• No results found

On orthogonal polynomials related to arithmetic and harmonic sequences

N/A
N/A
Protected

Academic year: 2021

Share "On orthogonal polynomials related to arithmetic and harmonic sequences"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

arithmetic and harmonic sequences

Adhemar Bultheel and Andreas Lasarow

Report TW 687, February 2018

KU Leuven

Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

(2)

arithmetic and harmonic sequences

Adhemar Bultheel and Andreas Lasarow

Report TW 687, February 2018

Department of Computer Science, KU Leuven

Abstract

In this paper we study special systems of orthogonal polynomi-als on the unit circle. More precisely, with a view to the recurrence relations fulfilled by these orthogonal systems, we analyze a link of non-negative arithmetic to harmonic sequences as a main subject. Here, arithmetic sequences appear as coefficients of orthogonal poly-nomials and harmonic sequences as corresponding Szeg˝o parameters.

Keywords : Orthogonal polynomials on the unit circle, recurrence relations of Szeg˝o-type, arithmetic sequences, harmonic sequences

(3)

Research

Article

Adhemar

Bultheel

and

Andreas

Lasarow

On

orthogonal

polynomials

related

to

arithmetic

and

harmonic

sequences

Abstract:In this paperwe study special systemsof orthogonal polynomials on theunitcircle.Moreprecisely,withaviewtotherecurrencerelationsfulfilledby theseorthogonalsystems,weanalyzealinkofnon-negativearithmetictoharmonic sequencesasamainsubject.Here,arithmeticsequencesappearascoefficientsof orthogonalpolynomialsandharmonicsequencesascorrespondingSzegőparameters. Keywords:Orthogonalpolynomialsontheunitcircle,recurrencerelationsof Szegő-type,arithmeticsequences,harmonicsequences

MSC2010:Primary42C05;secondary30C15

1

Introduction

Throughoutthepaper,let𝑛beapositiveinteger.Supposethat𝑝isa (complex-valued)polynomialofdegree𝑛whichadmitstherepresentation

𝑝(𝑥) = 𝑎𝑛𝑥𝑛+𝑎𝑛−1𝑥𝑛−1+···+𝑎1𝑥1+𝑎0

withnon-negativerealcoefficients.Inthispaper,especially,weareinterestedin thecasethatthedifferenceofconsecutivecoefficientsispositiveandconstant,i.e.

𝑎𝑘−𝑎𝑘−1 = 𝑑, 𝑘=1,...,𝑛,

forsome(arbitrary,butfixed)positiverealnumber𝑑.Wewilldenoteby𝒫𝑛;artheset

ofallpolynomialsofthistype.Thecoefficientsarerelatedtoarithmeticsequences (hencethe"ar"inthenotation)and,since𝑑>0,wehavethemonotonicity

𝑎𝑛 > 𝑎𝑛−1 > ··· > 𝑎1 > 𝑎0 ≥ 0.

Thereby,theconsiderations belowcan beseenasacontinuation ofthose in[2] and[5]onspecialpolynomialsappearinginorthogonalsystemsontheunitcircle

T:={𝑧∈C: |𝑧|=1}ofthecomplexplaneC.

AdhemarBultheel,DepartementComputerwetenschappen,KULeuven,Belgium;e-mail: adhemar.bultheel@cs.kuleuven.be

AndreasLasarow,FakultätInformatik,MathematikundNaturwissenschaften,HTWK Leipzig,Germany;e-mail:andreas.lasarow@htwk-leipzig.de

(4)

Supposethat𝜇isameasurebelongingto ℳ,whereℳstandsforthesetof allfinitemeasuresdefinedonthe𝜎-algebraBTofallBorelsubsetsofT.Wewill calla(finiteorinfinite)sequence(𝜑𝑘)𝑘𝜏=0,whereeach𝜑𝑘 isapolynomialofdegree

notgreaterthan𝑘,anorthonormalpolynomialsystemfor𝜇when

∫︁

T

𝜑𝑠(𝑧)𝜑𝑡(𝑧)𝜇(d𝑧) = 𝛿𝑠𝑡,

where𝛿𝑠𝑡:=1if𝑠=𝑡and𝛿𝑠𝑡:=0if𝑠̸=𝑡(foreachchoiceofindices).Hereand

henceforth,𝜏 isanon-negativeintegeror𝜏=∞(arbitrarilychosen,butfixed). Ifthereexistsanorthonormalpolynomial systemforsome𝜇∈ℳ,thenwe findaspecialonewhichisuniquelydeterminedbytheextraconditionthatthe leadingcoefficientofeach𝜑𝑘 isapositiverealnumber.Wewillcallthis(𝜑𝑘)𝜏𝑘=0

the(upto𝜏)normalizedorthonormalpolynomialsystemfor𝜇.

As an aside, we remarkthat there are explicit descriptions of normalized orthonormalpolynomialsystemsbycertaindeterminantformulasor(equivalent) byusingentriesoftheinverseofToeplitzmatricesgivenbytheFouriercoefficients of themeasure𝜇 (see,e.g.,[7],[6],[3],and[4,Section3.6]). Sincewe aremore interestedintherecurrencerelationsforsuchsystems,weomitherethedetails.

Orthonormalpolynomialsystemsforsome𝜇∈ℳfulfillspecific recurrence relations,wheretheelement𝜑𝑛canbecalculatedbasedon𝜑𝑛−1andviceversa.By

thedegreeoffreedomofthechoiceofsuchorthonormalsystemonecansuccessively choose theelementssothattherelated recursionsonly depend ineachstep on someparameterfromtheunitdiskD:={𝑤∈C: |𝑤|<1}(cf.[7],[6,Sections1.5 and1.7],butbelowwefollow moretheapproachof[3],[4,Section3.6]).

Concerningtherecurrencerelations inquestion, thefollowingterm willbe takencenterstage.Wewillcall (𝜙𝑘)𝜏𝑘=0 asequenceofSzegőpolynomialswhen𝜙0

isaconstantfunctiononCwithavalue𝑝0∈C∖{0}andtheotherpolynomialsin thesequencewithhigherindexare(ineach𝑛-thstep)connectedvia

𝜙𝑛(𝑥) = √︀ 1 1−|𝑒𝑛|2 (︁ 𝑥𝜙𝑛−1(𝑥) +𝑒𝑛𝜙̃︀ [𝑛−1] 𝑛−1 (𝑥) )︁ (1)

withsomeSzegőparameter𝑒𝑛∈D(cf.[3]and[4,Definition3.6.7]).Hereinand

furthermore(withsomenon-negativeinteger𝑚),thenotatioñ︀𝑝[𝑚]standsforthe polynomialwhichisuniquelydeterminedvia

̃︀ 𝑝[𝑚](𝑥) = 𝑥𝑚𝑝 (︁ 1 𝑥 )︁ , 𝑥∈C∖{0}, (2) forapolynomial𝑝ofdegreenotgreaterthan𝑚.Inaddition,asequence(𝜙𝑘)𝜏𝑘=0

ofSzegőpolynomialsiscalledcanonicalwhen𝜙0isaconstantfunctiononCwith

(5)

InSection2wewillgivesomeinformationaboutsequencesofSzegőpolynomials whichareknown,butwerecallthembecausethatisusefulforourmainresults. Section3formsthebodyofthispaper,wherewestudytheset𝒫𝑛;arwithaviewto

therecurrencerelationsfulfilledbysequencesofSzegőpolynomials.Thisapproach issimilartotheinvestigationsin[2]and[5]betweenpropertiesofcoefficientsof Szegőpolynomialsandcorresponding propertiesofSzegőparameters.However, asamainresultinSection3,itwillberevealedthatanarithmeticsequenceof coefficientsisrelatedtoaharmonicsequenceofSzegőparameters.

Finally,weremarkthattherestrictionofthecasethatthepolynomialshave non-negativerealcoefficientsisnotessential.However,thecalculationsaresomewhat morelabor-intensiveforthemoregeneralsituation.Wewillgivethedetailslater.

2

Hints

on

sequences

of

Szegő

polynomials

Wegive inthissectionsomenotes onasequence(𝜙𝑘)𝜏𝑘=0 ofSzegőpolynomials

whichareusefulforourmainresults.Evenifwemostlyfixthestatementsbelow onlyasaremark,thereisusuallymorethanonelineneededtoprovethemprecisely (dependingontheknowledge).

Since the𝑘-th element𝜙𝑘 of a sequenceof Szegő polynomialsisof degree

notgreaterthan𝑘(infact,ofexactdegree𝑘;cf.[2,Lemma2.4]),therearesome coefficients𝑎𝑘;0,𝑎𝑘;1,...,𝑎𝑘;𝑘 ∈Csothat 𝜙𝑘(𝑥) = 𝑘 ∑︁ 𝑗=0 𝑎𝑘;𝑗𝑥𝑗. (3)

Especially,weareinterestedinthispaperinthecasethatallcoefficientsof thecorrespondingpolynomialsarenon-negativereal.

Remark2.1. Supposethat𝜙𝑛−1isapolynomialofdegree𝑛−1withnon-negative

realcoefficients.If𝜙𝑛 isthepolynomialgivenby(1)withsomerealnumber𝑒𝑛,

where0≤𝑒𝑛<1,then 𝜙𝑛(𝑥) = 𝑛 ∑︁ 𝑗=0 𝑎𝑛−1;𝑗−1+𝑒𝑛𝑎𝑛−1;𝑛−𝑗−1 √︀ 1−𝑒2𝑛 𝑥𝑗

usingthenotationofthecoefficientsasin(3)for𝜙𝑛−1 andsetting𝑎𝑛−1;−1:=0.

Inparticular,wecansee,thatallcoefficientsofthepolynomial𝜙𝑛arenon-negative

realinthissituationaswell.

Thefollowingexamplecanbeseenastheinitialpointoftheconsiderationsinthis paper.Notethatthestructureoftheparameterswhichappearinthisexample

(6)

arecloselyrelated tothatin[6,Examples1.6.3and1.6.4] concerning(infinite) sequencesoforthogonalpolynomialsontheunitcircle.

Example2.1. Let𝜙0betheconstantfunctionwithvalue1andlet

𝑒ℓ:=

1

ℓ+1, ℓ=1,2,3,4.

Then the(canonical) sequence(𝜙𝑘)𝑘4=0 of Szegő polynomialswith 𝜙0 and the

sequenceofSzegőparameters(𝑒ℓ)4ℓ=1 isgivenby

𝜙0(𝑥) = 1, 𝜙1(𝑥) = 1 √ 3(2𝑥+1), 𝜙2(𝑥) = 1 √ 6(3𝑥 2 +2𝑥+1), 𝜙3(𝑥) = 1 √ 10(4𝑥 3 +3𝑥2+2𝑥+1), 𝜙4(𝑥) = 1 √ 15(5𝑥 4 +4𝑥3+3𝑥2+2𝑥+1).

Example2.1suggestsalinkbetweenaharmonicsequenceofSzegőparametersand correspondingarithmeticsequencesofcoefficientsofSzegőpolynomials.Thislink willbestudiedinSection3insomewhatmoredetail.

Notethat(1)isequivalentto 𝑥𝜙𝑛−1(𝑥) = 1 √︀ 1−|𝑒𝑛|2 (︁ 𝜙𝑛(𝑥)−𝑒𝑛𝜙̃︀ [𝑛] 𝑛 (𝑥) )︁ (4)

(cf.[2,Lemma2.4]).Thus,inadditiontoRemark2.1, itfollowsfrom(1)thatthe polynomial𝜙𝑛−1canalsobeexpressedintermsofthecoefficientsofthepolynomial

𝜙𝑛.Usingthenotationofthecoefficientsasin(3)for𝜙𝑛,wegetthefollowing.

Remark2.2. Supposethat𝜙𝑛−1isapolynomialofdegree𝑛−1andthat𝜙𝑛 isthe

polynomialgivenby(1)withnon-negativerealcoefficientsandwithsome𝑒𝑛∈D.

Thenweget𝑎𝑛;𝑛>𝑎𝑛;0≥0and0≤𝑒𝑛<1,where

𝜙𝑛−1(𝑥) = 𝑛−1 ∑︁ 𝑗=0 𝑎𝑛;𝑛𝑎𝑛;𝑗+1−𝑎𝑛;0𝑎𝑛;𝑛−𝑗−1 √︁ 𝑎2𝑛;𝑛−𝑎2𝑛;0 𝑥𝑗 and 𝑒𝑛 = 𝑎𝑛;0 𝑎𝑛;𝑛

(cf.[2,Lemma2.6]).Inparticular,ifweknowthecoefficientsof thepolynomial 𝜙𝑛,thentheparameter𝑒𝑛 andthepolynomial𝜙𝑛−1 areuniquelydetermined.

Thenextexampleillustratesthatthecase𝑛=1concerning(1)andsequencesof Szegőpolynomialsisunspectacular(butanexception).

(7)

Example2.2. Supposethat𝑝isapolynomialadmitting𝑝(𝑥)=𝑎1𝑥+𝑎0withsome

non-negativerealnumbers𝑎1 and𝑎0.WithaviewtoRemark2.2onecanseethat

thereisa(𝜙𝑘)1𝑘=0ofSzegőpolynomialswith𝜙1=𝑝ifandonlyif𝑎1>𝑎0,where

theSzegőpolynomialswith𝜙1 =𝑝isthenuniquelydetermined andcanonical

(since𝜙0 istheconstantfunctionwithvalue

√︀

𝑎2 1−𝑎20).

Withthefollowingexamplewewillemphasizethat,undertheexclusivetermsof Remark2.2,itispossiblethatacoefficientofthepolynomial𝜙𝑛−1isnegativereal.

Example2.3. If𝜙2 and𝜙3arethepolynomialsgivenby

𝜙2(𝑥) = 8𝑥2−𝑥+ 7 and 𝜙3(𝑥) = 10𝑥3+ 4𝑥2+ 8𝑥+ 6,

then(1)isfulfilledwith𝑛=3and𝑒𝑛=35.

InviewofthedefinitionofsequencesofSzegőpolynomials,afinitesequenceofthis typecanbeextendedtoaninfiniteone(bychoosingthemissingSzegőparameters arbitrary,butbelongingtoD).Thefollowingnotepointsoutasimpleextension regarding(infinite)orthonormalpolynomialsystemsbyfixingthemeasure𝜇. Remark2.3. Suppose that (𝜙𝑘)𝑘𝑛=0 is a sequence of Szegő polynomials. Then

(𝜙𝑘)𝑛𝑘=0isanorthonormalpolynomialsystemfor𝜇givenby

𝜇(𝐵):= 1 2𝜋 ∫︁ 𝐵 1 |𝜙𝑛(𝑧)|2 𝜆(d𝑧), 𝐵∈BT, (5)

where𝜆standsforthe linearLebesgue-BorelmeasureonT.Infact(cf.[6, Theo-rems1.7.5and 1.7.8]or[2,Proposition2.5andRemark5.2]),ifwechoose

𝜙𝑛+ℓ(𝑥):=𝑥ℓ𝜙𝑛(𝑥), ℓ=1,2,...,

then(𝜙𝑘)∞𝑘=0 isasequenceofSzegőpolynomialswithparameter𝑒𝑛+ℓ=0forall

integersℓ≥1,where(𝜙𝑘)∞𝑘=0isanorthonormalpolynomialsystemfor𝜇.

If(𝜙𝑘)𝑛𝑘=0isasequenceofSzegőpolynomials,thenRemark2.3clarifiesparticularly

thatthereisa𝜇∈ℳsothat(𝜙𝑘)𝑛𝑘=0isanorthonormalpolynomialsystemfor𝜇.

Inadditiontothat(cf.[6,Theorem1.7.11]or[4,Theorem3.6.2]),ifweconsideran infinitesequence(𝜙𝑘)∞𝑘=0ofSzegőpolynomials,thenthere isexactlyonemeasure

𝜇∈ℳsothat(𝜙𝑘)𝑘∞=0 isanorthonormalpolynomialsystemfor𝜇.

Notethat,conversely,ifwehaveanorthonormalpolynomialsystem(𝜑𝑘)𝜏𝑘=0

for𝜇∈ℳ,thenintheset ofall suchsystemsareincluded sequencesof Szegő polynomialsandwefindaspecialonewhichiscanonical(cf.[6,Chapter1]or[4, Section3.6]).

Finally,werecallthefollowingmanipulationbymultiplicationofsequencesof Szegőpolynomials(cf.[2,Remark2.10]).

(8)

Remark2.4. Supposethat(𝜙𝑘)𝑘𝜏=0isasequenceofSzegőpolynomialswithrelated

sequence(𝑒ℓ)𝜏ℓ=1ofSzegőparametersandlet𝑎beapositiverealnumber.Then

(𝑎𝜙𝑘)𝜏𝑘=0 is a sequence of Szegő polynomials with sequence (𝑒ℓ)𝜏ℓ=1 of Szegő

parameters.Furthermore,if(𝜙𝑘)𝑘𝜏=0 isanorthonormalpolynomialsystemforthe

measure𝜇,then(𝑎𝜙𝑘)𝜏𝑘=0 isanorthonormalpolynomialsystemfor 𝑎12𝜇.

3

On

Szegő

polynomials

belonging

to

𝒫

𝑛;ar

Now,withaviewtotheset𝒫𝑛;ar,westudyspecialsequencesofSzegőpolynomials.

Thereby,thefollowingresultisthelynchpin.

Lemma3.1. Suppose that 𝜙𝑛−1 is a polynomial of degree 𝑛−1 and that 𝜙𝑛 is

the polynomial given by (1) with some 𝑒𝑛 ∈ D and 𝑛 ≥2. If 𝜙𝑛 ∈ 𝒫𝑛;ar, then

𝜙𝑛−1∈𝒫𝑛−1;arand, usingthenotationof thecoefficientsasin (3)for𝜙𝑛,then

𝜙𝑛−1(𝑥) = 𝑛−1 ∑︁ 𝑗=0 (𝑗+1)𝑑(𝑛𝑑+ 2𝑎𝑛;0) √︁ 𝑎2 𝑛;𝑛−𝑎2𝑛;0 𝑥𝑗, (6) 𝑒𝑛 = 𝑎𝑛;0 𝑛𝑑+𝑎𝑛;0 (7) with𝑑=𝑎𝑛;1−𝑎𝑛;0>0.

Proof. Let𝜙𝑛∈𝒫𝑛;ar.Withaviewto(3)for𝜙𝑛,weget𝑎𝑛;𝑛>𝑎𝑛;0≥0,

𝜙𝑛−1(𝑥) = 𝑛−1 ∑︁ 𝑗=0 𝑎𝑛;𝑛𝑎𝑛;𝑗+1−𝑎𝑛;0𝑎𝑛;𝑛−𝑗−1 √︁ 𝑎2𝑛;𝑛−𝑎2𝑛;0 𝑥𝑗, (8) and 𝑒𝑛 = 𝑎𝑛;0 𝑎𝑛;𝑛 (9)

(cf.Remark2.2).Furthermore,since𝜙𝑛∈𝒫𝑛;ar,thereisa𝑑>0sothat

𝑎𝑛;𝑘−𝑎𝑛;𝑘−1 = 𝑑, 𝑘=1,...,𝑛.

Thus,itfollowsthat

𝑒𝑛 = 𝑎𝑛;0 𝑎𝑛;𝑛 = 𝑎𝑛;0 𝑛𝑑+𝑎𝑛;0 , i.e.(7),and 𝑎𝑛;𝑛𝑎𝑛;𝑗+1−𝑎𝑛;0𝑎𝑛;𝑛−𝑗−1 = (𝑛𝑑+𝑎𝑛;0) (︀ (𝑗+1)𝑑+𝑎𝑛;0 )︀ −𝑎𝑛;0 (︀ (𝑛−𝑗−1)𝑑+𝑎𝑛;0 )︀ = 𝑛(𝑗+1)𝑑2+𝑛𝑑𝑎𝑛;0+(𝑗+1)𝑑𝑎𝑛;0−(𝑛−𝑗−1)𝑑𝑎𝑛;0 = (𝑗+1)𝑑(𝑛𝑑+2𝑎𝑛;0)

(9)

for𝑗=0,1,...,𝑛−1,i.e.weget(6).Inparticular,wesee𝜙𝑛−1∈𝒫𝑛−1;ar.

Theorem3.1. Suppose that 𝑝 ∈ 𝒫𝑛;ar for some 𝑛 ≥ 2. Then there is a uniquely

determined sequence (𝜙𝑘)𝑛𝑘=0 ofSzegőpolynomials,where 𝜙𝑛=𝑝.Thissequence

(𝜙𝑘)𝑛𝑘=0 of Szegőpolynomials is canonical,where the associatedSzegőparameter

𝑒𝑛 is givenvia (7)and (3).Furthermore, thepolynomial𝜙ℓ belongs to𝒫ℓ;ar and

theassociatedSzegőparameter𝑒ℓ isgivenby

𝑒ℓ =

1

ℓ+1, ℓ=1,...,𝑛−1.

Proof. We set 𝜙𝑛 =𝑝 andusethe notation(3)with𝑘 replaced by 𝑛.Because

𝑝∈𝒫𝑛;ar,wehave𝑎𝑛;𝑛>𝑎𝑛;0≥0sothattheparameter𝑒𝑛andthepolynomial

𝜙𝑛−1 accordingto(9)and(8),respectively,arewell-defined.Sincetherelation(4)

isequivalentto(1),from(8)and(9)weget(1).Furthermore,Lemma3.1yields 𝜙𝑛−1∈𝒫𝑛−1;arandtherepresentation(7)and(6)for𝑒𝑛and𝜙𝑛−1,respectively.In

particular,if𝑛−1≥2,wecanproceedwiththeapproachandget𝜙𝑛−2∈𝒫𝑛−2;ar,

whereRemark2.2and(6)imply

𝑒𝑛−1 = 𝑎𝑛−1;0 𝑎𝑛−1;𝑛−1 = 𝑑(𝑛𝑑+2𝑎𝑛;0) √︁ 𝑎2 𝑛;𝑛−𝑎2𝑛;0 𝑛𝑑(𝑛𝑑+2𝑎𝑛;0) √︁ 𝑎2 𝑛;𝑛−𝑎2𝑛;0 = 𝑑(𝑛𝑑+ 2𝑎𝑛;0) 𝑛𝑑(𝑛𝑑+ 2𝑎𝑛;0) = 1 𝑛.

Forℓ=1,...,𝑛−1,bytheprincipleofinduction,weget𝜙ℓ∈𝒫ℓ;arand𝑒ℓ = ℓ+11 .

Finally,withaviewtoExample2.2,onecanseethattheconstructionusedabove leadstoa uniquelydetermined sequence (𝜙𝑘)𝑛𝑘=0 of Szegőpolynomials, where

𝜙𝑛=𝑝,andthatthisiscanonical.

Corollary3.1. If𝑝∈𝒫𝑛;arwith 𝑛≥1, thenallzerosof𝑝belongtoD.

Proof. For𝑛=1,thestatementfollowsimmediatelyfromthedefinitionof𝒫1;ar.

If 𝑛 ≥2, thenTheorem 3.1 implies that there isa sequence(𝜙𝑘)𝑛𝑘=0 of Szegő

polynomialswith𝜙𝑛=𝑝.Thus,inthiscase,thestatementfollowsfromageneral

resultonsequencesofSzegőpolynomials(see,e.g.,[2,Proposition2.5(a)]). Asanaside,wenotethatthestatementofCorollary3.1followsfromaclassical theoremduetoEneström–Kakeyaaswell(see,e.g.,[1,TheoremA]).

Theresult,thatisrevealedbyTheorem3.1,comprisesaveryspecialstructure ofSzegőpolynomials.Thiswillbeemphasizedbythefollowing.

Proposition3.1. Suppose that 𝑝 ∈ 𝒫𝑛;ar for some 𝑛 ≥ 2 and let (𝜙𝑘)𝑛𝑘=0 be the

uniquelydeterminedsequenceofSzegőpolynomials,where𝜙𝑛=𝑝.

(a) The sequence (𝜙𝑘)𝑛𝑘=0 is the (up to 𝑛) normalized orthonormal polynomial

(10)

(b) Let𝑑𝑚 bethe differenceof consecutive coefficientsof𝜙𝑚 for𝑚=1,2,...,𝑛

and let𝑑0 := 𝜙0(0). Then 𝑑0 > 𝑑1 >··· >𝑑𝑛−1 ≥ 𝑑𝑛, where 𝑑ℓ = 𝜙ℓ(0)

and𝑑ℓ−1=𝑑ℓ

√︁

1 +2 forℓ=1,...,𝑛−1andwhere 𝑑𝑛−1=𝑑𝑛

√︁

1 +2𝜙𝑛(0)

𝑛𝑑𝑛 .

Furthermore,𝑑𝑚=𝑚1(︀𝜙̃︀𝑚[𝑚](0)−𝜙𝑚(0))︀for𝑚=1,2,...,𝑛.

(c) Denotingthecoefficientsasin (3),then

𝑎𝑘;𝑗 = 1 𝑗+1 √︂ 𝑛+1 𝑘2+3𝑘+2 (︁ (︀ ̃︀ 𝑝[𝑛](0))︀2 −(︀ 𝑝(0))︀2 )︁ , 𝑗=0,1,...,𝑘, forallindices𝑘=0,1,...,𝑛−1.

(d) Thefollowingstatementsareequivalent: (i) 𝑝(0)=0.

(ii) 𝑒𝑛=0.

(iii) 𝑑𝑛=𝑑𝑛−1.

(e) Thefollowingstatementsareequivalent: (iv) 𝑝(0)=𝑑𝑛. (v) 𝑒𝑛=𝑛+11 . (vi) 𝑑𝑛=𝑑𝑛−1 √︁ 𝑛 𝑛+2.

Proof. Asiswell-known(cf.Remark2.3),thesequence(𝜙𝑘)𝑛𝑘=0 isanorthonormal

polynomial system for the measure 𝜇 given by (5). Since 𝜙𝑛 = 𝑝 particularly

implies 𝜙𝑛 ∈𝒫𝑛;ar andsince Theorem3.1 yields 𝜙ℓ ∈𝒫ℓ;ar forℓ=1,...,𝑛−1

aswellasthat𝜙0(0)isapositiverealnumber,theleadingcoefficient of𝜙𝑘 isa

positiverealnumberforeach𝑘=0,1,...,𝑛.Thus,thesequence(𝜙𝑘)𝑛𝑘=0isthe

(upto𝑛)normalizedorthonormalpolynomialsystemfor𝜇.Hence,(a)isproven. Because 𝜙𝑚 ∈ 𝒫𝑚;ar, the number𝑑𝑚 iswell-defined according to(b) and

̃︀

𝜙𝑚[𝑚](0)istheleadingcoefficientof𝜙𝑚 for𝑚=1,2,...,𝑛.Consequently,based

on(3),for𝑚=1,2,...,𝑛wehave

̃︀

𝜙𝑚[𝑚](0) = 𝑎𝑚;𝑚 = 𝑚𝑑𝑚+𝑎𝑚;0 = 𝑚𝑑𝑚+𝜙𝑚(0),

i.e.𝑑𝑚=𝑚1(︀𝜙̃︀

[𝑚]

𝑚 (0)−𝜙𝑚(0))︀.Moreover,byTheorem3.1andLemma3.1follows

therepresentation(6)for𝜙𝑛−1,where𝑑=𝑑𝑛.Thisimplies

𝑑𝑛−1 = 𝑑𝑛(𝑛𝑑𝑛+ 2𝑎𝑛;0) √︁ 𝑎2 𝑛;𝑛−𝑎2𝑛;0 = √︁𝑑𝑛(𝑛𝑑𝑛+ 2𝑎𝑛;0) (𝑛𝑑𝑛+𝑎𝑛;0)2−𝑎2𝑛;0 = √︀𝑑𝑛(𝑛𝑑𝑛+ 2𝑎𝑛;0) (𝑛𝑑𝑛)2+ 2𝑛𝑑𝑛𝑎𝑛;0 = 𝑛𝑑 2 𝑛(1+ 2𝑎𝑛;0 𝑛𝑑𝑛 ) 𝑛𝑑𝑛 √︁ 1+2𝑎𝑛;0 𝑛𝑑𝑛 = 𝑑𝑛 √︂ 1+2𝑎𝑛;0 𝑛𝑑𝑛 = 𝑑𝑛 √︂ 1+2𝜙𝑛(0) 𝑛𝑑𝑛 .

Inparticular,taking𝜙𝑛(0)≥0and𝑑𝑛>0intoaccount, wesee𝑑𝑛−1≥𝑑𝑛.Let

(11)

hand𝑒ℓ= 𝑎ℓ;0

ℓ𝑑ℓ+𝑎ℓ;0 byLemma3.1andRemark2.2.Hence,weget𝑎ℓ;0̸=0and

𝑑ℓ = 𝑎ℓ;0 = 𝜙ℓ(0).

Therefore,similarasabove,inviewofTheorem3.1andLemma3.1itfollows

𝑑ℓ−1 = 𝑑ℓ

√︂

1+2

ℓ, ℓ=1,...,𝑛−1, andparticularly𝑑ℓ−1>𝑑ℓ.Hence,(b)isproven.

By(b)and𝑝=𝜙𝑛,wehave(notẽ︀𝑝

[𝑛](0)>𝑝(0)) 𝑑𝑛 √︂ 1+2𝜙𝑛(0) 𝑛𝑑𝑛 = 1 𝑛 (︀ ̃︀ 𝑝[𝑛](0)−𝑝(0))︀ √︃ 1 + 2𝑝(0) ̃︀ 𝑝[𝑛](0)𝑝(0) = 1 𝑛 (︀ ̃︀ 𝑝[𝑛](0)−𝑝(0))︀ √︃ ̃︀ 𝑝[𝑛](0) +𝑝(0) ̃︀ 𝑝[𝑛](0)𝑝(0) = 1 𝑛 √︁ (︀ ̃︀ 𝑝[𝑛](0))︀2 −(︀ 𝑝(0))︀2 .

Furthermore,bytheprincipleofinduction,onecanshowthat

𝑛−1 ∏︁ 𝑗=ℓ (︁ 1+2 𝑗 )︁ = 𝑛+𝑛 2 ℓ+ℓ2, ℓ=𝑛−1,...,1.

Thus,usingthecoefficientsasin(3),from(b)weget

𝑎𝑘;0 = 𝜙𝑘(0) = 𝑑𝑘 = √︂ 1 +2𝜙𝑛(0) 𝑛𝑑𝑛 𝑛 ∏︁ ℓ=𝑘+1 𝑑ℓ = √︂ 1 +𝑛 𝑘+ 1 + (𝑘+ 1)2 (︁ (︀ ̃︀ 𝑝[𝑛](0))︀2 −(︀ 𝑝(0))︀2 )︁ = √︂ 𝑛+1 𝑘2+3𝑘+2 (︁ (︀ ̃︀ 𝑝[𝑛](0))︀2 −(︀ 𝑝(0))︀2)︁

for𝑘=0,...,𝑛−1.Recalling𝜙ℓ∈𝒫ℓ;ar and𝑑ℓ=𝜙ℓ(0)forℓ=1,...,𝑛−1,the

assertionof(c)follows.

Taking 𝑝 = 𝜙𝑛 and (7) into account the assertions of (d) and (e) are a

consequenceof(b).

Corollary3.2. Supposethat (𝜙𝑘)𝜏𝑘=0 isasequence ofSzegőpolynomials.

(a) If𝜙ℓ∈𝒫ℓ;ar forsome indexℓwith 𝜏 >ℓ≥1, where thedifferenceof

conse-cutivecoefficientsof thepolynomial𝜙ℓ isnotequal to𝜙ℓ(0),then𝜙𝑘̸∈𝒫𝑘;ar

forallindices𝑘 with𝜏≥𝑘>ℓ.

(b) If 𝜙ℓ ∈ 𝒫ℓ;ar for some index ℓ with 𝜏 > ℓ ≥ 1, where the associated Szegő

(12)

Proof. Let 𝜙ℓ ∈ 𝒫ℓ;ar for an index ℓ with 𝜏 > ℓ ≥ 1, where the difference 𝑑ℓ

ofconsecutivecoefficientsof𝜙ℓisdifferentfrom𝜙ℓ(0).Furthermore,weassume

temporarily that there isan index 𝑘 with𝜏 ≥ 𝑘 >ℓ, where 𝜙𝑘 ∈𝒫𝑘;ar.Thus,

Theorem3.1andpart(b)of Proposition3.1with𝑝=𝜙𝑘 yield𝑑ℓ=𝜙ℓ(0).But

thisconflictswiththeconditionof𝜙ℓ.Therefore,𝜙𝑘̸∈𝒫𝑘;arforallindices𝑘with

𝜏 ≥𝑘 >ℓ,and(a) isproven. Sincethecondition 𝑒ℓ =0leadsto𝜙ℓ(0)=0(cf.

Remark2.2),thestatementof(b)isaconsequenceof(a).

InviewoftheinterdependencyofsequencesofSzegőpolynomialsandorthonormal polynomialsystemsformeasures𝜇∈ℳ(see,e.g.,thenotesfromRemark2.3to theendofSection2),wecansimplyreformulatethestatementsaboveintermsof orthonormalsystems.Inparticular,wegetthefollowingresultwhichturnsoutto besomewhatmoresurprising(ifyoudonothavetherecurrencerelationinmind). Theorem3.2. Supposethat(𝜙𝑘)𝑘𝜏=0isanorthonormalpolynomialsystemforsome

measure𝜇∈ℳ.

(a) If𝜙𝑛∈𝒫𝑛;ar forsomeindex𝑛with 𝑛≥2, then𝑎𝑘;0̸=0and

𝑎𝑘;𝑗 = 𝑢𝑘 𝑗+1 √︂ 𝑛+1 𝑘2+3𝑘+2 (︀ 𝑎2𝑛;𝑛−𝑎2𝑛;0 )︀ , 𝑗=0,1,...,𝑘, withsome𝑢𝑘 ∈Tforallindices𝑘=0,1,...,𝑛−1basedon (3).

(b) If𝜙ℓ∈𝒫ℓ;ar for some indexℓwith 𝜏 >ℓ≥1, wherethe differenceof

conse-cutivecoefficientsof thepolynomial𝜙ℓ isnotequalto𝜙ℓ(0),then𝜙𝑘 ̸∈𝒫𝑘;ar

forallindices𝑘with𝜏 ≥𝑘>ℓ.

(c) If 𝜙ℓ ∈ 𝒫ℓ;ar for some index ℓ with 𝜏 > ℓ ≥ 1, where 𝜙ℓ(0) is zero, then

𝜙𝑘̸∈𝒫𝑘;ar forallindices𝑘with𝜏 ≥𝑘>ℓ.

BasedonTheorem3.1,wecanalsoseethatthecaseofaninfinitesequenceofSzegő polynomials,wherethecoefficientsofallpolynomialsarerelatedtonon-negative realarithmeticsequences,isaveryspecialone.

Theorem3.3. Suppose that (𝜙𝑘)𝑘∞=0 is a sequence of Szegő polynomials and let

(𝑒ℓ)∞ℓ=1 be theassociated sequence ofSzegőparameters. Then thefollowing

state-mentsareequivalent:

(i) Thereisapositivereal number𝑝0 sothatthesequence(𝜙𝑘)∞𝑘=0 isgivenby

𝜙𝑘(𝑥) = 𝑝0 √ 𝑘2+3𝑘+2 𝑘 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑗, 𝑘=0,1,2,3,....

(ii) Foreachindexℓwithℓ≥1thepolynomial𝜙ℓ belongs to𝒫ℓ;ar and𝜙0(0)isa

positiverealnumber.

(iii)Thereissome ℓ0≥1sothat foreach indexℓwith ℓ≥ℓ0 the polynomial𝜙ℓ

(13)

(iv)Thesequence (𝑒ℓ)∞ℓ=1 isgiven by

𝑒ℓ =

1

ℓ+1, ℓ=1,2,3,..., and𝜙0(0)isapositivereal number.

Inparticular, if (i)is fulfilled,then(𝜙𝑘)∞𝑘=0 isthe normalized orthonormal

poly-nomialsystemforthe(uniquelydetermined)measure𝜇 givenby 𝜇(𝐵):= 1

𝑝20𝜋

∫︁

𝐵

(1−ℜe𝑧)𝜆(d𝑧), 𝐵∈BT, (10) where𝜆standsforthelinearLebesgue-BorelmeasureonT.

Proof. The implications “(i)⇒(ii)” and“(ii)⇒ (iii)” area consequenceof the settings.Furthermore,theimplications“(ii)⇒(iv)” and“(iii)⇒(ii)” followfrom Theorem3.1.Itremainstoprovethat“(iv)⇒(i)”.Therefore,wesupposethat(iv) holds.Since(𝜙𝑘)∞𝑘=0isasequenceofSzegőpolynomials,foreachpositiveinteger

𝑛,therelation (1)isfulfilledwiththespecialSzegőparameter𝑒𝑛 givenby(iv).

Takingintoaccountthat𝜙0(0)isapositiverealnumber,i.e.𝜙0 istheconstant

functionwith(positive) value𝜙0(0),wehave

𝜙0(𝑥) = 𝜙0(0) = 𝑝0 √ 02+3·0+2 0 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑗

withthepositiverealnumber𝑝0:=

2𝜙0(0)and(1)for𝑛=1implies

𝜙1(𝑥) = 1 √︁ 1−(︀1 2 )︀2 (︁ 𝑥𝑝0+ 1 2𝑝0 )︁ = √ 𝑝0 12+3·1+2 1 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑗.

Now,bytheprincipleofinduction,wesupposethat𝜙𝑘 isgivenby

𝜙𝑘(𝑥) = 𝑝0 √ 𝑘2+3𝑘+2 𝑘 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑗,

forsomepositiveinteger𝑘.Thenwehave

̃︀ 𝜙𝑘[𝑘](𝑥) = √ 𝑝0 𝑘2+3𝑘+2 𝑘 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑘−𝑗, where √︂ 1−(︁ 1 𝑘+2 )︁2√︀ 𝑘2+3𝑘+2 = 1 𝑘+2 √︁ (︀ (𝑘+2)21)︀ (𝑘2+3𝑘+2) = 1 𝑘+2 √︀ (𝑘+1)(𝑘+3)(𝑘+1)(𝑘+2) = (𝑘+1) √︂ 𝑘+3 𝑘+2,

(14)

𝑗+𝑘−𝑗+1 𝑘+2 = 𝑗𝑘+2𝑗+𝑘−𝑗+1 𝑘+2 = (𝑘+1)(𝑗+1) 𝑘+2 , and (𝑘+2)(𝑘+3) = 𝑘2+5𝑘+6 = (𝑘+1)2+3(𝑘+1)+2. Thus,inviewof(iv)and(1)for𝑛=𝑘+1,weget

𝜙𝑘+1(𝑥) = 1 √︁ 1−(︀ 1 𝑘+2 )︀2 ·√ 𝑝0 𝑘2+3𝑘+2· (︁ 𝑥 𝑘 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑗+ 1 𝑘+2 𝑘 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑘−𝑗 )︁ = 𝑝0 𝑘+1· √︂ 𝑘+2 𝑘+3· (︁𝑘+1 𝑘+2𝑥 0 + 𝑘 ∑︁ 𝑗=1 (︁ 𝑗+𝑘−𝑗+1 𝑘+2 )︁ 𝑥𝑗+ (𝑘+1)𝑥𝑘+1)︁ = √︀ 𝑝0 (𝑘+2)(𝑘+3) 𝑘+1 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑗 = √︀ 𝑝0 (𝑘+1)2+3(𝑘+1)+2 𝑘+1 ∑︁ 𝑗=0 (𝑗+1)𝑥𝑗,

sothatwehaveproven,bytheprincipleofinduction,that(i)followsfrom(iv). Supposethat(i)holds.If𝑝0=

2,thentheconsiderationsin[6,Example1.6.4] imply that (𝜙𝑘)∞𝑘=0 isthe normalized orthonormal polynomial system for the

(uniquelydetermined)measure 𝜇given by(10).Using thisspecialcase in com-bination withRemark2.4, we seethat thisholds for anypositive realnumber 𝑝0.

Finally,inadditiontoLemma3.1andCorollary3.2,wepresentthefollowingresult concerningtheone-stepextensiongivenby(1).

Proposition3.2. Supposethat𝜙𝑛−1∈𝒫𝑛−1;arforsome𝑛≥2andlet𝑑𝑛−1 bethe

differenceofconsecutive coefficientsofthepolynomial𝜙𝑛−1.Furthermore, let𝜙𝑛

bethepolynomialgivenby (1)andsomeparameter 𝑒𝑛∈D, where

𝜙𝑛(𝑥) = 𝑎𝑛;𝑛𝑥𝑛+𝑎𝑛;𝑛−1𝑥𝑛−1+···+𝑎𝑛;1𝑥1+𝑎𝑛;0

withsome coefficients𝑎𝑛;0,𝑎𝑛;1,...,𝑎𝑛;𝑛∈Casin (3).

(a) Thefollowingstatementsareequivalent:

(i) Theparameter𝑒𝑛 isarealnumberwith0≤𝑒𝑛<1and𝜙𝑛−1(0)=𝑑𝑛−1.

(ii) The polynomial𝜙𝑛 belongsto𝒫𝑛;ar.

Inparticular,if(i)issatisfied,thenthecoefficients𝑎𝑛;0,𝑎𝑛;1,...,𝑎𝑛;𝑛 ofthe

polynomial𝜙𝑛 arereal and

𝑎𝑛;𝑛 > 𝑎𝑛;𝑛−1 > ··· > 𝑎𝑛;1 > 𝑎𝑛;0 ≥ 0. (11)

(b) Supposethat𝜙𝑛−1(0)̸=0,butalso that𝜙𝑛−1(0)̸=𝑑𝑛−1, andlet

𝑚:=min {︁𝜙 𝑛−1(0) 𝑑𝑛−1 , 𝑑𝑛−1 𝜙𝑛−1(0) }︁ . Thenthefollowingstatementsareequivalent:

(15)

(iii)Theparameter𝑒𝑛 isa realnumberwith0≤𝑒𝑛≤𝑚.

(iv)Thecoefficients𝑎𝑛;0,𝑎𝑛;1,...,𝑎𝑛;𝑛 ofthepolynomial𝜙𝑛 arereal and

𝑎𝑛;𝑛 ≥ 𝑎𝑛;𝑛−1 ≥ ··· ≥ 𝑎𝑛;1 ≥ 𝑎𝑛;0 ≥ 0. (12)

Inparticular,if(iii)issatisfied,then𝜙𝑛̸∈𝒫𝑛;ar,althoughallzerosof 𝜙𝑛

belongtoDand0≤𝑒𝑛<𝑚isactuallyequivalentto (11).

(c) Supposethat 𝜙𝑛−1(0)=0. Then𝑒𝑛 =0 holds if andonly if the coefficients

𝑎𝑛;0,𝑎𝑛;1,...,𝑎𝑛;𝑛ofthepolynomial𝜙𝑛 arerealand (12)holds.Inparticular,

if 𝑒𝑛=0issatisfied,then𝑎𝑛;1=𝑎𝑛;0=0andallzerosof𝜙𝑛 belongtoD. Proof. InviewofLemma3.1weseethat(ii)implies(i).Now,wesupposethat(i) holds.By𝜙𝑛−1∈𝒫𝑛−1;arand𝜙𝑛−1(0)=𝑑𝑛−1,wehavetherepresentation

𝜙𝑛−1(𝑥) = 𝑛−1

∑︁

𝑗=0

(𝑗+1)𝑑𝑛−1𝑥𝑗.

Hence(cf.Remark2.1),itfollowsthat

𝜙𝑛(𝑥) = 𝑛 ∑︁ 𝑗=0 𝑗𝑑𝑛−1+𝑒𝑛(𝑛−𝑗)𝑑𝑛−1 √︀ 1−𝑒2𝑛 𝑥𝑗, where (𝑗+1)𝑑𝑛−1+𝑒𝑛(𝑛−𝑗−1)𝑑𝑛−1− (︀ 𝑗𝑑𝑛−1+𝑒𝑛(𝑛−𝑗)𝑑𝑛−1 )︀ = (1−𝑒𝑛)𝑑𝑛−1

for𝑗=0,1,...,𝑛−1,i.e.weget(ii).Therefore,(i)and(ii)areequivalent.In par-ticular,if(i)issatisfied,then(ii)aswellsothatthecoefficients𝑎𝑛;0,𝑎𝑛;1,...,𝑎𝑛;𝑛

ofthepolynomial𝜙𝑛 arerealand(11)holds.Thus,(a)isproven.

Wenowsupposethat𝜙𝑛−1(0)̸=0and𝜙𝑛−1(0)̸=𝑑𝑛−1 hold.Inparticular,

dueto(a),wehave𝜙𝑛̸∈𝒫𝑛;ar.Recallingthechoiceofthenumber𝑚according

to(b)and𝜙𝑛−1∈𝒫𝑛−1;ar,theequivalenceof(iii)and(iv)isaconsequenceof[2,

Proposition5.4(a)].Furthermore,from[2,Proposition5.4(e)]and𝜙𝑛−1(0)̸=0

we seethat 0≤𝑒𝑛 <𝑚isactually equivalentto(11).Taking 𝜙𝑛−1 ∈𝒫𝑛−1;ar

andCorollary3.1intoaccount,by[2,Proposition2.5(a)]andthechoiceof𝜙𝑛 it

followsthatallzerosof𝜙𝑛 belongtoD.Thus,(b)isproven.

Finally,wesupposethat𝜙𝑛−1(0)=0holds.Notethat𝑒𝑛=0and(1)imply

𝜙𝑛(𝑥) = 𝑥𝜙𝑛−1(𝑥).

Hence,if 𝑒𝑛 =0, thenthecoefficients 𝑎𝑛;0,𝑎𝑛;1,...,𝑎𝑛;𝑛 of thepolynomial 𝜙𝑛

are real and (12) holds, where 𝑎𝑛;1 = 𝑎𝑛;0 = 0 (since 𝜙𝑛−1 ∈ 𝒫𝑛−1;ar and

(16)

belong to D. Therefore, all zeros of 𝜙𝑛 belong to D when 𝑒𝑛 = 0. Using [2,

Proposition5.4(a)]onecanalsoseethat,ifthecoefficients𝑎𝑛;0,𝑎𝑛;1,...,𝑎𝑛;𝑛of

thepolynomial𝜙𝑛 arerealand(12)holds,then𝑒𝑛=0.

Asanasideto(11)and(12),wenotethat𝑎𝑛;0 =0isequivalentto𝑒𝑛 =0(cf.

Remark2.2).Furthermore,if𝜙𝑛−1(0)=0,then(c)ofProposition3.2showsthat

thereisonlythechoice𝑒𝑛=0whichrealize(12)andnochoicewhichrealize(11).

Acknowledgment: ThesecondauthorhastothankFelixKlemdforsupportduring thepreparationoftheseresults.

References

[1] N. Anderson,E.B. Saff, andR.S. Varga, An extensionof theEneström– Kakeyatheoremanditssharpness,SIAMJ.Math.Anal.12(1981),10–22. [2] A.E.ChoqueRiveroandA.Lasarow,TheEneström–Kakeyatheorem encoun-tersthetheoryoforthogonalpolynomialsontheunitcircle,Linear Algebra Appl.439(2013),1258–1285.

[3] Ph.Delsarte,Y.V.Genin,andY.G.Kamp,Orthogonalpolynomialmatrices ontheunitcircle,IEEETrans.CircuitsandSystems25(1978),149–160. [4] V.K.Dubovoj,B.Fritzsche,andB.Kirstein,MatricialVersion ofthe

Clas-sicalSchurProblem,Teubner-TextezurMath.129,Teubner,Leipzig1992. [5] A.Lasarow,Onsomespecialpolynomialsappearinginorthogonalsystems

ontheunitcircle,Analysis34(2014),353–378.

[6] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical theory,Amer. Math.Soc.Coll.Publ.54,American MathematicalSociety, Providence,2005.

[7] G.Szegő,OrthogonalPolynomials,Amer.Math.Soc.Colloq.Publ.23, Amer-icanMathematicalSociety,Providence,1939.

References

Related documents

• At the surface, recombination is much more likely than inside the silicon bulk. • Really important that recombination at the surface is as low

The ‘top ve’ stalking harassment methods were: Following (reported by 55.3% of victims), unsolicited telephone calls (30.7%), Spying 11.3% (including stood outside home 14%,

Jelikož součástí stránky projektu na serveru GitHub je také repozitář zdrojových kódů, je možné analyzovat četnost změn kódu, dále poměr vyřešených chyb ku

The criteria serve as benchmarks for institutional quality assurance in teaching and learning, research and community engagement, and signal to students and the general

both. In order to calibrate SALTMED for the current conditions, daily indoors temperature and relative humidity measurements were recorded 3 HOBO Pro V2® sensors equipped with a

Provided that the demands for currency and checkable deposits are determined by factors that are independent of one another, monetary policy actions can have a direct influence on

The γ parameter, which refers to the deterministic component of the technology process, was estimated at a higher value than the prior mean, underlining the fact that Romania

Table 4. First, the elasticity of sub- stitution between capital and labor is larger than 1 in Spain and smaller than 1 in the U.S. Second, consideration of the price markup causes