• No results found

A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model

N/A
N/A
Protected

Academic year: 2021

Share "A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Energy

and

Buildings

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

A

differentiated

description

of

building-stocks

for

a

georeferenced

urban

bottom-up

building-stock

model

Magnus

Österbring

a,∗

,

Érika

Mata

b

,

Liane

Thuvander

c

,

Mikael

Mangold

a

,

Filip

Johnsson

b

,

Holger

Wallbaum

a

aChalmersUniversityofTechnology,CivilandEnvironmentalEngineering,SvenHultinsgata8,41296Göteborg,Sweden bEnergyandEnvironment,SvenHultinsgata8,41296Göteborg,Sweden

cArchitecture,SvenHultinsgata8,41296Göteborg,Sweden

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14January2016

Receivedinrevisedform21March2016 Accepted22March2016

Availableonline23March2016 Keywords: Buildingstock GIS Energy Modelling Residential

a

b

s

t

r

a

c

t

Severalbuilding-stockmodellingtechniqueshavebeenemployedtoinvestigatetheimpactofenergy efficiencymeasures(EEM),wherethedescriptionofthebuilding-stockgenerallyconsistsofan age-typeclassificationtospecifybuildingcharacteristicsforgroupsofbuildings.Suchdescriptionslackthe appropriatelevelofdetailtodifferentiatethepotentialforEEMwithinagegroups.Thispaperproposes amethodologyforbuilding-stockdescriptionusingbuilding-specificdataandmeasuredenergyuseto augmentanage-typebuilding-stockclassification.Byintegratingbuildingcharacteristicsfromenergy performancecertificates,measuredenergyuseandenvelopeareasfroma2.5DGISmodel,the building-stockdescriptionreflectstheheterogeneityofthebuilding-stock.Theproposedmethodisvalidatedusing alocalbuildingportfolio(N=433)inthecityofGothenburg,wheremodelledresultsforspaceheating anddomestichotwaterarecomparedtodatafrommeasurements,bothonanindividualbuildinglevel andfortheentireportfolio.Calculatedenergyusebasedonthebuilding-stockdescriptionoftheportfolio differlessthan3%frommeasuredvalues,with42%oftheindividualbuildingsbeingwithina20%margin ofmeasuredenergyuseindicatingfurtherworkisneededtoreduceorquantifytheuncertaintyona buildinglevel.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Buildingsworldwideaccountfor32%oftheglobalfinalenergy

useand19%ofenergy-relatedgreenhouse-gas(GHG)emissions.

Atthesametime,theyprovidealargepotentialforcost-efficient

energyefficiencymeasures(EEM)[1–4].Withtheaimtoharvest

theseefficiencyopportunities,theEuropeanEnergyPerformance

ofBuildingsDirectivedefinesasetofefficiencystandardsforboth

newandexistingbuildings[5,6].Onanationallevel,Swedish

gov-ernmentalpolicyaimsatconsiderablereductionsinenergyuseby

2020and2050[7,8].ResultingfromtheEUenergyefficiency

direc-tive[5],energyperformancecertificates(EPC)wereintroducedin

Swedenin2006in ordertopromoteenergyefficiencyin

build-ings.Onalocallevel,citiesandmunicipalitieshavegonefurther

andvoluntarilyadoptedmoreambitioustargetsonenergysavings,

reductionsinGHGemissionsand increase inrenewable energy

∗ Correspondingauthor.

E-mailaddresses:magost@chalmers.se,magnus.osterbring@ncc.se

(M.Österbring).

throughframeworkssuchastheCovenantofMayors.1Thecityof

Gothenburghasadoptedsuchgoalsandaimstoreduceenergy

con-sumptioninresidentialbuildingsby30%by2020comparedto1995

levels[9].Forthedevelopedworld,itisestimatedthat80%ofthe

buildingstockin2050willconsistofbuildingsalreadybuilt[10],

whichimpliesaneedforapplicationofEEMintheexistingstockif

theabove-mentionedtargetsaretobemet.

Thereare manyexamplesof building-stockmodelling(BSM)

beingusedtoevaluatetheenergydemandoftheexisting

building-stock[11–16].Accordingtotwoin-depthreviewpapersbySwan

andUgursal[17],andKavgicetal.[18],ageneraldistinctioncan

bemadebetweentop-downandbottom-upmodellingapproaches.

Top-downmodelscannotbeusedtoassesstheeffectsfrom

individ-ualEEMand,thus,havenotbeeninfocusofthiswork.Bottom-up

modelscan be divided intotwo sub-groups; Statisticalmodels

andbottom-upengineeringmodels.Statisticalmodelsuse

aggre-gateddataasinput,whichthroughregressionmethodsareused

1TheCovenantofMayorswaslaunchedbytheEuropeanCommissiontosupport

effortsbylocalauthoritiestoimplementsustainableenergypolicies.

http://dx.doi.org/10.1016/j.enbuild.2016.03.060

(2)

toaccountforspecificend-usesbasedontheenergyconsumption

ofthedwellings.Abottom-upengineeringmodel,whichisused

inthispaper,usesaheatbalancemodeltoestimatestheenergy

consumptionforindividualbuildings.Thebuildingsusedasinput

tobottom-upmodelsaredefinedbybuildingpropertiessuchas

geometry,U-values,climatedata,indoortemperatureanduseof

appliances.Thus,toapplyabottom-upengineeringmodelrequires

detailed inputdata.Duetoaim,dataavailability and

computa-tionaltime-constraintsthebuildingstockisnormallyrepresented

bysamplebuildingsorarchetypebuildings,whereitisassumed

thatsimilarbuildingswithregardtoyearofconstruction,useofthe

building,typeofheatingsystemandbuildinggeometrycanbe

rep-resentedbyanaveragebuilding.Samplebuildingsusedetaileddata

foranumberofbuildings(e.g.asobtainedfrommeasurementson

individualbuildings)combinedwithweightingfactorsderivedso

thatthesamplebuildingsreflecttheentirebuildingstock.Similarly,

archetypebuildingsuserepresentativetheoreticalbuildings,often

definedbyconstructionyearandthetypeoruseofthebuilding,

torepresentallbuildingswithsimilarcharacteristicstoallowfor

assessmentoftheentirestock.Thesemethodsofbuilding

descrip-tionhavebeensuccessfullyusedtocalculatethepotentialforEEM

inexistingresidentialbuilding-stocksonanationalscale[19,20]as

wellasonanurbanscale[21–23].

Recentimprovementsindataavailabilityhaveallowedgreater

focusonurbansettingsinBSMandinclude aspatialdimension

byintegratinggeo-referenceddatausinggeographicalinformation

systems(GIS)[24–26].UsingGISinBSMhasseveraladvantages:

itfacilitatesmergingofdatafromseveraldatabasesthatisoften

requiredbyengineeringmodels,itfacilitatesfurtheranalysisand

communicationbyspatiallydifferentiatingandvisualizingresults,

andfinallyitprovidesarepositoryforstoringandexchangingdata

throughinterconnectedurbanmodels.TheadditionofaGIS

compo-nenttoBSMhasbeencarriedouttoanalyseenergypolicyscenarios

inanurbancontext[24],toassesstheurbanheatislandeffecton

energydemand[25]aswellastoassessenvironmentalimpacts

ofbuildingstocksandpotentialforEEM[26].Whilethe

introduc-tionofGISinBSMhasallowedanincreaseinspatialresolutionand

enabledfocusonurbansettings,thedescriptionofthe

building-stockusingrepresentativebuildingshasnotbeenadaptedtotake

fulladvantageoftheimprovedspatialresolution.Themethodof

derivingandscalingadescriptionbasedonrepresentative

build-ingstoaccountfortheentirestockisbasedontheassumptionthat

buildingswithsimilaryearofconstructionandusehavesimilar

energyperformancecharacteristics.Thiscanbeproblematic,

typi-callysoforolderpartsofthestockwhereenergyrenovationshave

beenappliedtovaryingdegreewhichmayresultinsignificant

dif-ferencesintheenergyperformanceforthesametypeofbuildings

[27].

Asthescopeof theabove work[24–26] hasbeento

evalu-atetargetsandscenariosatacityordistrictlevel,representative

buildingshavebeensufficient todescribethebuilding-stock.In

addition,measureddataonenergysupplythatallowfor

valida-tionandcalibrationofthebuilding-stockdescriptioniscommonly

onlyavailableforasmallnumberofbuildingsoratadistrictlevel,

oftenduetolackofdataavailabilityorduetodatanotbeing

pub-liclyavailable[17,28].Asaresult,validationandcalibrationofthe

building-stockdescriptionislimitedtolevelsofaggregationset

byavailabledata[21].Obviously,suchdescriptionsshouldonlybe

usedattheirintendedlevelofaggregation[29],whichinturncalls

forarevisedmethodofdescribingbuilding-stocksfor

stakehold-ersneedingbuildingspecificinformationsuchaspropertyportfolio

ownersandmanagers.Furthermore,theincreaseinspatial

resolu-tionprovidedbyadifferentiateddescriptionreducesuncertainties

onastocklevelasrepresentativebuildingsmayover-or

underesti-matetheenergydemandofaspecificbuilding,whichcouldresultin

inaccurateestimatesofthepotentialforenergysavingsfrom

apply-ingdifferentEEM.Inordertoincreasetheaccuracytoallowfor

prioritizingEEMforindividualbuildingswithinastock,measured

energyusemustbeknowntoallowforvalidationonabuildingor

propertylevel.Thelackofmeasuredconsumptiondataata

dis-aggregatedlevelhasbeenidentifiedasthesinglemostimportant

obstacleforhandlinguncertaintyinBSM[17,21,28,30,31].

Theaimofthispaperistopresentamethodologyfordescribing

urbanresidentialbuilding-stocksthatfitsanalysisoflocalbuilding

portfolios,i.e.whereagreaterdetailinanalysisisrequired

com-paredtomodellingabuildingstockofanentirecountryoralarge

region.Thus,theaimistoincludeaspatialresolutionofindividual

buildingsbyusingbuilding-specificdataandtoassessdataneeds

and,inparticulargeo-referenceddata,forsuchadescription.

2. Methodology

Building-specificdata,envelopeareaandmeasuredenergyuse

fromEPCarelinkedtoeachindividualbuildingusingGIStoachieve

adifferentiateddescriptionofthebuilding-stockofGothenburg.

Preparationandcleaningofthedataaredoneandpreviously

iden-tifiedqualityissuesregardinghowtheheatedfloorarea(HFA)is

derivedintheSwedishEPC[32,33]arecorrected.AstheU-valuefor

thebuildingsarenotknownfromanyofthedatasets,anage-type

classificationisdevelopedbasedonhistoricalbuildingregulations

and a historic construction and architectural classification [34]

andlinkedtoindividualbuildings.Theproposedmethodologyis

appliedtoapropertymanager’sregionalportfolioofbuildingsin

thecityofGothenburg,consistingof433multi-familydwellings2

withatotalHFAof1millionm2.

Theenergyperformanceofeachbuildingintheportfoliois

cal-culatedwiththebuilding-stockmodelECCABS[35]and,tovalidate

thedifferentiateddescriptionofthebuilding-stock,themodelled

energyuseforspaceheating(SH)anddomestichotwater(DHW)is

comparedtomeasuredenergyconsumptiondatawhichisbasedon

billingdataormeasuredonsite.Finally,asensitivityanalysisforthe

mostrelevantinputparametersconsidereduncertainisperformed.

2.1. Building-specificdatasetsandprocessing

The building-specific data used in this work are retrieved

from(a)EPC,(b)GISdataand(c)thepropertyregister.Building

characteristicsfromEPCincludetypeofheating,ventilationand

air-conditioning (HVAC)systems, number ofstories (aboveand

belowground),numberofstaircases,attachmenttoother

build-ings(detached,semi-detachedorattached),constructionyearand

HFA.Furthermore,measuredenergyconsumptionvaluesaregiven

fornon-domesticelectricityuse,SHandDHW.AllEPCavailablefor

thecityofGothenburgwereretrievedfromtheNationalBoardof

Housing,BuildingandPlanning.

BuildingcharacteristicsfromtheGISdataaregeometricaldata

suchasbuildingfootprintsandbuildingheight.TheCityPlanning

OfficeofGothenburgsuppliedtheGIS-data.AstheEPCand

GIS-datadonotcontainanycommonuniqueidentifier,datafromthe

propertyregisterwerecollectedfromtheSwedishNationalLand

SurveytomatchthebuildingorpropertyIDfromEPCtomid-point

coordinatesofbuildings.Thiswasthenspatiallylinkedtobuilding

footprintsthatwereextrudedtocreatethe2.5Drepresentation

showninFig.1,whichisusedtoretrievetheenvelopeareaofeach

building.Thepropertyregisteralsocontainsinformationonyearof

refurbishmentandvalueyear,whichisanestimateofequivalent

agefortaxationpurposescalculatedbasedonyearofconstruction

andyearofrefurbishment[36].Thevalueyearisweightedbased

2Amulti-familydwellingisforthepurposeofthispaperdefinedasabuilding

(3)

Fig.1. 2.5DrepresentationofcentralGothenburg.BuildingsinwhitehaveanEPC.

ontheeconomicextentofrefurbishmentactivitiesorextensions

andrelatestotheexpectedremaininglifetimeofeachbuilding.

2.2. Errorinvestigationandpreparationofinputdataset

ThemostcommonlycitedsourceoferrorintheSwedishEPC

istheHFA[32,33].TheHFAisrarelymeasuredintheEPCandis

insteadobtainedbymultiplyingthelivingareaby1.15forbuildings

withoutbasementandby1.25forbuildingswithabasement.Yet,

thisproceduregivessomewhatinaccuratepredictionsoftheHFA,

particularlyintwocases.1.ForbuildingswhereallHFAequalsthe

livingarea,theresultingHFAisoverestimatedby15%intheEPC.

Thisistypicalfortwo-storybuildingswithexternalstaircasesand

individualexternalentriestoallapartments.2.Forbuildingswith

abasement.AstheHFAisderivedbymultiplyingthelivingarea

by1.25,lessthanhalfofthebasementwouldbeaccountedforina

two-storybuildingassumingtheareaofthebasementequalsthat

ofthefloorsaboveground.Forbuildingswiththreeormorestories,

theerrorisless.

Otherissuesintheparticularsubsetof433EPCinclude

coor-dinateerrors(infourinstances)andwrongnumberofstories(in

76instances).Thecoordinateerrorsalwaysoccurinpairsandis

aresultoftwobuildingIDsforthesamepropertybeingmixedin

theEPC.Thewrongnumberofstoriesislikelyduetomanualinput

errororpartlysubmergedbasementsbeingcountedtwiceasitis

givenseparatelyforbasementsaboveandbelowgroundintheEPC.

Forthefinalinputdataset,thecorrectnumberofstorieshasbeen

added,theHFArecalculatedforbuildingswithabasementor

exter-nalstaircasesandthefourinstanceswithjumbledcoordinateshave

beencorrectedmanually.

2.3. U-valuesandbuildingtype-agedescription

Table1liststheaverageU-valuesforthedifferentbuildingtypes

employedaccordingtoconstructionperiod.TheU-valueof

build-ingcomponentsisnotgiveninanyofthedatasetsandanaverage

U-valueisinsteadderivedbasedonbuildingtypeandconstruction

year.Basedonarchitecturalhistory[34]andbuildingregulations,

themulti-familydwellingstockofGothenburgischaracterizedby

sevenbuildingtypes(timberbuildings,brickbuildings,socalled

“Landshövdingehus”,3slabblocks,towerblocks,largeslabblocks

and courtyardbuildings)and further dividedby age,according

totheiryearofconstruction,byfiveyearperiodsfrom1880and

onwards.Thefive-yeardivisionisdeterminedbytherecurrenceof

thearchitecturaltypes.Outofatheoretical196combinationsof

agegroupandbuildingtype,32uniqueaverageU-valuesforthe

3 Thisisathreestoreyearlytomid20thcenturybuildingtype,characteristicfor

theCityofGöteborg,forwhichthebottomstoreyismadeofbrickandthetoptwo ofwood.

age-typeclassesareusedasnotalltypesarepresentforallage

periodsandinmanycasestheU-valuedoesnotchangeforlonger

periods(seeTable1).

2.4. Matchingthebuildingage-typeclassificationtoindividual

buildings

Inthedatabasesmentionedabove(a–c)thereisnosingle

iden-tifiertomatchtheage-typeclassificationtoindividualbuildings,

insteadthenumberofstories,age,numberofstaircasesand

attach-menttootherbuildingsareusedtomatcheachbuildingtoaverage

U-valueswhichcanbeseeninTable2.Forbuildingsforwhichthe

yearofrefurbishmentisdocumented,theU-valueisbasedonthe

valueyearratherthanconstructionyear.Whiletheactual

refur-bishmentactivitiestakenarenotknown,thevalueyearatleast

givesanindicationoftheeconomicextentoftherefurbishment

andprovidesamorereasonableassumptionthanusingtheyearof

refurbishmentorconstructionyearwhenestimatingtheU-value.

IncasesforwhichthevalueyearhasnoU-valuespecifiedforthe

buildingtype,theaverageU-valueisbasedonotherbuildingtypes

forthetime-periodinquestion.Wherethereisanoverlapof

possi-blebuildingtypes,towerblockischosenasitbydefinitionexcludes

anyotherpossibilities.Ofthe32age-typeclassesgiveninTable1,

22areusedtoassignanaverageU-valueforthe433buildings.

Thisissufficientsinceolderbuildingsarerareintheportfolioof

buildings,withonlysevenbuiltbefore1940.

2.5. Assumptionsfornon-buildingspecificinputs

Asbuilding-specificinputdataarenotavailableforall

parame-tersrequiredformodellingtheenergydemand,i.e.notpresentin

EPCorgeometricaldata,remaininginputdatahavebeenacquired

usingassumptionsthat aremoregeneral.In particular:internal

heatgains,userbehaviourrelatedinputsandset-point

tempera-ture(21◦C)arespecifiedaccordingtonationalbuildingindustry

standardsforenergycalculations[38],whileventilationflowrates

areassumedtofulfilminimumhygienicstandardsaccordingtothe

buildingcode[39].Forbuildingsusingheatpumps(49buildings

ofthe433intheportfolio),thecoefficientofperformance(COP)

isassumedaccordingtotestsperformedbytheSwedishenergy

agency[40].

2.6. Validationbyenergymodellingofthebuildingstock

Inordertovalidatethedifferentiateddescriptionofthebuilding

stock,theenergyuseforSHandDHWiscalculatedusingthedefined

descriptionasinputtotheECCABSmodel[35]andcomparedto

measuredenergyconsumptiondataonaportfoliolevelaswellas

onabuilding-by-buildingbasis.Althoughmeasureddataaregiven

separatelyforSHandDHWintheEPC,theyarenotmeasured

sep-aratelyforanyofthebuildingsintheportfolio,butratherdivided

basedonthejudgementoftheenergyexpertperformingtheEPC.As

such,resultsarepresentedasthesumofcalculatedandmeasured

energyuseforSHandDHW.Inaddition,asensitivityanalysisis

performedforparametersthatareuncertainandinfluential,similar

towhathasbeenidentifiedinpreviouswork[31,41].Asindicated

above,theenergyperformanceoftheportfolioismodelledwiththe

ECCABSmodel[37],wheretheenergyperformanceofeachbuilding

ismodelledmathematicallyinSimulink/Matlab,asalinearexplicit

discretetime-variantsystem,basedonthelumpedsystemanalysis

approach.Accordingtotheclassificationofcalculationprocedures

inISO13790[42],theECCABSmodelisdetailed(hourly

specifi-cationoftheinputdataandtheresults)anddynamic(takesinto

accountthethermalmassofthebuildingateachtimestep).The

accuracyoftheECCABSmodelhasbeenvalidatedbyinter-model

(4)

Table1

AverageU-valuesforthedifferentbuildingtypesaccordingtoconstructionperiod[W/m2,K].

Constructionperiod Timberbuilding Brickbuilding Landshövdingehus Slabblock Towerblock Largeslabblock Courtyardbuilding

–1905 1.10 1.20 1.00 1905–1920 1.05 1.20 1.00 1920–1930 0.95 1.20 1.00 1.35 1930–1935 0.95 1.20 1.00 1.00 1935–1940 0.95 1.20 1.00 1.00 1.10 1940–1950 0.95 0.95 1.10 1950–1955 0.95 1.10 1.00 1955–1960 0.90 1.10 1.00 1960–1965 0.70 1.25 0.95 1965–1970 0.70 1.25 0.90 1970–1975 0.70 0.85 0.90 1975–1980 0.70 0.75 0.80 0.50 1980–1985 0.60 0.60 0.60 0.50 1985–2000 0.55 0.55 0.55 0.50 2000–2010 0.50 0.50 0.50 0.50 2010–2015 0.4 0.4 0.4 0.4 Table2

Propertiesformatchingtheage-typeclassificationinTable1toeachbuildingintheportfolio.

Buildingtype Attachment Stories Staircases Constructionperiod

Towerblock Detached >2 1 1935–2015

Landshövdingehus Attached/semidetached 3 1+ 1880–1940

Brickbuilding Multiple >3 Multiple –1940

Largeslabblock Detached/semidetached >4 Multiple 1950–2015

Slabblock Detached/semidetached 2–4 1+ 1930–2015

Timberbuilding Detached 2 0–1 –1950

Courtyardbuilding Attached >3 Multiple 1975–2015

tomodeltheenergyperformance oftheSwedishbuilding-stock

[43,44]aswellasthatofvariousEuropeancountries[20,45].

3. Results

In this section, calculated and measured energy use for SH

andDHWarefirstpresentedfortheentireportfolioandsecond

abuilding-by-buildingcomparisonisshown.Lastly,asensitivity

analysisis carried out tohighlight theinfluence of parameters

thatareuncertain.Fig.2comparesmodelledandmeasuredenergy

usefortheportfolio(thesumofSHandDHW).Whilemodelled

andmeasuredenergyuseonaportfolioleveldifferlessthan3%,

(modelled136GWhandmeasured139GWh),thedifferencefor

individualbuildingscanbesignificant.

Theagreementfortheportfolioissimilartowhatwasobtained

when comparingmodelledand measuredenergy demand ona

nationalbuilding-stocklevel,usingrepresentativesample

build-ings.Figs.3showsthedistributionofthemarginofmodelledto

measuredenergyusein0.1intervals,normalizedfornumberof

buildingsaswellasm2HFA.Ascanbeseen,thereisawide

distri-butionintherationofmodelledtomeasureddatawhere52%ofthe

HFAand43%ofnumberofbuildingsarewithina20%margin.Thus,

theresultsalsoindicatethatmoreaccuratepredictionsofenergy

useareobtainedforlargerbuildingsastheaccuracyishigherwhen

comparingHFAratherthanthenumber ofbuildings.Ascanbe

seenfromFig.4,thedeviationsbecomeevenmoreapparentwhen

applyingenergyuseperm2HFAasbasisforcomparisonbetween

modelledandmeasuredenergyuse.Itisclearthattheheating

sys-temhasasignificantimpactwherethecalculatedenergyusefor

buildingswithaheatpumpisconsistentlyunderestimated.The

oppositecanbesaidforbio-basedboilerswherecalculatedenergy

useisconsistentlyhigherthanmeasuredenergyuse.

3.1. Sensitivityanalysis

TheCOPofheatpumpsandtheindoorset-pointtemperatureare

knowntobeassociatedwiththehighestuncertaintiesofthedata

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 Me a su red ene rgy use for S H a n d H W [MWh/ ye a r]

Calculated energy use for SH and HW [MWh/year]

Fig.2. Calculatedandmeasuredenergyuseforindividualbuildings(thesumofSH andDHW).

usedinthisworkandthereforeasensitivityanalysisiscarriedout

forthesetwoparameters.TheCOPofheatpumpsisinvestigated

accordingtoTable3andevaluatedforeachofthe49buildingsusing

heatpumps.Outofthe49buildingswithaheatpump,ninehavea

ground-sourceheatpump,34haveanexhaust-airheatpumpand

fivehaveanairtowaterheatpump.Furthermore,thesetpoint

forindoortemperatureisvariedbetween20and24◦Cwiththe

initialassumptionbeing21◦Candevaluatedataportfoliolevel,see

Fig.5.Althoughuserbehaviourhasalargeimpactonthecalculated

energyperformanceofindividualbuildings,noneofthedatainthe

databasesallowsacharacterizationoftheuserbehaviourand,thus,

ithasbeenomittedatthisstage.

Whiletheresultsfortheinitialassumptionofaset-point

tem-peratureofindoortemperatureof21◦Cshowgoodagreementwith

measuredconsumption data,varyingtheset-pointtemperature

(5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91 10% 20% 30% 40% 50% 60% HFA , no rmalised [-] Margin of error [%] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91 10% 20% 30% 40% 50% 60% Number of buildi n gs, no rmalised [ -] Margin of error [%]

Fig.3.Distributionofmarginoferrorbetweencalculatedandmeasuredenergyuse(sumofSHandDHW),normalizedform2HFAtotheleftandnumberofbuildingstothe

right. 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Measured

energy

use

for

SH

and

DH

W

[k

Wh/

m²,y]

Calculated

energy

use for

SH and DHW [kWh/m²,y]

District heang

Heat-pump

Gas

Bio-based boiler X=Y

Fig.4.Calculatedandmeasuredenergyuseperm2HFAgroupedbyheatingsystem.

Table3

VariationofCOPforthedifferentheat-pumps.

Heatpump InitialCOP Variation1 Variation2 Variation3

Exhaust-airheatpump 2.5 1.5 2 3

Airtowaterheatpump 2 1.5 2.5 3

Ground-sourceheatpump 3 2.5 3.5 4

0 20 40 60 80 100 120 140 160 180 20 21 22 23 24 GWh /year Set-point temperature

Fig.5. Sensitivityanalysisofchangeofset-pointtemperaturewithaline

represent-ingmeasuredenergyuseforcomparison.

theSHdemandfortheentireportfoliowithonlyminorfluctuations

forindividualbuildings.

Figs. 6 and 7 give calculated energy use against measured

consumptionfor the49buildings witha heat pumpwherethe

assumptiononCOPisvariedandresultsarenormalizedtoallow

forabetteroverview.Ascanbeseen,themeasuredenergy

con-sumption differs significantly from calculated energy demand.

For ground-source heat pumps and air to water heat pumps,

thecalculated energy useis consistently underestimated while

exhaust-airheatpumpsshowamoreinconsistentbehaviour.As

canbeexpected,variationsofCOPhave amajorimpacton

cal-culatedenergy use, butas thesamplesize issmall andsimilar

variationsoccurforbuildingswithdistrictheating,itisnotclear

whethertheassumptionsonCOPareexaggeratedorifotherfactors

suchasuserbehaviourarethereason.

4. Discussion

Calculatedenergyuseshowsgoodagreementwithmeasured

energyuseonaportfolioleveland43%ofthebuildingsrepresenting

52%oftheHFAhaveamarginoferrorlessthan20%.Thereare

sev-eralpossibleexplanationsforthediscrepancybetweenmeasured

andcalculatedenergyuseonabuildinglevel.First,thereliability

ofthedatacanbequestioned,bothwhenitcomestovaluesused

asinputaswellasthemeasuredenergyconsumption statedin

theEPC.ItisclearthattheEPCinparticularsuffersfromquality

issuesandwhilethemostapparenterrorsrelatingtoinputhave

beendealtwith(HFA),therearetwomainissuesremaining

con-cerningmeasuredenergyconsumptiongivenintheEPC.1)Energy

forSHandDHWisnotmeasuredseparatelyforanyofthe

build-ingsintheportfoliobutratherseparatedbasedonthejudgement

oftheenergyexpert.2)Forsomepropertiesthatincludeseveral

buildingsofsimilartypeandsize,onlyonemeasuringpointisused

whichisthendividedbasedontheHFAofthebuildingsinquestion,

whichisthecasefor165ofthebuildings.Thisincreasestheriskthat

energyusewhichisnotincludedinthecalculationisincludedinthe

measureddatasuchasdistrictheatingdistributionlossesorother

(6)

0 0.2 0.4 0.6 0.8 1 1 2 3 4 5 6 7 8 9 Calculated SH and DHW use

normalised against measured data

[-]

COP 2.5 COP 3 COP 3.5 COP 4

0 0.2 0.4 0.6 0.8 1 1 2 3 4 5 6 Calculated SH and DH W use norma lis ed against me asured data [-]

COP 1.5 COP 2 COP 2.5 COP 3

Fig.6.Calculatedenergyuse(sumofSHandDHW)normalizedagainstmeasuredconsumptionvaluesfordifferentassumptionsonCOPofground-sourceheatpumpson theleftandairtowaterheat-pumpsontheright.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Calculated SH and DH W use norma lis ed against me asured data [-]

COP 1.5 COP 2 COP 2.5 COP 3

Fig.7.Calculatedenergyuse(sumofSHandDHW)normalizedagainstmeasuredconsumptionvaluesfordifferentassumptionsonCOPofexhaust-airheatpumps.

outdoorlightingwhichtheenergyexpertwouldhavetoaccount

formanually.

Second,partofthedeviationbetweencalculatedandmeasured

valuesmayalsobearesultofthemethodologyusedinthisworkto

describethebuildings.Inparticular,therehavebeentencasesinthe

portfoliowherea2.5Dgeometryhasnotbeensufficienttodescribe

thegeometryofabuilding.Forfutureworkthereisapotentialin

using3D-datatogetherwithadigitalterrainmodel(DTM)tomore

accuratelycalculatetheenvelopeareaonabuildinglevel.

Addi-tionally,whileaverageU-valueshavebeenassignedbasedonthe

age-typeclassificationandthevalueyear,usingU-valuesfor

build-ingcomponentscouldfurtherimprovetheaccuracyforindividual

buildings.

Althoughallofthebuildingsintheportfolioareclassifiedas

residentialbuildings,itiscommonformulti-familydwellingsto

alsohostcommercialactivities(thisisthecasefor136ofthe433

buildings,onaverage6.8%oftotalHFA),typicallyonthefirstfloor.

AstheECCABSmodelis configuredasa lumpedmodel

(single-zonemodel),furtherimprovementscanbemadebyconsidering

theseactivitieswhenspecifyinginternal heatloadsor,tousea

multi-zonemodelthatcanmoreaccuratelyrepresenttheactual

conditionswiththedrawbackof additionalcomputationaltime

required.Theuseofmulti-zonemodellingforbuilding-stockshas

previouslybeeninvestigatedforsingle-familydwellingsintheUK

[46]butfurtherworkisneededtoalsoincorporatemulti-family

dwellingswithmixeduse.

Theparameterschosenforthesensitivityanalysisissimilarto

previousworkthatusesreferencebuildings[41]aswellassample

buildingsandafactorialsamplinganalysisasabasisforcalibration

[31].ItisclearlyshownthatindoortemperatureandtheCOPofheat

pumpshaveamajorimpactonresultsandfurtherworkisneeded

toovercometheseuncertainties.Whilenotaddressedinthispaper,

theuncertaintyofuserbehaviourandU-valuesbasedonvalueyear

requires furtherattention.Previous workhasconcluded thatin

ordertobetterunderstand,communicateanddescribe

uncertain-ties,localorbuildingspecificconsumptiondataareneeded[47].

Althoughthedatasetusedinthisstudyisuniqueinthesensethat

itcontains measuredenergyconsumptiondataonabuildingor

propertylevel,futureimprovementsofhowitisutilizedcouldbe

accomplishedbyintegratingaBayesiancalibrationframework

sim-ilartowhathasbeensuccessfullyimplementedpreviously[31,48].

5. Conclusions

Amethodologyhasbeenpresentedfordescribingurban

resi-dentialbuilding-stocksthatallowsaspatialresolutionofindividual

buildingsbyusingbuildingspecificdata.Themethodologyconsists

ofusingbuilding-specificdatafromtheEPCandenvelopeareas

froma2.5DGIS-modeltoaugmentanage-typeclassification.The

descriptionis validatedbycomparingmodelleddataonenergy

use(thesumofSHandDHW)withmeasureddatafroma

build-ingportfolioof433buildingsinthecityofGothenburg.Whilethe

descriptionisabletoreflectmeasuredenergyuseonaportfolio

levelwithcalculatedenergyusebeingwithin3%,furtherworkis

neededtoreduceorquantifytheuncertaintyonabuildinglevel

as43%ofbuildingfallswithina20%marginoferror.Tothisend,

dataneedsandavailabilityarenotseenasthemainhindrancefor

improvingtheaccuracyonabuildinglevelwiththeexceptionfor

SHandDHWnotbeingmeasuredseparatelyintheEPC. Rather,

furtherimprovementsofthemethodologycanbemadetoincrease

theaccuracyonabuildinglevel,specificallybyforgoingaverage

(7)

addition,calibrationmethods couldbeincorporatedtoquantify

uncertainties.Futureresearchareashavebeenidentified,

explic-itlythemajorimpactfactorsforthevariationofCOPofdifferent

typesofheatpumps.

Acknowledgements

ThisresearchhasbeenfundedbytheSwedishenergyagency,

NCCAB,theClimate-KICandChalmersEnergyAreaofAdvance.

References

[1]BPIE,Europe’sBuildingsundertheMicroscope,ACountry-by-countryReview oftheEnergyPerformanceofBuildings,BuildingPerformanceInstitute,2011.

[2]EC,Energy-EfficientBuildingsPPP,Multi-AnnualRoadmapandLongerTerm Strategy,EuropeanCommission,2010.

[3]U.Hassler,etal.,Researchonbuildingstocks,Build.Res.Inf.37(2009)5–6.

[4]IPCC,Climatechange2014:mitigationofclimatechange,in:O.Edenhofer,R. Pichs-Madruga,Y.Sokona,E.Farahani,S.Kadner,K.Seyboth,A.Adler,I.Baum, S.Brunner,P.Eickemeier,B.Kriemann,J.Savolainen,S.Schlömer,C.von Stechow,T.Zwickel,J.C.Minx(Eds.),ContributionofWorkingGroupIIItothe FifthAssessmentReportoftheIntergovernmentalPanelonClimateChange, CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY, USA,2014.

[5]EC,Directive2002/91/ECoftheEuropeanparliamentandofthecouncilon theenergyperformanceofbuildings,Off.J.Eur.Communities(2002).

[6]EU,Directive2010/31/EUoftheEuropeanparliamentandofthecouncilon theenergyperformanceofbuildings(recast),Off.J.Eur.Union(2010).

[7]SOU,Nationelltprogramförenergieffektiviseringochenergismartbyggande [NationalProgrammeforEnergyEfficiencyandEnergy-SmartConstruction]. GovernmentOfficialReports,vol.2005/06:145(2005).

[8]SwedishGovernmentBill2008/09:163,acohesiveenergyandclimatepolicy: Energy(2009).

[9]CityofGothenburg,StrategicclimateprogrammeforGothenburg(2014). [10]Q.Wang,I.Martinac,TheapplicationofLCCAtowardindustrializedbuilding

retrofitting-casestudiesofswedishresidentialbuildingstock,in: SustainabilityinEnergyandBuildings,Springer,BerlinHeidelberg,2013,pp. 931–946.

[11]S.K.Firth,K.J.Lomas,A.J.Wright,Targetinghouseholdenergy-efficiency measuresusingsensitivityanalysis,Build.Res.Inf.38(1)(2010) 25–41.

[12]F.Ascione,R.F.DeMasi,F.deRossi,R.Fistola,M.Sasso,G.P.Vanoli,Analysis anddiagnosisoftheenergyperformanceofbuildingsanddistricts: methodology:validationanddevelopmentofUrbanEnergyMaps,Cities35 (2013)270–283.

[13]A.Galante,M.Torri,Amethodologyfortheenergyperformanceclassification ofresidentialbuildingstockonanurbanscale,EnergyBuild.48(2012) 211–219.

[14]K.Fabbri,M.Zuppiroli,K.Ambrogio,Heritagebuildingsandenergy performance:mappingwithGIStools,EnergyBuild.48(2012)137–145.

[15]S.Heiple,D.J.Sailor,Usingbuildingenergysimulationandgeospatial modelingtechniquestodeterminehighresolutionbuildingsectorenergy consumptionprofiles,EnergyBuild.40(8)(2008)1426–1436.

[16]J.Kragh,K.B.Wittchen,DevelopmentoftwoDanishbuildingtypologiesfor residentialbuildings,EnergyBuild.68(2014)79–86.

[17]L.G.Swan,V.I.Ugursal,Modelingofend-useenergyconsumptioninthe residentialsector:areviewofmodelingtechniques,Renew.Sustain.Energy Rev.13(8)(2009)1819–1835.

[18]M.Kavgic,A.Mavrogianni,D.Mumovic,A.Summerfield,Z.Stevanovic,M. Djurovic-Petrovic,Areviewofbottom-upbuildingstockmodelsforenergy consumptionintheresidentialsector,Build.Environ.45(7)(2010) 1683–1697.

[19]I.Sartori,B.J.Wachenfeldt,A.G.Hestnes,EnergydemandintheNorwegian buildingstock:scenariosonpotentialreduction,EnergyPolicy37(5)(2009) 1614–1627.

[20]É.Mata,A.S.Kalagasidis,F.Johnsson,Building-stockaggregationthrough archetypebuildings:france,Germany,SpainandtheUK,Build.Environ.81 (2014)270–282.

[21]A.Mastrucci,O.Baume,F.Stazi,U.Leopold,Estimatingenergysavingsforthe residentialbuildingstockofanentirecity:aGIS-basedstatisticaldownscaling approachappliedtoRotterdam,EnergyBuild.75(2014)358–367.

[22]R.McKenna,E.Merkel,D.Fehrenbach,S.Mehne,W.Fichtner,Energy efficiencyintheGermanresidentialsector:abottom-up

building-stock-model-basedanalysisinthecontextofenergy-political targets,Build.Environ.62(2013)77–88.

[23]I.Theodoridou,M.Karteris,G.Mallinis,A.M.Papadopoulos,M.Hegger, Assessmentofretrofittingmeasuresandsolarsystems’potentialinurban areasusingGeographicalInformationSystems:applicationtoa Mediterraneancity,Renew.Sustain.EnergyRev.16(8)(2012)6239–6261.

[24]G.Martius,H.Wallbaum,G.Catenazzi,C.Nägeli,B.Sunarjo,Spatialbuilding stockmodellingtoassessenergy-efficiencyandrenewableenergyinanurban context,in:CISBAT2013,September4–6,2013,Lausanne,Switzerland,2013.

[25]A.Mavrogianni,M.Kolokotroni,I.Hamilton,AGIS-basedbottom-upspace heatingmodeloftheLondondomesticstock,in:EleventhIBPSAConference, Glasgow,Scotland,July27–30,2009,2009.

[26]N.Heeren,M.Jakob,G.Martius,N.Gross,H.Wallbaum,Acomponentbased bottom-upbuildingstockmodelforcomprehensiveenvironmentalimpact assessmentandtargetcontrol,Renew.Sustain.EnergyRev.20(2013)45–56.

[27]B.Eriksson,EnergisparpotentialeriBostadsbeståndet:Värmebalansmodell, StatensInstitutförByggnadsforskning,1993.

[28]M.Aksoezen,M.Daniel,U.Hassler,N.Kohler,Buildingageasanindicatorfor energyconsumption,EnergyBuild.87(2015)74–86.

[29]G.V.Fracastoro,M.Serraino,Amethodologyforassessingtheenergy performanceoflargescalebuildingstocksandpossibleapplications,Energy Build.43(4)(2011)844–852.

[30]P.Steadman,I.Hamilton,S.Evans,Energyandurbanbuiltform:anempirical andstatisticalapproach,Build.Res.Inf.42(1)(2014)17–31.

[31]A.T.Booth,R.Choudhary,D.J.Spiegelhalter,Handlinguncertaintyinhousing stockmodels,Build.Environ.48(2012)35–47.

[32]M.Mangold,M.Österbring,H.Wallbaum,Handlingdatauncertaintieswhen usingSwedishenergyperformancecertificatedatatodescribeenergyusage inthebuildingstock,EnergyBuild.102(2015)328–336.

[33]S.Stensson,EnergyEfficiencyinShoppingMalls-SomeAspectsBasedona CaseStudy,ChalmersUniversityofTechnology,2014.

[34]Björk,C.,Kallstenius,P.,Reppen,L.,Såbyggdeshusen1880–2000:arkitektur, konstruktionochmaterialivåraflerbostadshusunder120år.Svensk Byggtjänst(2013).

[35]Mata,É.,Kalagasidis,A.S.,CalculationofenergyuseintheSwedishhousing. Descriptionofthebuildingenergysimulationmodel:EABSEnergyAssessment ofBuildingStocks.Report,4(2009).

[36]Skatteverket,SkatteverketsAllmännarådSKVA2012:12Avsnitt2.3,2012, Availableon:www.skatteverket.se.

[37]É.Mata,A.S.Kalagasidis,F.Johnsson,Amodellingstrategyforenergy,carbon: andcostassessmentsofbuildingstocks,EnergyBuild.56(2013)100–108.

[38]Sveby,BrukarindataBostäder,2012,Availableon:www.sveby.org. [39]Boverket,Regelsamlingförbyggande—Boverketsbyggregler,BBR.BFS

1993:57medändringart.o.mBFS2015:3.SwedishBuildingRegulations(In Swedish),Karlskrona,Sweden(2015).

[40]Energimyndigheten,TesterOmUppvärmningOchVarmvatten,2013 (accessed14.01.15)from:http://www.energimyndigheten.se/tester/ uppvarmning-och-varmvatten/.

[41]D.Majcen,L.Itard,H.Visscher,Actualandtheoreticalgasconsumptionin Dutchdwellings:whatcausesthedifferences?EnergyPolicy61(2013) 460–471.

[42]ISOEN,13790:EnergyPerformanceofBuildings?CalculationofEnergyUsefor SpaceHeatingandCooling(ENISO13790:2008),EuropeanCommitteefor Standardization(CEN),Brussels,2008.

[43]É.Mata,A.S.Kalagasidis,F.Johnsson,Cost-effectiveretrofittingofSwedish residentialbuildings:effectsofenergypricedevelopmentsanddiscount rates,EnergyEffic.8(2)(2014)223–237.

[44]V.M.Nik,E.Mata,A.S.Kalagasidis,Astatisticalmethodforassessing retrofittingmeasuresofbuildingsandrankingtheirrobustnessagainst climatechange,EnergyBuild.88(2015)262–275.

[45]É.Mata,G.M.Benejam,A.S.Kalagasidis,F.Johnsson,Modellingopportunities andcostsassociatedwithenergyconservationintheSpanishbuildingstock, EnergyBuild.88(2015)347–360.

[46]S.C.Taylor,D.Allinson,S.K.Firth,K.J.Lomas,DynamicenergymodellingofUK housing:evaluationofalternativeapproaches,in:ProceedingsofBS2013: 13thConferenceofInternationalBuildingPerformanceSimulation Association,Chambéry,France,August26–28,2013.

[47]C.Calderón,P.James,J.Urquizo,A.McLoughlin,AGISdomesticbuilding frameworktoestimateenergyend-usedemandinUKsub-cityareas,Energy Build.96(2015)236–250.

[48]Y.Heo,R.Choudhary,G.A.Augenbroe,Calibrationofbuildingenergymodels forretrofitanalysisunderuncertainty,EnergyBuild.47(2012)550–560.

References

Related documents

Based on his theory, the effect of social stratification is people classify into high class, middle class, and the lowest class.. Paul B Horton and Chester

To verify enrollment, please contact the Office of Admissions at (361) 825-2624 or at admiss@tamucc.edu For assistance in creating EPA documents, please contact Terry Hidalgo

In this study, firstly we specified the latitude and longitude of each firm of the 2008 – 2013 firm database with geocoding. Secondly we defined local clusters by performing the

4 (c) shows optical micrographs of friction stir weld AA6061 at heat affected zone from the micrograph it can be observed that grains are slightly elongated. 4

data will also be used to ensure that the point source inventory in the Wilmington study area is complete and that the universe of point sources, beyond those reported in CEIDARS, are

Our findings turned up some surprising results. Part IV will discuss our findings in greater detail, but in very general terms, we found that the model minority stereotype is

That same year, the chief executive of the RAI declared that “we have a dining culture now, which we never had before.” The growing confidence among Irish culinarians is evident in

Trigiante, Analysis of Hamiltonian boundary value methods (HBVMs): a class of energy-preserving Runge–Kutta methods for the numerical solution of polynomial Hamiltonian