinteringprocessandstartsreactingwith itsownstructuralAl2O3atatemperaturelowerthan1000◦Cto

formmullite(2Al2O3–SiO2)[34].Stoichiometricallytheexcess

sil-icapresentinclaydoesnotreactwiththealuminamixedexternally

[40].Instead,ittransformsintoglassyphaseandstaysinbetween thevoids,whicheventuallyreducestheporediameterandporosity

[34].

5.1.2. FTIRanalysis

Capillarymembraneswere graftedwithC8solutionkeeping alltheparameterssimilarasdiscussedearlierinSection2.3.The

(6)

C-0 C-20 C -40 C -55 1.0 1.5 2.0 Poro si ty Po re dia (m ic ro 30 32 34

Fig.8.Porediameterandporositygraphfordifferentformulationsofmembrane.

1200 1400 1000 800 600 400 Wavelength(cm-1) no n Grafted C-0

1

CFx

}

Si-CH 2CH2CxF2x+1 Grafted C-0

Fig.9. FTIRspectraofC-0.

FTIRspectrum of both graftedand non-grafted C-0, C-20,C-40 andC-55 membranesisrepresented inFigs. 9–12,respectively. Inthespectrum,x-axisrepresentswavelengthincm−1andy-axis representspercentagetransmission.

TheFTIRspectraofC-0andC-20graftedmembraneatzone1 inFigs.9and10,respectively revealedtwopeaksat1203cm−1 and 1205cm−1. Peak1203cm−1 attributes toSi-CH2CH2CxF2x+1

group[31] and 1205cm−1 attributes toCFx group [23], where

there is no transmission peak near 1200cm−1 for non-grafted C-0andC-20.ForgraftedC-40andC-55membranes,twozones areshown in Figs.11 and 12. In thesefigures,zone 1 hastwo transmissionpeaksat1203and1205cm−1.Zone2hastwopeaks at1115and1120cm−1.Transmissionbands1115cm−1attributes

1 Si-CH2CH2CxF2x +1 CF2

{

grafted C-20 non grafted C-20 1400 1200 1000 800 600 400 Wavelength(cm-1) Fig.10.FTIRanalysisofC-20.

400 600 800 1000 1200 1400 Wavelength (cm-1) n on g raft ed C-40

Fig.11.FTIRanalysisofC-40.

toSi–O–Sigroupand1120cm−1 attributestoSi-CH2CH2CxF2x+1

group. The non-grafted spectrum of C-40 shows no peak near 1200 and 1115cm−1. In non-grafted C-55a transmission band appeared at 1175cm−1, which may be due to the presence of mulliteasalsoobservedbySaikiaandParthasarathy[41].Inallthe graftedmembranes,thepresenceofSi-CH2CH2CxF2x+1groupisa

common,whichhasformedduetothechemicalreactionbetween Si(OC2H5)3 and the surface –OH groups of ceramic membrane.

Thisconfirmstheanchoringofhydrophobicpolymer(C8)withthe membranesurface(Fig.13).

5.1.3. Effectofmembraneporecharacteristicsandporosityon theirsurfacemodification

Duringgraftingprocess,thepolymersolution(C8)reactswith thehydroxylgroupspresentonmetaloxidesurfaceandconstruct aSi–Ocovalentbondwiththe–OHgroups(Fig.14)asdescribedby Kujawaetal.[25].

Membranecontainingsmallerporesizecorrespondstoadenser surfaceandlesservoidspaceonitssurface.Availabilityofmore surfacesimpliestheincreaseinnumberofavailable–OHgroupon themembranesurfaceforbonding.Thismayencourage construc-tingmultiplesilanolbondwiththepolymerandceramicsurface therebyimpartingbetterhydrophobicitytothemembrane.This hasbeenconfirmedbygradualincreaseinCAvalueswithdecrease

400 600 800 1000 1200 1400

2

1

Si-CH 2CH2CxF2x+ 1 S -O -i S i C F 2

Wavelength(cm

)

-1

n on gr a

fted C

-5

5

}

}

g ra fted C-55

(7)

115 120 125 130 135 140 145 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 po re s iz e (m ic ro n ) CA(degree) pore size 34 35 36 37 38 39 C-0 C-20 C-40 C-55 porosity po ro s ity (% )

Fig.13.Variationofcontactanglewithdifferentmembranesporesizeandporosity.

Fig.14.SchematicofgraftingreactionbetweenFASmoleculeand–OHgroup. inmembrane poresize(Fig.13).Similarphenomenon wasalso confirmedbyPinheiroetal.[42].

5.1.4. LEPwmeasurementofthemodifiedcapillarymembrane

ItwasrevealedthatLEPwincreaseswiththedecreasesin

mem-braneporesize.BasedontheLaplase(Cantor)Equation,therelation betweenLEPwandporesizeofahydrophobicmembranemaybe

expressedbyEq.(14)[43]. P= 2 L

rp,max

cos  (14)

WherePistheLEPw, L isthesurfacetensionoftheliquid,

rp,maxisthelargestporesizeofthemembraneandisthecontact

angle.

Fig. 15 represents the comparison between theoretical and experimentalvalueofLEPw.AvariationinLEPwvaluewasobserved

withhigherclaycompositionmodifiedmembrane.Consideringthe abovemodifiedC55capillarymembrane(C-55-M)wasselectedfor furtherMDapplication.

5.2. Membranedistillation

Performanceofdeveloped C-55-Mmembranewasevaluated basedonpermeatefluxvalueandpercentagesaltrejection.Flux wascalculatedintermsofL/m2day.Saltrejectionpercentage

cal-culationhasbeendiscussedinSection2.5.Theexperimentaland simulatedfluxeswithrespecttotemperaturedifferenceata con-stantpressureof0.85barandflowrateof0.492L/minareillustrated inFig.16.Boththeexperimentalandsimulatedfluxvaluesincrease withincreasingtemperaturedifference,whichwasalsoobserved byKujawaetal.[44].InpracticalapplicationtheMDprocessruns

1. 0. 2 0. 4 0. 6 0 . 8 1. 0 LE Pw (b a r) . 4 1. 6 1.8 Por 2. 0 2.2 2.4 re size(mi crometer E xperiment Theoritical 2. 6 2.8 3 r) al 3.0

Fig.15.VariationofLEPwwithdifferentmembranesporesize.

0 20 40 60 80 100 Fl u x(l /m 2 .d a y) 20 3 0 Tem p Experiment al Simulated

40 perat ure d iff erenc e (

50 60

(0C)

Fig.16. RelationbetweenMDfluxandtemperaturedifference(Tf(in)−Tf(out)).

continuouslysotheprocessneedsamembranewithlowfouling characteristic.Theexperimentalvalueoffluxiswithin±5% devia-tionwhichattributesthatthemembranehasnocracksorfouling duringtheMDprocess.

Rejectionrateisafunctionoftotalgraftingtimeand tempera-turedifference[35].Inthiswork,graftingtimewas75hforC-55-M membraneandwasnotvaried.Hencetheexhibitedrejectionrate isonlyafunctionoftemperaturedifference.Averysmalldeviation fromexperimentalresultswasobservedwiththesimulatedresults (Fig.17).

(8)

(2013) 75 46.008 99.5

85 57.744 99.8

Clayaluminamacro porousmembrane (C-55-M)(2015) 1.43␮m 20 5.4864 ByTDSmetre 99.1 40 28.612 99.9 50 50.13 99.95 60 98.66 99.96 Table3

MasstransfercoefficientanddiffusivitydataforC-55-Mmembranefor150mmlength.

Sl.No. Flux(L/m2day) Temperature(C) Density(kg/m3) Specificvolume

(m3kg)

Diffusivity(m2/s) Masstransfer

coefficient(mm/s)

1 5.4864 40 8.584 2.096 23.5×10−5 20.38×10−4

2 28.6124 50 17.168 1.048 35.7×10−5 68.73×10−4

3 50.139 60 21.46 0.838 40.8×10−5 10.31×10−3

4 98.667 70 25.752 0.698 45.5×10−5 16.03×10−3

5.3. MDperformancecomparisonofC-55-Mmembranewith publishedresult

The performance of C-55-Mmembrane has been compared withthe modified zirconia [15] and titania [35] membrane. In termsoffluxandpercentagerejectionthemaximumfluxobtained forzirconia membrane was113L/m2daywithrejectionrate of

99.8%andtemperaturedifferenceof95◦C.Fortitaniamembrane, thefluxwas57.7L/m2daywithrejection rateof99.8% at85C

temperaturedifferencewhereasthemaximumfluxobtainedfor C-55-Mmembranewas98.66L/m2dayatatemperaturedifference

of60◦Cwitharejectionrateof99.96% (Table2).This enhance-mentinfluxofC-55-Mmembranewithrelativelowtemperature differenceismaybeduetothepresenceoflargerporesize. 5.4. Resultofmasstransfercoefficient

Masstransfercoefficientincreaseswithtemperaturedifference andfluxvalueofC-55-Mmembrane.Masstransfercoefficientis directlyproportionalwithdiffusivityandShasdiscussedinSection

2.5.Diffusivitydependsontemperature;therefore,masstransfer coefficientwillchangeaccordingtovariationoftemperature.Shis afunctionofReynoldsnumber(Re)andSchmidtnumber(Sc).Both ReandScdependonfluxvalue.Sovalueofmasstransfercoefficient increaseswithincreaseinfluxvalue.C-55-Mmembraneshowsthe highestvalueofmasstransfercoefficientatatemperature70◦C (Table3).

6. Conclusion

Indigenously developed clay alumina based C-55 capillary membrane(C-55-M)wasdevelopedfor surfacemodificationby graftingwithC8polymer.Graftingofpolymeronthemembrane surfacewassuccessfullycarriedoutdirectlyonthemicro-porous membranewith1.43micronporesizewithoutanyintermediate coatinglayer. FTIRanalysis revealedthe siloxane bond present onthegraftedmembranesurface.Agradualincrease incontact angle values was observed with decrease in membrane pore size.ItwasalsoobservedthatLEPw ofthemodified membrane

wasincreasedwiththedecreaseinmembraneporesize.C-55-M membranehasacontactangleof145◦and1barofLEPw.MDhas

been carried out at a feed pressure of 0.85bar.The maximum flux obtained for C-55-M membrane was 98.66L/m2day at a

temperaturedifferenceof60◦Cwithasaltaswellasthetapwater impuritiesrejectionof99.96%. C-55-Mmembrane hasthemass transfercoefficientof16.03×10−3mm/satthefeedtemperature of70◦C.Theexperimentalfluxvalueiswithin±5%deviationfrom thetheoreticalvalues, whichattributes thatthemembrane has nocracksorfoulingduringtheMDprocessandcanbeappliedfor continuousMDprocess.

Acknowledgements

TheworkhasbeenfullyfundedbyDSTfirsttrackprojectGAP 0341andpartiallyfundedbyCSIR12thfiveyearplanprojectCSC 0115.

References

[1]S.T.Hsu,K.T.ChengandJ.S.Chiou,Desalination,143,279–287(2002). [2]E.Brauns,V.VanHoof,C.Dotremont,H.DeWever,P.Lens,E.VanHoof,G.

Thomas,B.MolenberghsandD.Demey,Desalination,170,123–136(2004). [3]R.DashtpourandS.N.Al-Zubaidy,Int.J.Environ.Sci.Dev.,3,(4)340–345(2012). [4]L.Gazagnes,S.Cerneaux,M.Persin,E.ProuzetandA.Larbot,Desalination,217,

260–266(2007).

[5]L.M.Camacho,L.Dumee,J.Zhang,d.J.Li,M.Duke,J.GomezandS.Gray,Water, 5,94–196(2013).

[6]C.A.Rivier,M.C.Garcia-Payo,I.W.MarisonandU.VonStockar,J.Membr.Sci., 201,1–16(2002).

[7]R.W.Schofield,A.G.FaneandC.J.D.Fell,J.Membr.Sci.,33,299–313(1987). [8]R.W.Schofield,A.G.FaneandC.J.D.Fell,J.Membr.Sci.,53,173–184(1990). [9]M.Tomaszewska,Desalination,104,1–11(1996).

[10]M.Tomaszewska,M.GrytaandA.W.Morawski,J.Membr.Sci.,166,149–156 (2002).

[11]M.Khayet,DesalinationandWaterResources,EncyclopediaofLifeSupport Systems,EolessPublishers(2010).

[12]T.MohammadiandM.Safavi,Desalination,249,(1)83–89(2009).

[13]N.Tang,Q.Jia,H.Zhang,J.LiandS.Cao,Desalination,256,(1–3)27–36(2010). [14]M.Khayet,Adv.ColloidInterfaceSci.,164,(1–2)56–88(2011).

[15]S.Cerneaux,I.Struzynska,W.M.Kujawski,M.PersinandA.Larbot,J.Membr. Sci.,337,55–60(2009).

[16]M. Khayet, J.I.Mengual andG. Zakrzewska-Trznadel,Desalination,1, (4) 435–449(2005).

[17]M.Tomaszewska,PolishJ.Environ.Stud.,9,(1)27–36(2000).

[18]K.GuerraandJ.Pellegrino,Ceramicmembranesforwatertreatment applica-tions,Reclamationmanagingwaterinwest,ResearchandDevelopmentOffice, U.S.Departmentofinterior,BureauofReclamation(2013).

(9)

[20]W.Kujawski,S.Krajewska,M.Kujawski,L.Gazagnes,A.LarbotandM.Persin, Desalination,205,(1–3)75–86(2007).

[21]S.A.Younssi,C.Kiefer,A.Larbot,M.PersinandJ.Sarrazin,J.Membr.Sci.,1439, 27–36(1998).

[22]S.R.Krejewski,W.Kujawski,F.Dijoux,C.PicardandA.Larbot,ColloidsSurf.A: Physicochem.Eng.Aspects,243,43–47(2004).

[23]C.Picard,A.Larbot,E.Tronel-peyrozandR.Berjoan,SolidStateSci.,6,605–612 (2004).

[24]B.Paul,W.N.MartensandR.L.Frost,J.ColloidInterfaceSci.,360,132–138 (2011).

[25]J.Kujawa,S.CerneauxandW.Kujawski,ColloidsSurf.A:Physicochem.Eng. Aspects,447,14–22(2014).

[26]J.Kujawa,S.Cerneaux,S.KoterandW.Kujawski,ACSAppl.Mater.Interfaces, 6,14223–14230(2014).

[27]M.Mulder,BasicPrincipalofMembraneTechnology,2nded.,KluwerAcademic Publisher(1996),pp.280–415.

[28]E.Drioli,V.CalabroandY.Wu,PureAppl.Chem.,58,1657–1662(1986). [29]S.R.Krajewski,W.Kujawski,M.Bukowska,C.PicardandA.Larbot,J.Membr.

Sci.,281,253–259(2006).

[30]L.M.DiezandF.J.F.Diaz,Desalination,139,373–379(2001).

[31]C.Picard,A.Larbot,F.Guida-Pietrasanta,B.BoutevinandA.Ratsimihety,Sep. Purif.Technol.,25,65–69(2001).

[32]H.R.Davis,Appl.Sci.Res.,34,(2–3)127–143(1978).

[33]I.Voigt,G.Fischer,P.Puhlfur,M.SchleifenheimerandM.Stahn,Sep.Purif. Technol.,32,87–91(2003).

[34]S.Sarkar,S.Bandyopadhyay,A.LarbotandS.Cerneaux,J.Membr.Sci.,392–393, 130–136(2012).

[35]J. Kujawa, W. Kujawski, S. Koter, K. Jarzynka, A. Rozicka, K. Bajda, S. Cernaux, M.Persin and A. Larbot,Desalin. Water Treat., 51, 1352–1361 (2013).

[36]J.Li,Chemosphere,(2014),http://dx.doi.org/10.1016/j.chemosphere.2014.12. 006.

[37]R.B.Bird,W.E.StewartandE.N.Lightfoot,TransportPhenomena,2nded.,Wiley Publishers(2002).

[38]C.R.WilkeandP.Chang,AIChEJ.,(2)264–270(1955).

[39]E.S.Saltzman,D.B.King,K.HolmenandC.Leck,J.Geophys.Res.,98,(C9) 16481–16486(1993).

[40]C.C.OsawaandC.A.Bertran,J.Braz.Chem.Soc.,16,(2)1678–4790(2005). [41]B.J.SaikiaandG.Parthasarathy,J.Mod.Phys.,1,206–210(2010).

[42]A.F.M.Pinheiro,D.Hoogendoorn,A.NijmeijerandL.Winnubst,J.Membr.Sci., 463,24–32(2014).

[43]A.M.AlkiaibiandN.Lior,Desalination,171,111–131(2004).

[44]J.KujawaandW.Kujawski,ChemicalPapers,(2015),http://dx.doi.org/10.1515/ chempap-2015-0155.

References

Related documents

i ) When the manufacturer commits to partial remanufacturing, the wholesale price of remanufactured products is higher in model MM than that in model MN , but it is the same

8. These “Average Times” now represent how quickly your system can react to manual control of boom functions. In Section 4.7 Completing the Installation , this procedure is

The objectives of the study is to identify the effectiveness of POS display and the influence of POS in buying Behaviour of customers and retailers in soft

The latter population of patients responded to reduction in blood pressure with infusion of saralasin post dialysis whereas no or non significant effect was

Efficacy and safety of oral compared with intravenous ascorbic acid in improving anaemia in erythropoietin hyporesponsive, iron overloaded, haemodialysis patients - a

Before a practitioner is ready for Iron Shirt training, he must have had at least 2 years of Kung Fu or Qi Gong practice to strengthen and clean his or her body.. Iron Shirt Qi

Zmožnost in sposobnost za vožnjo Človek in njegov cirkadiani ritem.. Zaspanost