ContentslistsavailableatScienceDirect
Preventive
Veterinary
Medicine
jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / p r e v e t m e d
Prevalence,
survival
analysis
and
multimorbidity
of
chronic
diseases
in
the
general
veterinarian-attended
horse
population
of
the
UK
Claire
E.
Welsh
a,∗,
Marco
Duz
b,
Timothy
D.H.
Parkin
a,
John
F.
Marshall
aaEquineClinicalSciencesDivision,WeipersCentreEquineHospital,SchoolofVeterinaryMedicine,UniversityofGlasgow,UK bSchoolofVeterinaryMedicineandScience,UniversityofNottingham,UK
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received6January2016
Receivedinrevisedform14June2016 Accepted24July2016 Keywords: Horse Chronic Veterinary Survival
a
b
s
t
r
a
c
t
Theaverageageoftheglobalhumanpopulationisincreasing,leadingtoincreasedinterestintheeffects ofchronicdiseaseandmultimorbidityonhealthresourcesandpatientwelfare.Ithasbeenpositedthat theaverageageofthegeneralveterinarian-attendedhorsepopulationoftheUKisalsoincreasing,and thereforeitcouldbeassumedthatchronicdiseasesandmultimorbiditywouldposeanincreasingriskhere also.However,evidenceforthistrendinageingisverylimited,andthecurrentprevalenceofmanychronic diseases,andofmultimorbidity,isunknown.Usingtextminingoffirst-opinionelectronicmedicalrecords fromsevenveterinarypracticesaroundtheUK,Kaplan-MeierandCoxproportionalhazardmodelling, wewereabletoestimatetheapparentprevalenceamongveterinarian-attendedhorsesofninechronic diseases,andtoassesstheirrelativeeffectsonmedianlifeexpectancyfollowingdiagnosis.Withthese methodswefoundevidenceofincreasingpopulationage.Multimorbidityaffected1.2%ofthestudy population,andhadasignificanteffectuponsurvivaltimes,withco-occurrenceoftwodiseases,and threeormorediseases,leadingto6.6and21.3timesthehazardratiocomparedtonochronicdisease, respectively.Laminitiswasinvolvedin74%ofcasesofmultimorbidity.Thepopulationofhorsesattended byUKveterinariansappearstobeaging,andchronicdiseasesandtheirco-occurrencearecommon features,andassuchwarrantfurtherinvestigation.
©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Thenon-racing,mixedbreedhorsepopulationoftheUKhas
beenrelativelyneglectedtodateintermsofresearchintodisease
burdenand populationstructure (Melloret al.,1999;Hotchkiss
etal.,2007;Irelandetal.,2013;Wylieetal.,2013).Theremaybeas
manyasonemillionhorsesintheUK,yetlittleisknownaboutthe
healthandlongevityofthevastmajority(BritishEquestrianTrade
Association,2011).Reasonsforthisincludethelackofacentral
databaseofmandatoryhorsepassportdetailssincewithdrawalof
fundingfromtheNationalEquineDatabasein2012,andthe
frag-mentednatureoffirst-opinionequineveterinaryservices(Boden
etal.,2013).Collationofhealthanddiseasedataoccursonasmall
scaleperiodically,butreliesuponeitherowner-reportingofhealth
problemsorvoluntarysubmissionoflaboratorysamples,which,
althoughinformativeandhelpful, arebothsubjecttosignificant
biasifresultsweretobeextrapolatedtothegeneralequine
popu-lation(Slater,2014;AnimalHealthTrust(AHT)etal.,2015).Chronic
∗ Correspondingauthor.
E-mailaddress:[email protected](C.E.Welsh).
orrecurrentdiseaseisundoubtedlyafeatureofthispopulation,but
theextenttowhichitaffectslongevityandwelfareisunknown.
Multimorbidity is defined as the co-occurrence of multiple
diseaseconditionswithinanindividualwithoutreferencetoan
indexcondition(Islametal.,2014).Thestudyofmultimorbidity
in medical research is currently popular, as recognitionof the
greaterstrainmultimorbidityplacesuponhealthservices,andits
detrimentaleffectonpatientwelfareand longevityaregrowing
(Islametal.,2014;Pacheetal.,2015).Understanding
multimor-biditypatternscan helpuncover commonalitiesin aetiologyor
risk factors betweenpreviously unlinked conditions, and could
improvepatientcarebyshiftingtreatmentemphasisfrom
indi-vidualdiseasestoco-occurringgroupsofdisease,especiallywhere
treatmentregimensforco-occurringdiseasesarediscordant.The
averagehumanlifespanintheUKcontinuestorise,andwithit,
the proportion of people living withmultiple chronic diseases
(Pacheetal.,2015;Wohlandetal.,2015).Ithasbeenoftencited
thattheaverageageofhorsesintheUKisalsoincreasing,butthis
assumptionisbaseduponlimitedstudies,andmethodologiesless
robustthanthoseusedbyUKhumanhealthauthorities(Brosnahan
andParadis,2003).
Thisstudyaimedtousefirst-opinionmedicalrecordsto
quan-tifytheburdenofanumberofcommonchronicdiseaseswithin
http://dx.doi.org/10.1016/j.prevetmed.2016.07.011
0167-5877/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).
asampleofthegeneralveterinary-attendedhorsepopulationin
theUK,and toestimatetheireffects upon survival. The
appar-entprevalenceofcomorbidity(co-occurrenceoftwodiseases)and
multimorbidity(co-occurrenceofmorethantwodiseases)were
alsosought,asweretheeffectsofco-andmultimorbidstateson
survival.Asecondaryaimwastoimplementdemographic
method-ologiestoascertainwhetherthepopulationunderstudywasageing
overtime,ashasbeenpreviouslypostulated.Theseresultswill
con-stitutethefirstsuchanalysesonthislargeanddiversepopulation,
andwillserveasbenchmarksforfuturestudiesoftheeffectsof
chronicdiseaseandmultimorbidityinhorses.
2. Materialsandmethods
2.1. Data
Free-text first-opinion equine medical records spanning
twenty-six years (1987–2013) were collected from a
conve-niencesampleofsevenfirstopinionequineveterinarypractices
around the UK, and reformatted into comma-separated values
format (n=1001375 records). Records included the following
database;uniquenumericalidentificationnumber,dateofentry
into the system (date of record), sex, date of birth, breed,
practice, and a field containing free-text medical records with
prescription information. Records missing the date of birth or
record entry were excluded, as were records of non-equine
consultations, and records entered after 2012. Sex was
con-verted into four categories; unknown, female, male, neutered
male.Breedwasconvertedintothefollowinggroups;Arab/Arab
cross,Cob/Cobcross,Draught/Draughtcross,Native/Nativecross,
pony/pony cross, Thoroughbred/Thoroughbred cross,
Warm-blood/Warmbloodcross,Welsh/Welshcross,otherandunknown.
DescriptionsofeachveterinarypracticearecontainedinTable1.All
datacleaningwasconductedinRstatisticalenvironment(RCore
DevelopmentTeam,2015).
2.2. Textmining
Ninechronic(orrecurrent)conditionswerechosenforstudya
priori,afterdiscussionwithexperiencedequineclinicians;
neopla-sia,pituitaryparsintermediadysfunction(PPID),equinemetabolic
syndrome(EMS), grass sickness, laminitis, navicular syndrome,
osteoarthritis,recurrentairwayobstruction(RAO),andsarcoids.
Thesewerechosenasdiseasesthatcanbediagnosedinfirstopinion
practice,whicharechronicorrecurrentinnatureandare
com-monlyincurable.Theywerealsoconsideredtohavenamesthat
wouldbeunlikelytoappearinmedicalrecordsunlesstheanimal
inquestionwasthoughttobesufferingfromthem.Commercially
availabletextminingsoftware(WordStatv7.0,ProvalisResearch
Inc.)wasusedtoconstructdictionariesthatwouldallow
identifica-tionofrecordswhereeachdiseasewasmentioned,inaniterative
processmodifiedfromtheapproachdetailedbyLametal.(Lam
etal.,2007)andvalidatedbyAnholtetal.(2014).‘Diagnosis’of
dis-easeinthiscontextwasdefinedasinclusionofthesekeywords
orphrases,withoutrequirementofadditionalinformationsuchas
testresults. ‘Diagnoses’werethereforereflective ofthethought
processandprofessionalopinionoftheveterinarianregardingthe
caseathand,asopposedtoanaccurateandverbosedescriptionof
thediagnosticcriteriaofthecase(whichwerecommonlymissing).
Additionally,adictionarywasconstructedtoidentifyrecordsof
death(naturaloreuthanasia)(seeAppendixA).Thesecriteriawere
choseninordertoidentifythereal-worlddecisions(e.g.
euthana-sia)takenfollowingdeliveryofaveterinarian’sclinicaljudgement
ineachcase. Dictionaryconstructionwasperformedonthefull
datasettomaximisecoverage,andnegationswereaddedtoalist
ofexcludedwordsandphrasesasnecessary.Internalvalidationwas
conductedthrough manuallycheckingthe‘keyword-in-context’
outputforeachdisease;andalteringthedictionaryand/orexcluded
wordslistasnecessary. Data weresubsequently exportedwith
onecolumnperdisease(containingbinarydataindicating
pres-ence/absenceofdisease)inplaceoffreetextrecords;plusabinary
columnindicatingpresence/absenceofdeathateachrecord.
2.3. Lifeexpectancyfollowinginitialveterinarycareepisode
Periodlifetableswereconstructedforthree-yearperiodsnear
thebeginningandendofthestudy(1995–1997,and2010–2012),
forrecordsfromfivepractices(twopracticeswereexcludeddueto
significantlyloweragesatthetimeofdeath[Practice4],andhigh
annualproportionofdeaths[Practice7]).Lifeexpectancy
(follow-ingfirstrecordedveterinaryepisode)with95%confidenceintervals
wascalculated(Chiang,1968,1978).
2.4. Univariableandmultivariablemodellingofchronicdiseases
SurvivalanalyseswereconductedusingRpackages‘survMisc’
and‘survival’(Dardis,2015;Therneau,2015).Foreachhorsethat
hadatleastonerecordofchronicdisease,thetimefromdiagnosis
toitslastrecordinthedatawascomputed,andthepresenceof
arecordofdeathwasrecordedas0/1.Similarly,forthosehorses
thatwerenotdiagnosedwithanyoftheselecteddiseases,thetime
fromtheirfirstentryinthedata,totheirlast,wascomputed,and
whethertheywererecordedashavingdiedwasnoted.
Kaplan-Meiersurvivalanalysiswasperformedtoestimatemediansurvival
timefollowingdiagnosis,orfollowingentryintothedataset(inthe
caseofnochronicdisease).UnivariableCoxproportionalhazard
modelswereconstructedtoassessthesignificance oftheeffect
of disease,sex, breed,practice,and ageat thetime of
diagno-sis (years)upon survival. Variables wereretained for potential
inclusioninthemultivariablemodelifthep-value<0.25,andthe
likelihoodratiotest(LRT)p-valuecomparedwiththenullmodel
was<0.05.Categoricalvariableswerere-groupedbasedon
similar-ityofexponentiatedcoefficientsandWaldsignificance,asrequired.
Aforwardstepwisemanualmodelbuildingprocedurewas
imple-mented,withsignificantvariablesincludedinorderofhighestto
lowestlog-likelihood(Dohoo,2009).Variableswereretainedinthe
multivariablemodelifLRTp-value<0.05.Allpairwiseinteractions
betweenretainedvariableswereinvestigatedforsignificanceand
theireffectonexistingcoefficients.Proportionalhazards
assump-Table1
Descriptivedetailsofaconveniencesampleofsevenfirst-opinionveterinarypracticesservinghorses,thatcontributeddatatothecurrentstudy.
Practice Numberofveterinarians Location Provideownout-of-hours RCVSAccredited Speciescovered Numberofbranches
1 11 Scotland Yes Yes Mixed 2
2 21 CentralEngland Yes Yes Equine 1
3 17 NorthernEngland Yes Yes Mixed 5
4 14 CentralEngland Yes No Mixed 4
5 11 SouthernEngland Yes No Equine 1
6 4 NorthernEngland Yes Yes Large 1
7 8 NorthernEngland Yes No Mixed 2
Fig.1.Distributionsofage(years)atthetimeofdeathofhorsesseenataconveniencesampleofUKfirst-opinionveterinarypracticesbetween1987and2013.
tionsofthemodelglobally,andofeachvariableindividually(all levelsofcategoricalvariablesassessedenmasseandindividually) wereassessedbyvisualinspectionofscaledSchoenfeldresiduals (Therneau andGrambsch,2000;Therneau, 2015).Theinfluence
of individualobservations wasassessed byvisual inspectionof
delta-betas forcontinuous predictors (Therneauand Grambsch,
2000).
2.5. Modellingmultimorbidity
For the purposesof this study,‘comorbid’ indicatesa horse
diagnosedwithtwochronicdiseases,and‘multimorbid’indicates
a horse diagnosed with more than two diseases. The
associa-tion of disease co-occurrence with survival was analysed after
computingthetimefromcommencementofthelifetimedisease
co-occurrencestate(i.e.‘comorbid’horses:dateofdiagnosisofthe
seconddisease,‘multimorbid’horses:dateofdiagnosisofthethird
disease)tothedateofthelastentryforthathorse,with‘nochronic
disease’asthereferentlevel.Modelbuildingproceededsimilarlyto
diseasemodellingabove.Independentvariablesscreenedfortheir
associationwithsurvivalincludedlifetimediseaseco-occurrence
status(none,one,two,ormore thantwochronicdiseases),age
attimeofdiagnosis(years),practice,breedandsex.Again,breeds
weregroupedaccordingtosimilarityofexponentiatedhazardratio
and Waldsignificance. Kaplan-Meier survivalanalysis was
con-ductedandprobabilityofsurvivalplotted.
Ethicalapproval for this studywasgranted by theResearch
Ethics Committee,School of VeterinaryMedicine, University of
Glasgow.
3. Results
3.1. Demographiccharacteristics
The cleaned dataset contained 515807 records from 70477
horses, of which 12796 (18%) were male, 25214 (36%) were
neuteredmales,26018(37%) werefemale,and 6487(9%)were
Table2
Summaryoftheage(years)atthetimeofdiagnosisforaselectionofchronicdiseases recordedinaUKdatabaseofelectronicmedicalrecordsfromthegeneralhorse populationbetween1987and2013.
Disease Minimum Q1 Median Q3 Maximum
Nochronicdisease 0 3 6 12 40 Osteoarthritis 0 7 14 21 39 Laminitis 0 8 15 22 40 PPID 0 15 21 26 40 EMS 1 15 21 28 38 GrassSickness 0 5 9 15.5 34 NavicularSyndrome 0 6 10 16.5 36 Neoplasia 0 7 14 22 40 RAO 0 6 13 21 39 Sarcoids 0 6 11 19 40 Q125thpercentile;Q375thpercentile.
ofunknownsex.Sevenpracticescontributedtothedataset.The annualageatthetimeofdeathforhorsesineachpracticeisshown
inFig.1,andtheproportionofhorsesthatdiedannuallyisshown
inFig.2.Overall,themeanageatdeathforallhorseswas16.5years
(median17,IQR8–24years).
3.2. Quantificationofdiseaseburden
Intotal,9013horses(12.8%)hadatleastonechronicdisease
(maximumof6)overthecourseofthestudy.Thenumberofrecords
inwhicheachdiseasewasnoted,andthenumberofhorsesthose
recordspertainto(inbrackets),wasasfollows;neoplasia 1159
records(978horses),PPID3199(2011),EMS154(140),grass
sick-ness72(66),laminitis6110(4082),navicularsyndrome67(60),
osteoarthritis1281(1171),RAO1388(1232),sarcoids3476(2070).
Deathwasrecordedforatotalof4689(6.7%)horsesoverthestudy
period.
Asummaryoftheageatthetimeofdiagnosisforeachdisease
Fig.2.Proportionofveterinary-attendedhorsesseenataconveniencesampleoffirst-opinionUKequineveterinarypracticesthatdiedorwereeuthanasedperpracticeper yearbetween1987and2013.
Fig.3.Lifeexpectancy(years)followingfirstrecordedveterinarycareepisodeofhorsesbornin1995–1997,versusthosebornin2010–2012,fordifferentagegroups.Grey bandsindicate95%confidenceintervals.Practice4andPractice7wereexcludedfromtheseanalysesduetosignificantdifferencesindemography.
3.3. Lifeexpectancyfollowingfirstveterinarycareepisode
Lifeexpectancyfollowingfirstveterinarycareepisodeforhorses
bornin 1995–1997and 2010–2012,separated byagegroup, is
showninFig.3.Horsesborninthelatertimeperiodwerefound
tohavea longerlifeexpectancyatbirththanthoseborninthe
earliertimeperiod.
3.4. Multimorbidityprevalence
Intotal,2125horseswerediagnosedwithmorethanonechronic
disease(3.0%ofthetotalpopulation;23.6%ofthosewithatleast
onechroniccondition).Ofthese,1582hadtwodiseases,406had
threediseases,120hadfourdiseases,16hadfivediseases,and1
hadsixdiseases.Informationonthenumberofhorsesexperiencing
eachcombinationofatleasttwoco-occurringdiseasesiscontained
inTable3.Laminitiswasafeatureof74%ofhorseswithmultiple
diseases,andPPIDwasafeaturein49%.
3.5. Survivalanalyses
Thefinalmultivariablemodelcontainedthefollowing
signifi-cantvariables;disease,ageatdiagnosis(years),breed,andpractice
(includedasarandomeffect).Kaplan-Meierplotsofsurvival
fol-lowingdiagnosisofeachdisease,andforhorseswithoutchronic
disease,areshowninFig.4.Mediansurvivaltimesestimatedfrom
thismodel,alongsideresultsofCoxproportionalhazardmodelling
Table3
Co-occurrencematrixofaselectionofchronicdiseasesinaUKgeneralveterinary-attendedhorsepopulation,identifiedthroughtextminingelectronicmedicalrecordsfrom sevenfirst-opinionpracticesbetween1987and2013.Numbersonthediagonalarethenumber(%)ofhorsesdiagnosedwiththatdiseaseinthedata(n=70477).
Osteoarthritis Navicularsyndrome Neoplasia PPID EMS GrassSickness Laminitis RAO Sarcoids Osteoarthritis 1171(1.7) Navicularsyndrome 3 60(0.1) Neoplasia 65 0 978(1.4) PPID 132 3 124 2011(2.9) EMS 14 0 13 86 140(0.2) GrassSickness 1 0 3 8 1 66(0.1) Laminitis 304 11 235 806 103 9 4082(5.8) RAO 79 6 68 136 10 4 321 1232(1.7) Sarcoids 121 4 166 256 23 3 408 148 2070(2.9)
EMSEquineMetabolicSyndrome;PPIDPituitaryParsIntermediaDysfunction;RAORecurrentAirwayObstruction.
Fig.4. Kaplan-MeiersurvivalplotofaselectionofchronicdiseasesfoundtosignificantlyaffecttheprobabilityofsurvivalinaUKveterinary-attendedgeneralhorsecohort.
Table4
ResultsofmultivariableCoxproportionalhazardmodelsofninechronicdiseasesdiagnosedinaconveniencesampleoffirst-opinionequineveterinarypracticesbetween 1987and2013,asdetectedthroughtextminingofelectronicmedicalrecords.
Numberofhorses HR(SE) Waldp-value HR95%CI
Disease Nochronicdisease 61464 1(REF)
Neoplasia 978 6.52(0.07) <0.01 5.72–7.44 PPID 2011 9.27(0.05) <0.01 8.37–10.27 EMS 140 9.61(0.17) <0.01 6.85–13.47 GrassSickness 66 18.74(0.18) <0.01 13.25–26.50 Laminitis 4082 5.94(0.04) <0.01 5.49–6.42 Navicularsyndrome 60 5.19(0.29) <0.01 5.72–7.44 Osteoarthritis 1171 5.08(0.07) <0.01 4.47–5.77 RAO 1232 4.51(0.07) <0.01 3.95–5.15 Sarcoids 2070 4.91(0.06) <0.01 4.39–5.49
Ageatdiagnosis(years) 1.10(0.02) <0.01 1.09–1.10
BreedGroup Other/unknown 67680 1(REF)
Arab 988 0.88(0.12) 0.28 0.70–1.11
Pony/Welsh 4632 0.79(0.06) <0.01 0.70–0.79
HR:HazardRatio,95%CI:95%confidenceinterval,SE:standarderror,REF:referentcategory.
ofhazards,asassessedusingplotsofscaledSchoenfeldresiduals, wasupheldforeachvariable.Noobservationswerefoundtoexert undueinfluenceonthemodel.
TheresultsofCoxproportionalhazardmodellingoflifetime dis-easeco-occurrencestatus(withnochronicdiseaseasthereferent level,n=61464)arecontainedinTable6.
Survival curves of lifetime disease co-occurrence status are
showninFig.5.
Theproportionofhorsesdiagnosedwithtwoormorechronic
diseases(multimorbidstatus)overtimeis showninFig.6.This
proportionwas0.5%in1995–1997,and1.3%in2010–2012.
4. Discussion
This study is the first to report estimates of median
Fig.5.Kaplan-Meiersurvivalplotoflifetimediseaseco-occurrencestatus(consideringaselectionofninechronicdiseases)ofahorsesseenataconveniencesampleofUK first-opinionequineveterinarypracticesbetween1987and2013.
Table5
Medianlifeexpectancyfollowingdiagnosis(otherindependentvariablesheldat theirreferenceormedianlevels)ofaselectionofchronicdiseasesinaconvenience sampleofthegeneralveterinary-attendedhorsepopulationoftheUKbetween1987 and2013.
Diagnosis Medianlifeexpectancyinyears followingdiagnosis(95%CI)
Median(IQR)ageat diagnosis(years) Nochronicdisease 22.7(21.9–NA) 6(3–12) Neoplasia 12.3(11.4–13.6) 14(7–22) PPID 9.8(9.0–10.7) 21(15–26) EMS 9.0(7.0–12.4) 21(15–28) GrassSickness 4.0(2.3–6.8) 9(5–15.5) Laminitis 13.4(12.7–14.3) 15(8–22) Navicularsyndrome 14.4(10.5–19.5) 10(6–16.5) Osteoarthritis 14.5(13.3–15.9) 14(7–21) RAO 16.4(15.0–17.9) 13(6–21) Sarcoids 15.4(14.3–16.7) 11(6–19) CIconfidenceinterval;NAestimatenotavailable.
IQRInter-quartileRange;EMSEquineMetabolicSyndrome;PPIDPituitaryPars IntermediaDysfunction;RAORecurrentAirwayObstruction.
Fig.6. AnnualproportionofhorsesseenataconveniencesampleofUKfirst-opinion veterinarypracticesthatwerediagnosedwithmorethantwooftheninespecified chronicdiseasesoverthestudyperiod(1987–2013).
Table6
ResultsofmultivariableCoxproportionalhazardmodelsofco-andmultimorbidityofninechronicdiseasesinadatabaseofelectronicmedicalrecordsfromaconvenience sampleofsevenUKequineveterinarypracticesbetween1987and2013.
Numberofhorses HR(SE) p-value HR95%CI Lifetimediseaseco-occurrencestatus Nochronicdisease 61464 1(REF)
Onechronicdisease 8201 3.06(0.06) <0.01 2.70–3.47 Twochronicdiseases 743 6.61(0.17) <0.01 4.70–9.31 Morethantwochronicdiseases 78 21.29(0.49) <0.01 8.13–55.77
Ageatdiagnosis(years) 1.08(0.01) <0.01 1.06–1.09
Practice 1 2889 1(REF) 2 38704 0.54(0.15) <0.01 0.40–0.73 3 1442 2.57(0.24) <0.01 1.60–4.11 4 14339 2.22(0.17) <0.01 1.58–3.11 5 5565 0.57(0.20) <0.01 0.38–0.85 6 5052 0.83(0.20) 0.35 0.57–1.22 7 2485 1.93(0.20) <0.01 1.32–2.83
Ageatdiagnosis*Lifetimediseaseco-occurrencestatus <0.01*
Ageatdiagnosis*Practice <0.01*
HR:HazardRatio,95%CI:95%confidenceinterval,SE:standarderror,REF:referentcategory.
chronicdiseasesintheveterinarian-attendedgeneralhorse
popu-lationoftheUK.Over12%ofthehorsesinthisstudywerediagnosed
withatleastoneofninechronicdiseases,and1.2%ofhorseswere
diagnosedwithmorethanonechronicdisease.
NotallhorsesintheUKareregisteredwithaveterinarian,and
ofthosethatare,aproportiondonotreceiveveterinaryproducts
orattention,thereforeusingelectronicmedicalrecordstoascertain
theprevalenceofdiseaseordemographicinformationisliabletoa
degreeofselectionbias.Theresultsreportedherecannot,therefore,
bedirectlyextrapolatedtothewider veterinary-attended
popu-lationofhorses.Similarly,duetotheconveniencenatureofthe
samplingofveterinarypracticescarriedout,theresultspresented
maynotbefullygeneralizabletothegeneralveterinary-attended
horsepopulationoftheUK.Currently inveterinarymedicinein
theUK,nosystematicfixedvocabularyexistsfortherecordingof
medicalevents,soclinicalsigns,differentialdiagnoses,testsand
treatmentsareallrecordedusingfree-textentries.Variabilityin
spelling,nomenclatureandphraseologyleadtoaplethoraofways
inwhichdiseaseisdocumented.Theiterativenatureofthe
text-miningprocess,where includedwordsorphrasesareinternally
validatedthroughinspectionoftheirappropriatenessincontext,
hasbeenshowntoleadtoacceptablelevelsofsensitivityand
speci-ficitycomparedwithmanualclassification(Anholtetal.,2014).
Categorisationerrorsareunavoidablewithanyformofautomated
text-mining,andthismustbeborneinmindwithregardstothe
resultspresentedhere,especiallywherenomenclature
necessar-ilyoverlapsbetweenrelateddiseases(e.g.sarcoids,PPIDandother
neoplasias).Additionally,ownersarefreetoregistertheiranimal
withanynumberofveterinarypractices,andtomovepracticesat
anytime.Therefore,therecordsusedinthisstudymaynot
repre-senttheentiretyofthatanimal’smedicalhistory,andduplication
(whereahorsereceivedmedicalattentionatmorethanoneofthe
practicesusedinthestudy)mayhaveoccurred,althoughthiscould
beassumedtoberare.Inaddition,dictionarytermswerechosen
tooptimisespecificityofcaseidentification,withsome
unavoid-ablereductioninsensitivity,inordertobesureofthediagnoses
assigned,thusdisease‘prevalence’reportedheremaybelessthan
reportedinotherstudies,forsomediseases.Therewaspotentialfor
adegreeofoverlapinthedictionariesusedtoidentifycasesof
sar-coidsandnon-sarcoidneoplasia,howeverthetermswereretained
duetothestrongsuspicionamongsttheauthorsthatthesewould
beaccuratelydifferentiatedinmostcasesbyveterinarians,dueto
theprevalenceandcharacteristicnatureofsarcoids.
Thegroupofdiseasesstudiedintheseanalysesrepresentasmall
numberofchronic/incurableconditionsinequinemedicine,but
theybearcertainsimilaritiesintermsofnomenclature.Inclusion
ofthediseasename(oraderivationofit)inananimal’smedical
recordswasconsideredtobeverylikelytoindicatethatthe
vet-erinarianenteringtherecordwasstronglysuspicious of,orhad
diagnosed,thatcondition.Thisisunlikeconditionssuchasdental
disease,chroniclamenessorrecurrentcolic,whoseterminologyis
variable,andcouldrelatetoaspectrumofdiseaseincludingcurable
conditions.Thissuppositionwasborneoutthoughexamination
ofthefinaldictionarytermsincontext.Giventhelengthoftime
overwhichthesedatawerecollected,historicterminologiesforthe
conditionsstudiedwerealsoincluded,e.g.chronicobstructive
pul-monarydiseaseorheaves.Grasssicknessisveryrarelyencountered
initstruechronicform,butwasincludedhere(allformsthereof)
becauseitrepresentedadiseasewithawell-recognisedhigh
mor-talityrateandshortdiseasecourse.Grasssicknesstherebyactedas
aformofpositivecontrol,andallowedcomparisonwithconditions
oflowermortalityandmoreprotracteddiseasecourses.
Neopla-siaconstitutes a largenumber of differentdiagnosesin equine
medicine,whichmaybereachedfollowingaplethoraof
diagnos-tictests.Thisgroupwasnotsubdividedintospecifictumourtypes
duetosmallsamplesizes,butalsobecausethelevelofdiagnostic
accuracyreachedinfirstopinionpracticevarieswidely.Itcouldbe
arguedthatallthatisrequiredforahorsetobeeuthaniseddue
toneoplasiaisastrongsuspiciononthepartoftheveterinarian
(whichwouldlikelybeenteredinthemedicalrecords),irrespective
ofthefinalspecificdiagnosis(ifavailable).Diagnosis(presumptive
ordefinitive)ofneoplasiacarriesgravesignificanceforhorse
own-ers,andsimilartotheotherconditionsstudiedhere,couldinfluence
theirbehaviourtowardearlyeuthanasia.Overlap(co-occurrence)
interminology(cases)betweenneoplasia,PPIDandsarcoidswas
lowtomoderate.Betweensixandseventeenpercentofhorses
cate-gorisedunderoneofthesediseaseswassimultaneouslycategorised
underoneoftheothers(datanotshown),lendingconfidencetothe
decisiontomodeltheseconditionsseparately.
Deathinhorsesrarelyoccursnaturally,i.e.withouteuthanasia.
Anowner’sdecisiontoeuthanaseisveryoftencomplex,
involv-ingwelfare,management,financialandemotionalaspects.Itcan
besupposedthatdiagnosisofachronicorincurablediseaseoften
playsalargepartinthisdecision,butitwillrarelybetheonlyreason
foreuthanasia.Inaddition,itiscommonthattheprecisereasonfor
euthanasiaisnotnotedinmedicalrecords(aswasthenorminthe
datasetusedhere).Forthesereasons,all-causemortalitywasused
astheeventofinterestintheseanalyses,ascause-specific
infor-mationwasnotavailable.‘Survivaltimes’reportedheretherefore
reflecteithersurvivalfromdiagnosisuntilnaturaldeath(fromall
causes)oruntileuthanasia.Theuseofall-causemortalityis
neces-sarywhenusingdatathatoftenomitthecauseofdeath(orinclude
unreliableinformation),andisalsocommonlyemployedinhuman
andanimalepidemiologicstudies(Blacketal.,2002;Tillingetal.,
2002;Sallesetal.,2004;deMadronetal.,2011;Mattinetal.,2015).
Allofthechronicdiseasesstudiedwerefoundtosignificantly
affectsurvival.ItisofinterestthatthehazardratiosforEMSand
PPIDaresolarge,andthattheexpectedsurvivaltimesfollowing
diagnosisoftheseconditionsisshorterthanmostotherdiseases.
Equinemetabolicsyndromeisarelativelynewdiagnosisinequine
medicine,and,similartoitshumancounterpart,featuresmetabolic
derangements,obesityandinsulinresistance(McCueetal.,2015).
In horses,theconditionhasbeenlinkedwithanincreasedrisk
oflaminitis.AlthoughEMSisitselfnotlife-threatening,laminitis
certainlyisthroughthenecessityforeuthanasiawhenwelfareis
significantlycompromised.Similarly, PPIDisinextricably linked
withlaminitis,butdoesnotleadtonaturaldeathinthevast
major-ityofcases,thereforeitcouldbesupposedthatitseffectonlife
expectancyandsurvivalwouldbemodestoncelaminitiswastaken
intoaccount.Theseendocrinopathieshavebeenreportedto
com-monly co-occur,which is a feature of the present dataset(see
Table3)(Donaldsonetal.,2004;Karikoskietal.,2011;Irelandetal.,
2013).Despite takingbreed, ageat diagnosis,and co-occurring
diseasesintoaccount,theeffectonmortalityoftheseconditions
remainssubstantial.Farfrombeing‘incidental’featuresofolderage
inmanyhorses,thesediseasesareseriousdiagnosesthatwarrant
furtherresearch.
Co-andmultimorbiditywereafeatureofthesedata,with1.2%
ofhorsesdiagnosedwithmorethanonechronicdisease(maximum
6)overthestudyperiod.Laminitiswasafeatureof74%ofallhorses
withmultimorbidity.Laminitisisapainfulconditionofungulates
whereinflammationofthedermallaminaecanresultinseparation
oftheunderlyingsoft tissuestructures fromtheoverlying
pro-tective,suspensoryhoofwall.Thediseaseisacommonsequelto
manyinflammatoryconditions,andexhibitsbothacuteandchronic
phases.Giventhis‘finalcommonpathway’ofinflammatorydisease,
itisperhapsunsurprisingthatlaminitisissocommonlydiagnosed
alongsideotherchronicdiseases.PPIDwasafeaturein49%of
mul-timorbidanimals,andgiventhisdisease’sconsiderableeffecton
lifeexpectancyandhazardratios,itconstitutesaseriouschallenge
Table7
Medianlifeexpectancyfollowingcommencementoflifetimediseaseco-occurrence status(otherindependentvariablesheldattheirreferenceormedianlevels)ina conveniencesampleoftheveterinary-attendedUKgeneralhorsepopulation.
Lifetimedisease co-occurrencestatus
Medianlifeexpectancy inyearsfollowing commencementof status(95%CI)
Median(IQR)age (years)at commencementof lifetimeco-occurrence status
Nochronicdisease 19.8(19.4–20.6) 6(3–12) Onechronicdisease 11.5(10.2–13.5) 14(7–22) Twochronicdiseases 7.9(6.6–10.4) 18.5(11–25) Morethantwochronic
diseases
1.7(0.3–9.4) 23(18–29) CIconfidenceinterval.
Whencomparedwithhavingnoneofthechronicdiseases stud-ied,co-andmultimorbiditywerefoundtopose6.6and21.3times thehazardofdeath,respectively(Table6).Thisresultsuggeststhat
co-occurrenceofdiseasewithinanindividualposesadditionalrisk
tosurvival abovewhatmaybeexpectedsimplybytheproduct
oftheriskofbothdiseasesindividually.Oftheconditionsstudied
here,onlyneoplasiaandgrasssicknesscanleadtounassisteddeath
inthehorse,thusthedeathsofhorsessufferingfromtheremaining
diseasesislikelytobeviaeuthanasia.Asmentionedpreviously,the
decisionofwhentoeuthanasecanbecomplex,andinvolvesmore
thansimplythelevelsofpainordistressananimalisexperiencing.
Whenahorseisdiagnosedwithmultiplechronicdiseases,itis
pos-siblethateuthanasiaiscarriedoutmorereadilythanifthatanimal
onlyhadonedisease,duetocomplexityanddifficultyin
manag-ingandtreatingmultiplediseases,and/orduetoincreasedcostsof
treatment.Overthecourseofthisstudy,theapparentprevalence
ofmultimorbiditywasfoundtoincrease.Giventhesignificantand
increasingapparentprevalenceofmultimorbidityinthissample,
moreresearchintodiseaseclusteringandthemanagementof
co-occurringdiseasesiswarranted,inorderthatparsimoniousand
harmonioustreatmentregimenscanbefoundforcommondisease
groups,andunderlyingaetiologicalcommonalitiescanbebetter
understood(Table7).
Justasinhumans,theaveragelifespanofveterinary-attended
UK horses in this population appears to be increasing overall
(Wohlandetal.,2015).Thisresultisinagreementwith,butoffers
morevalidityandrobustnesstotheconclusionsofBrosnahanand
Paradis(2003),oftencitedinveterinaryliterature.TheDepartment
ofHealthoftheUKGovernmentoftenusescomparisonofthelife
expectancyatbirthbetweengroupstoassesswhetherapopulation
isageing.Thisrobustmethod,employedbytheOfficeforNational
Statistics,wasimplementedusingthecurrentdata.Themethod
allowstheuserto‘forecast’thelifeexpectancyofhorsesofdifferent
ages,evenwhenthedeathsinanagecohorthaveyettooccur.A
sig-nificantincreaseinlifeexpectancywasfoundbetweenhorsesborn
between2010and2012,comparedtothosebornbetween1995and
1997.Giventhelowoverallproportionofhorsesthatdiedoverthe
entirestudy(6.7%),itappearsthatdeathisoftennotrecorded.For
thisreason,survivaltimesreportedhereareusefulforcomparison
betweendiseases and comorbiditystatuses,however their
esti-matedmediansshouldbeinterpretedcautiously.Brosnahanand
Paradis(2003)reportedanincreaseintheproportionofhorsesof
twentyyearsoldormorebeingpresentedtoaUniversityveterinary
clinicbetween1989and1999(BrosnahanandParadis,2003).The
authorsconcludedthatthereasonforthisincreasewasunknown,
butlikelytobemultifactorial,andcitedgreaterequinelongevityas
alikelyphenomenon.Increasingwillingnessonthepartofowners
tofinanceveterinarycareofgeriatrichorseswasalsoposited.The
referralcasesusedinthestudybyBrosnahanandParadis(2003)are
unlikely,however,toberepresentativeofallveterinarian-attended
horses,norofthehorsepopulationasawhole.Itispossiblethat
theaveragelongevityofhorseswhoseownershad thefinancial
meanstoaccessreferralcarewasincreasingbetween1989and
1999,butthelongevityofhorsesreceivingfirst-opinioncareonly,
ornoveterinaryattention,wasnot.Thedatausedhereincludeda
largesampleoffirst-opinionmedicalrecords,overagreater
times-pan,andthuscannotbedirectlycomparedtothepreviousstudy.
Ofcourse,deathinthispopulationisveryoftenaresultof
euthana-sia,thus‘survivability’isnottheonlyvariableaffectinglongevity.
Financial,management,andwelfareaspectsallcontributetothe
decisiontoendananimal’slife.
The results of the current study taken together constitute
an important contributionto theunderstandingof equine
epi-demiology,andindicatethatveterinariansmayencountergreater
numbersofagedanimalsinfuture. Chronicdiseaseis prevalent
andofseriousconcernforequinewelfareandlongevity,andthe
apparentprevalenceofmultimorbidityappearstobeincreasing.
Furtherstudyofpatternsofmultimorbidityinthehorsemayhelp
tobetterunderstandaetiologicalcommonalitiesandtoformulate
appropriatemanagementstrategies.
Acknowledgments
Theauthorsaregratefultotheownersandveterinarianswho
contributeddatatothisstudy.C.W.isfundedbytheAnimalWelfare
Foundation(NormanHaywardFund20141JM’).
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,athttp://dx.doi.org/10.1016/j.prevetmed.2016.
07.011.
References
Anholt,R.M.,Berezowski,J.,Jamal,I.,Ribble,C.,Stephen,C.,2014.Miningfree-text medicalrecordsforcompanionanimalentericsyndromesurveillance.Prev. Vet.Med.113,417–422.
AnimalHealthTrust(AHT),DepartmentforEnvironmentFoodandRuralAffairs (DEFRA),BritishEquineVeterinaryAssociation(BEVA),2015.EquineQuarterly DiseaseSurveillanceReport.AnimalHealthTrust,Newmarket,Suffolk,UK.
Black,W.C.,Haggstrom,D.A.,Welch,H.G.,2002.Re:all-causemortalityin randomizedtrialsofcancerscreening–response.J.Natl.CancerInst.94, 865–866.
Boden,L.A.,Parkin,T.D.H.,Yates,J.,Mellor,D.,Kao,R.R.,2013.Anonlinesurveyof horse-ownersinGreatBritain.BMCVet.Res.9.
BritishEquestrianTradeAssociation,2011.BETANationalEquestrianSurvey2011. Wetherby,WestYorkshire.
Brosnahan,M.M.,Paradis,M.R.,2003.Demographicandclinicalcharacteristicsof geriatrichorses:467cases(1989–1999).J.Am.Vet.Med.Assoc.223,93–98.
Chiang,C.L.,1968.IntroductiontoStochasticProcessesinBiostatistics.JohnWiley &Sons,Inc.,NewYork,London,Sydney,N.S.W.,Aust.
Chiang,C.L.,1978.LifeTableandMortalityAnalysis.WorldHealthOrganisation, Geneva.
Dardis,C.,2015.survMisc:MiscellaneousFunctionsforSurvivalData.Rpackage version0.4.6.
Dohoo,I.R.,2009.VeterinaryEpidemioloicResearch.VERInc.,Charlottetown.
Donaldson,M.T.,Jorgensen,A.J.R.,Beech,J.,2004.Evaluationofsuspectedpituitary parsintermediadysfunctioninhorseswithlaminitis.J.Am.Vet.Med.A224, 1123–1127.
Hotchkiss,J.W.,Reid,S.W.J.,Christley,R.M.,2007.Asurveyofhorseownersin GreatBritainregardinghorsesintheircare.Part2:riskfactorsforrecurrent airwayobstruction.EquineVet.J.39,301–308.
Ireland,J.L.,Wylie,C.E.,Collins,S.N.,Verheyen,K.L.P.,Newton,J.R.,2013.
Preventivehealthcareandowner-reporteddiseaseprevalenceofhorsesand poniesinGreatBritain.Res.Vet.Sci.95,418–424.
Islam,M.M.,Valderas,J.M.,Yen,L.,Dawda,P.,Jowsey,T.,McRae,I.S.,2014.
Multimorbidityandcomorbidityofchronicdiseasesamongthesenior Australians:prevalenceandpatterns.PLoSOne9.
Karikoski,N.P.,Horn,I.,McGowan,T.W.,McGowan,C.M.,2011.Theprevalenceof endocrinopathiclaminitisamonghorsespresentedforlaminitisata first-opinion/referralequinehospital.Domest.Anim.Endocrinol.41,111–117.
Lam,K.,Parkin,T.,Riggs,C.,Morgan,K.,2007.Useoffreetextclinicalrecordsin identifyingsyndromesandanalysinghealthdata.Vet.Rec.161,547–551.
Mattin,M.J.,Boswood,A.,Church,D.B.,McGreevy,P.D.,O’Neill,D.G.,Thomson,P.C., Brodbelt,D.C.,2015.Degenerativemitralvalvedisease:survivalofdogs attendingprimary-carepracticeinEngland.Prev.Vet.Med.122,436–442.
McCue,M.E.,Geor,R.J.,Schultz,N.,2015.Equinemetabolicsyndrome:acomplex diseaseinfluencedbygeneticsandtheenvironment.J.EquineVet.Sci.35, 367–375.
Mellor,D.J.,Love,S.,Gettinby,G.,Reid,S.W.J.,1999.Demographiccharacteristicsof theequinepopulationofnorthernBritain.Vet.Rec.145,299–304.
Pache,B.,Vollenweider,P.,Waeber,G.,Marques-Vidal,P.,2015.Prevalenceof measuredandreportedmultimorbidityinarepresentativesampleoftheSwiss population.BMCPublicHealth15.
RCoreDevelopmentTeam,2015.R:ALanguageandEnvironmentforStatistical Computing.RFoundationforStatisticalComputing,Vienna,Austria.
Salles,G.F.,Bloch,K.V.,Cardoso,C.R.L.,2004.Mortalityandpredictorsofmortality inacohortofBraziliantype2diabeticpatients.DiabetesCare27,1299–1305.
Slater,J.,2014.FindingsfromtheNationalEquineHealthSurvey,2013.Vet.Rec. 175,271–272.
Therneau,T.M.,Grambsch,P.M.,2000.ModelingSurvivalData:ExtendingtheCox Model.Springer-Verlag,NewYork.
Therneau,T.,2015.APackageforSurvivalAnalysisinS.
Tilling,K.,Sterne,J.A.C.,Szklo,M.,2002.Estimatingtheeffectofcardiovascularrisk factorsonall-causemortalityandincidenceofcoronaryheartdiseaseusing G-estimation–theAtherosclerosisRiskinCommunitiesStudy.Am.J. Epidemiol.155,710–718.
Wohland,P.,Rees,P.,Nazroo,J.,Jagger,C.,2015.Inequalitiesinhealthylife expectancybetweenethnicgroupsinEnglandandWalesin2001.Ethnic Health20,341–353.
Wylie,C.E.,Ireland,J.L.,Collins,S.N.,Verheyen,K.L.P.,Newton,J.R.,2013.
DemographicsandmanagementpracticesofhorsesandponiesinGreat Britain:across-sectionalstudy.Res.Vet.Sci.95,410–417.
deMadron,E.,King,J.N.,Strehlau,G.,White,R.V.,2011.Survivaland
echocardiographicdataindogswithcongestiveheartfailurecausedbymitral valvediseaseandtreatedbymultipledrugs:aretrospectivestudyof21cases. Can.Vet.J.Larevueveterinairecanadienne52,1219–1225.