• No results found

CR-submanifolds of a nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection

N/A
N/A
Protected

Academic year: 2020

Share "CR-submanifolds of a nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

________________

*Corresponding author Received November 20, 2015

473

CR-SUBMANIFOLDS OF A NEARLY HYPERBOLIC SASAKIAN MANIFOLD

WITH A SEMI-SYMMETRIC METRIC CONNECTION

MOBIN AHMAD1,*, SHADAB AHMAD KHAN2 , TOUKEER KHAN2

1Department of Mathematics, Faculty of Science, Jazan University, Jazan-2069, Saudi Arabia 2Department of Mathematics, Integral University, Kursi Road, Lucknow-226026, India

Copyright Β© 2016 M. Ahmad, S. Khan and T. Khan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. CR-submanifolds of nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection are studied. We obtain πœ‰ βˆ’horizontal and πœ‰ βˆ’vertical CR- submanifolds of a nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection. Parallel distributions on CR-submanifolds of nearly hyperbolic Sasakian manifold with semi-symmetric metric connection are calculated.

Keywords: CR-submanifolds; nearly hyperbolic Sasakian manifold; semi-symmetric metric connection; parallel distribution.

2010 AMS Subject Classification: 53D05, 53D25, 53D12.

1. Introduction

Let βˆ‡ be a linear connection in an n-dimensional differential manifold 𝑀̅. The connection βˆ‡ is metric connection if there is a Riemannian metric 𝑔 in 𝑀̅ such that βˆ‡π‘” = 0, otherwise it is non-metric. Friedmann and Schouten [11] introduced the concept of semi-symmetric linear connection. A linear connection βˆ‡ is said to be semi-symmetric connection if its torsion tensor 𝑇

is of the form [13]

𝑇(𝑋, π‘Œ) = πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)π‘Œ,

where πœ‚ is 1-form. Some properties of semi-symmetric metric connection are studies in [2], [4], [13], [18].

J. Math. Comput. Sci. 6 (2016), No. 3, 473-485

(2)

A. Bejancu introduced the concept of CR-submanifolds of Kaehler manifold as a generalization of invariant and anti-invariant submanifolds [5]. Since then, several papers on Kaehler manifolds were published. CR-submanifolds of Sasakian manifold was studied by C.J. Hsu in [14] and M. Kobayashi in [17]. Yano and Kon [22] studied contact CR-submanifolds. Later, several geometers (see, [3], [4], [6], [20]) enriched the study of CR-submanifolds of almost contact manifolds. The almost hyperbolic (𝑓, πœ‰, πœ‚, 𝑔)-structure was defined and studied by Upadhyay and Dube [21]. CR-submanifolds of trans-hyperbolic Sasakian manifold studied by Bhatt and Dube [8]. On the other hand, S. Golab [12] introduced the idea of semi-symmetric and quarter symmetric connections. The first author and S.K. Lovejoy Das [10] studied CR-submanifolds of LP-Sasakian manifold with semi-symmetric non-metric connection. CR-submanifolds of a nearly hyperbolic Sasakian manifold admitting a semi-symmetric semi-metric connection were studied by M.D. Siddiqi and S. Rizvi [3]. Motivated by studies [1, 2, 3, 9, 16, 18], in this paper we study some properties of CR-submanifolds of a nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection.

The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic Sasakian manifold with a semi-symmetric metric connection. In section 3, some properties of CR-submanifolds of nearly hyperbolic Sasakian manifold are investigated. In section 4, some results on parallel distribution on πœ‰ βˆ’horizontal and πœ‰ βˆ’vertical CR- submanifolds of a nearly Sasakian manifold with a semi-symmetric metric connection are obtained.

2. Preliminaries

Let 𝑀̅ be an 𝑛-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric structure(βˆ…, πœ‰, πœ‚, 𝑔), where a tensor βˆ… of type(1,1), a vector field πœ‰

called structure vector field, πœ‚ the dual 1-form of πœ‰ and 𝑔 is Riemannian metric satisfying the followings:

βˆ…2𝑋 = 𝑋 + πœ‚(𝑋)πœ‰, 𝑔(𝑋, πœ‰) = πœ‚(𝑋), (2.1)

πœ‚(πœ‰) = βˆ’1, βˆ…(πœ‰) = 0, πœ‚π‘œβˆ… = 0, (2.2)

𝑔(βˆ…π‘‹, βˆ…π‘Œ) = βˆ’π‘”(𝑋, π‘Œ) βˆ’ πœ‚(𝑋)πœ‚(π‘Œ) (2.3)

for any 𝑋, π‘Œ tangent to 𝑀̅ [7]. In this case

(3)

An almost hyperbolic contact metric structure (βˆ…, πœ‰, πœ‚, 𝑔) on 𝑀̅ is called hyperbolic Sasakian manifold if and only if

(βˆ‡π‘‹βˆ…)π‘Œ = 𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(π‘Œ)𝑋, (2.5)

βˆ‡π‘‹πœ‰ = βˆ…π‘‹ (2.6)

for all tangent vectors 𝑋, π‘Œ and a Riemannian metric g and Riemannian connection βˆ‡ on manifold 𝑀̅. Further, as a consequence of (2.5), an almost hyperbolic contact metric manifold 𝑀̅ with (βˆ…, πœ‰, πœ‚, 𝑔) βˆ’ structure is called a nearly hyperbolic Sasakian manifold if

(βˆ‡π‘‹βˆ…)π‘Œ + (βˆ‡π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋. (2.7)

Now, Let 𝑀 be a submanifold immersed in 𝑀̅, the Riemannian metric 𝑔 induced on 𝑀. Let 𝑇𝑀 and π‘‡οžπ‘€ be the Lie algebra of vector fields tangential to 𝑀 and normal to 𝑀

respectively and βˆ‡βˆ— be the induced Levi-Civita connection on 𝑀, then the Gauss and Weingarten

formulae are given respectively by

βˆ‡π‘‹π‘Œ = βˆ‡βˆ—π‘‹π‘Œ + β„Ž(𝑋, π‘Œ), (2.8)

βˆ‡π‘‹π‘ = βˆ’π΄π‘π‘‹ + βˆ‡π‘‹βŠ₯𝑁 (2.9)

for any 𝑋, π‘Œ ∈ 𝑇𝑀 and 𝑁 ∈ π‘‡οžπ‘€, where βˆ‡οž is a connection on the normal bundle π‘‡οžπ‘€, β„Ž is the second fundamental form and 𝐴𝑁 is the Weingarten map associated with 𝑁 as

𝑔(β„Ž(𝑋, π‘Œ), 𝑁) = 𝑔(𝐴𝑁𝑋, π‘Œ). (2.10)

Any vector 𝑋 tangent to 𝑀 is given as

𝑋 = 𝑃𝑋 + 𝑄𝑋, (2.11)

where 𝑃𝑋 ∈ 𝐷 and 𝑄𝑋 ∈ 𝐷βŠ₯.

For any 𝑁 normal to 𝑀, we have

βˆ…π‘ = 𝐡𝑁 + 𝐢𝑁, (2.12) where 𝐡𝑁 (resp. 𝐢𝑁) is the tangential component (resp. normal component) of βˆ…π‘.

Now, we define a semi-symmetric metric connection

βˆ‡

Μ…π‘‹π‘Œ = βˆ‡π‘‹π‘Œ + πœ‚(π‘Œ)𝑋 βˆ’ 𝑔(𝑋, π‘Œ)πœ‰ (2.13)

such that (βˆ‡Μ…π‘‹π‘”)(π‘Œ, 𝑍) = 0.

From (2.13) and (2.7), we have

(βˆ‡Μ…π‘‹βˆ…)π‘Œ + βˆ…(βˆ‡Μ…π‘‹π‘Œ) = (βˆ‡π‘‹βˆ…)π‘Œ + βˆ…(βˆ‡π‘‹π‘Œ) βˆ’ 𝑔(𝑋, βˆ…π‘Œ)πœ‰.

Interchanging 𝑋 and π‘Œ, we have

(4)

Adding above two equations, we get

(βˆ‡Μ…π‘‹βˆ…)π‘Œ + (βˆ‡Μ…π‘Œβˆ…)𝑋 + βˆ…(βˆ‡Μ…π‘‹π‘Œ βˆ’ βˆ‡π‘‹π‘Œ) + βˆ…(βˆ‡Μ…π‘Œπ‘‹ βˆ’ βˆ‡π‘Œπ‘‹) = (βˆ‡π‘‹βˆ…)π‘Œ + (βˆ‡π‘Œβˆ…)𝑋

βˆ’π‘”(𝑋, βˆ…π‘Œ)πœ‰ βˆ’ 𝑔(π‘Œ, βˆ…π‘‹)πœ‰.

Using equation (2.2), (2.4), (2.7) and (2.13) in above equation, we have (βˆ‡Μ…π‘‹βˆ…)π‘Œ + (βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ

βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹. (2.14) From (2.6) and (2.13), we have

βˆ‡

Μ…π‘‹πœ‰ = βˆ…π‘‹ βˆ’ 𝑋 βˆ’ πœ‚(𝑋). (2.15)

An almost hyperbolic contact metric manifold with almost hyperbolic contact structure

(βˆ…, πœ‰, πœ‚, 𝑔) is called nearly hyperbolic Sasakian manifold with semi-symmetric metric connection

if it satisfies (2.14) and (2.15).

In view of (2.8) and (2.9) and (2.13), Gauss and Weingarten formulae for a nearly hyperbolic Sasakian manifold with semi-symmetric metric connection are given by

βˆ‡

Μ…π‘‹π‘Œ = βˆ‡π‘‹π‘Œ + β„Ž(𝑋, π‘Œ), (2.16)

βˆ‡

̅𝑋𝑁 = βˆ’π΄π‘π‘‹ + βˆ‡π‘‹βŠ₯𝑁. (2.17)

Definition 2.1. An m-dimensional submanifold 𝑀 of an n-dimensional nearly hyperbolic

Sasakian manifold 𝑀̅ is called a CR-submanifold [3] if there exists a differentiable distribution

𝐷: π‘₯ β†’ 𝐷π‘₯ on 𝑀 satisfying the following conditions:

(i) the distribution 𝐷 is invariant under βˆ…, that is βˆ…π·π‘₯βŠ‚ 𝐷π‘₯ for each π‘₯ ∈ 𝑀,

(ii) the complementary orthogonal distribution 𝐷 of 𝐷 is anti-invariant under βˆ…, that is

βˆ…π·οžπ‘₯ βŠ‚ π‘‡οžπ‘€ for all π‘₯ ∈ 𝑀.

If dim 𝐷π‘₯βŠ₯ = 0 (π‘Ÿπ‘’π‘ π‘. , dim 𝐷

π‘₯ = 0), then the CR-submanifold is called an invariant (resp.,

anti-invariant) submanifold. The distribution 𝐷 (π‘Ÿπ‘’π‘ π‘. , 𝐷βŠ₯) is called the horizontal (resp., vertical)

distribution. Also, the pair (𝐷, 𝐷βŠ₯) is called πœ‰ βˆ’ horizontal (resp. , vertical), 𝑖𝑓 πœ‰π‘‹ ∈ 𝐷𝑋 (resp. , πœ‰π‘‹ ∈ 𝐷𝑋βŠ₯).

3. Some Basic Results

Lemma 3.1. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold 𝑀̅ with a semi

symmetric metric connection. Then

(5)

+βˆ…π‘ƒ(βˆ‡π‘Œπ‘‹) = π‘ƒβˆ‡π‘‹(βˆ…π‘ƒπ‘Œ) + π‘ƒβˆ‡π‘Œ(βˆ…π‘ƒπ‘‹) βˆ’ π‘ƒπ΄βˆ…π‘„π‘Œπ‘‹ βˆ’ π‘ƒπ΄βˆ…π‘„π‘‹π‘Œ, (3.1)

2𝑔(𝑋, π‘Œ)π‘„πœ‰ βˆ’ πœ‚(𝑋)π‘„π‘Œ βˆ’ πœ‚(π‘Œ)𝑄𝑋 + 2π΅β„Ž(𝑋, π‘Œ) = π‘„βˆ‡π‘‹(βˆ…π‘ƒπ‘Œ) + π‘„βˆ‡π‘Œ(βˆ…π‘ƒπ‘‹)

βˆ’π‘„π΄βˆ…π‘„π‘Œπ‘‹ βˆ’ π‘„π΄βˆ…π‘„π‘‹π‘Œ, (3.2)

βˆ’πœ‚(𝑋)βˆ…π‘„π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘„π‘‹ + βˆ…π‘„(βˆ‡π‘‹π‘Œ) + βˆ…π‘„(βˆ‡π‘Œπ‘‹) + 2πΆβ„Ž(𝑋, π‘Œ) = β„Ž(𝑋, βˆ…π‘ƒπ‘Œ)

+β„Ž(π‘Œ, βˆ…π‘ƒπ‘‹) + βˆ‡π‘‹βŠ₯(βˆ…π‘„π‘Œ) + βˆ‡ π‘Œ

βŠ₯(βˆ…π‘„π‘‹) (3.3)

for all 𝑋, π‘Œ ∈ 𝑇𝑀.

Proof. From (2.11), we have

βˆ…π‘Œ = βˆ…π‘ƒπ‘Œ + βˆ…π‘„π‘Œ.

Differentiating covariantly and using equation (2.16) and (2.17), we have (βˆ‡Μ…π‘‹βˆ…)π‘Œ + βˆ…(βˆ‡π‘‹π‘Œ) + βˆ…β„Ž(𝑋, π‘Œ)

= βˆ‡π‘‹(βˆ…π‘ƒπ‘Œ) + β„Ž(𝑋, βˆ…π‘ƒπ‘Œ) βˆ’ π΄βˆ…π‘„π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯(βˆ…π‘„π‘Œ).

Interchanging 𝑋 and π‘Œ in above equation, we have (βˆ‡Μ…π‘Œβˆ…)𝑋 + βˆ…(βˆ‡π‘Œπ‘‹) + βˆ…β„Ž(π‘Œ, 𝑋)

= βˆ‡π‘Œ(βˆ…π‘ƒπ‘‹) + β„Ž(π‘Œ, βˆ…π‘ƒπ‘‹) βˆ’ π΄βˆ…π‘„π‘‹π‘Œ + βˆ‡π‘ŒβŠ₯(βˆ…π‘„π‘‹).

Adding above two equations, we obtain

(βˆ‡Μ…π‘‹βˆ…)π‘Œ + (βˆ‡Μ…π‘Œβˆ…)𝑋 + βˆ…(βˆ‡π‘‹π‘Œ) + βˆ…(βˆ‡π‘Œπ‘‹) + 2βˆ…β„Ž(π‘Œ, 𝑋)

= βˆ‡π‘‹(βˆ…π‘ƒπ‘Œ) + βˆ‡π‘Œ(βˆ…π‘ƒπ‘‹) + β„Ž(𝑋, βˆ…π‘ƒπ‘Œ) + β„Ž(π‘Œ, βˆ…π‘ƒπ‘‹)

βˆ’π΄βˆ…π‘„π‘Œπ‘‹ βˆ’ π΄βˆ…π‘„π‘‹π‘Œ + βˆ‡π‘‹βŠ₯(βˆ…π‘„π‘Œ) + βˆ‡π‘ŒβŠ₯(βˆ…π‘„π‘‹).

Adding (2.14) in above equation, we have

2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹ + βˆ…(βˆ‡π‘‹π‘Œ) + βˆ…(βˆ‡π‘Œπ‘‹)

+2βˆ…β„Ž(𝑋, π‘Œ) = βˆ‡π‘‹βˆ…π‘ƒπ‘Œ + βˆ‡π‘Œβˆ…π‘ƒπ‘‹ + β„Ž(𝑋, βˆ…π‘ƒπ‘Œ) + β„Ž(π‘Œ, βˆ…π‘ƒπ‘‹) βˆ’ π΄βˆ…π‘„π‘Œπ‘‹

βˆ’π΄βˆ…π‘„π‘‹π‘Œ + βˆ‡π‘‹βŠ₯βˆ…π‘„π‘Œ + βˆ‡π‘ŒβŠ₯βˆ…π‘„π‘‹.

Using equations (2.11) and (2.12) in above equation, we have

2𝑔(𝑋, π‘Œ)π‘ƒπœ‰ + 2𝑔(𝑋, π‘Œ)π‘„πœ‰ βˆ’ πœ‚(𝑋)π‘ƒπ‘Œ βˆ’ πœ‚(𝑋)π‘„π‘Œ βˆ’ πœ‚(π‘Œ)𝑃𝑋 βˆ’ πœ‚(π‘Œ)𝑄𝑋

βˆ’πœ‚(𝑋)βˆ…π‘ƒπ‘Œ βˆ’ πœ‚(𝑋)βˆ…π‘„π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘„π‘‹ + βˆ…π‘ƒβˆ‡π‘‹π‘Œ + βˆ…π‘„βˆ‡π‘‹π‘Œ + βˆ…π‘ƒβˆ‡π‘Œπ‘‹

+βˆ…π‘„βˆ‡π‘Œπ‘‹ + 2π΅β„Ž(𝑋, π‘Œ) + 2πΆβ„Ž(𝑋, π‘Œ) = π‘ƒβˆ‡π‘‹βˆ…π‘ƒπ‘Œ + π‘„βˆ‡π‘‹βˆ…π‘ƒπ‘Œ + π‘ƒβˆ‡π‘Œβˆ…π‘ƒπ‘‹

+π‘„βˆ‡π‘Œβˆ…π‘ƒπ‘‹ + β„Ž(𝑋, βˆ…π‘ƒπ‘Œ) + β„Ž(π‘Œ, βˆ…π‘ƒπ‘‹) βˆ’ π‘ƒπ΄βˆ…π‘„π‘Œπ‘‹ βˆ’ π‘„π΄βˆ…π‘„π‘Œπ‘‹ βˆ’ π‘ƒπ΄βˆ…π‘„π‘‹π‘Œ

βˆ’π‘„π΄βˆ…π‘„π‘‹π‘Œ + βˆ‡π‘‹βŠ₯βˆ…π‘„π‘Œ + βˆ‡π‘ŒβŠ₯βˆ…π‘„π‘‹. (3.4)

(6)

Lemma 3.2. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold 𝑀̅ with semi symmetric metric connection. Then

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹ +βˆ‡π‘‹βˆ…π‘Œ

βˆ’βˆ‡π‘Œβˆ…π‘‹ + β„Ž(𝑋, βˆ…π‘Œ) βˆ’ β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ βˆ…[𝑋, π‘Œ], (3.5)

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+βˆ‡π‘Œβˆ…π‘‹

βˆ’βˆ‡π‘‹βˆ…π‘Œ + β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ β„Ž(𝑋, βˆ…π‘Œ) + βˆ…[𝑋, π‘Œ] (3.6)

for all 𝑋, π‘Œ ∈ 𝐷.

Proof. From Gauss formula (2.16), we get

βˆ‡

Μ…π‘‹βˆ…π‘Œ βˆ’ βˆ‡Μ…π‘Œβˆ…π‘‹ = βˆ‡π‘‹βˆ…π‘Œ βˆ’ βˆ‡π‘Œβˆ…π‘‹ + β„Ž(𝑋, βˆ…π‘Œ) βˆ’ β„Ž(π‘Œ, βˆ…π‘‹). (3.7)

Also, by covariant differentiation, we have

βˆ‡

Μ…π‘‹βˆ…π‘Œ βˆ’ βˆ‡Μ…π‘Œβˆ…π‘‹ = (βˆ‡Μ…π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡Μ…π‘Œβˆ…)𝑋 + βˆ…[𝑋, π‘Œ]. (3.8)

From (3.7) and (3.8), we get

(βˆ‡Μ…π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡Μ…π‘Œβˆ…)𝑋 = βˆ‡π‘‹βˆ…π‘Œ βˆ’ βˆ‡π‘Œβˆ…π‘‹ + β„Ž(𝑋, βˆ…π‘Œ) βˆ’ β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ βˆ…[𝑋, π‘Œ]. (3.9)

Adding (3.9) and (2.14), we have

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+βˆ‡π‘‹βˆ…π‘Œ

βˆ’βˆ‡π‘Œβˆ…π‘‹ + β„Ž(𝑋, βˆ…π‘Œ) βˆ’ β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ βˆ…[𝑋, π‘Œ]

Subtracting (3.9) from (2.14), get

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+βˆ‡π‘Œβˆ…π‘‹

βˆ’βˆ‡π‘‹βˆ…π‘Œ + β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ β„Ž(𝑋, βˆ…π‘Œ) + βˆ…[𝑋, π‘Œ]

for all 𝑋, π‘Œ ∈ 𝐷.

Corollary 3.3. If 𝑀 be a πœ‰ βˆ’ vertical CR-submanifold of a nearly hyperbolic Sasakian manifold

𝑀̅ with semi-symmetric metric connection. Then

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ + βˆ‡π‘‹βˆ…π‘Œ βˆ’ βˆ‡π‘Œβˆ…π‘‹ + β„Ž(𝑋, βˆ…π‘Œ) βˆ’ β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ βˆ…[𝑋, π‘Œ]

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ + βˆ‡π‘Œβˆ…π‘‹ βˆ’ βˆ‡π‘‹βˆ…π‘Œ + β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ β„Ž(𝑋, βˆ…π‘Œ) + βˆ…[𝑋, π‘Œ] for all 𝑋, π‘Œ ∈ 𝐷.

Lemma 3.4. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold 𝑀̅ with semi symmetric metric connection. Then

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+π΄βˆ…π‘‹π‘Œ

βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡ π‘Œ

(7)

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+π΄βˆ…π‘Œπ‘‹

βˆ’π΄βˆ…π‘‹π‘Œ + βˆ‡π‘ŒβŠ₯βˆ…π‘‹ βˆ’ βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ…[𝑋, π‘Œ] (3.11)

for all 𝑋, π‘Œ ∈ 𝐷βŠ₯.

Proof. For 𝑋, π‘Œ ∈ 𝐷βŠ₯, from Weingarten formula (2.17), we have

βˆ‡Μ…π‘‹βˆ…π‘Œ βˆ’ βˆ‡Μ…π‘Œβˆ…π‘‹ = π΄βˆ…π‘‹π‘Œ βˆ’ π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡π‘ŒβŠ₯βˆ…π‘‹ (3.12)

Comparing equations (3.12) and (3.8), we have

(βˆ‡Μ…π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡Μ…π‘Œβˆ…)𝑋 + βˆ…[𝑋, π‘Œ] = π΄βˆ…π‘‹π‘Œ βˆ’ π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œβˆ’βˆ‡π‘ŒβŠ₯βˆ…π‘‹ (3.13)

(βˆ‡Μ…π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡Μ…π‘Œβˆ…)𝑋 = π΄βˆ…π‘‹π‘Œ βˆ’ π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡ π‘Œ

βŠ₯βˆ…π‘‹ βˆ’ βˆ…[𝑋, π‘Œ] (3.14)

Adding (3.14) and (2.14), we get

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+π΄βˆ…π‘‹π‘Œ

βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡π‘ŒβŠ₯βˆ…π‘‹ βˆ’ βˆ…[𝑋, π‘Œ]

Subtracting (3.14) from (2.14), we get

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+π΄βˆ…π‘Œπ‘‹

βˆ’π΄βˆ…π‘‹π‘Œ + βˆ‡π‘ŒβŠ₯βˆ…π‘‹ βˆ’ βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ…[𝑋, π‘Œ]

for all 𝑋, π‘Œ ∈ 𝐷βŠ₯.

Corollary 3.5. If 𝑀 be a πœ‰ βˆ’ horizontal CR-submanifold of a nearly hyperbolic Sasakian manifold 𝑀̅ with semi symmetric metric connection. Then

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰+π΄βˆ…π‘‹π‘Œ βˆ’ π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡π‘ŒβŠ₯βˆ…π‘‹ βˆ’ βˆ…[𝑋, π‘Œ],

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰+π΄βˆ…π‘Œπ‘‹ βˆ’ π΄βˆ…π‘‹π‘Œ + βˆ‡π‘ŒβŠ₯βˆ…π‘‹ βˆ’ βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ…[𝑋, π‘Œ]

for all 𝑋, π‘Œ ∈ 𝐷βŠ₯.

Lemma 3.6. If 𝑀 be a CR-submanifold of a nearly hyperbolic Sasakian manifold 𝑀̅ with semi symmetric metric connection. Then

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹βˆ’π΄βˆ…π‘Œπ‘‹

+βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡π‘Œβˆ…π‘‹ βˆ’ β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ βˆ…[𝑋, π‘Œ], (3.15)

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+π΄βˆ…π‘Œπ‘Œ

βˆ’βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ‡π‘Œβˆ…π‘‹ + β„Ž(π‘Œ, βˆ…π‘‹) + βˆ…[𝑋, π‘Œ] (3.16)

for all 𝑋 ∈ 𝐷 and π‘Œ ∈ 𝐷βŠ₯.

(8)

βˆ‡Μ…π‘Œβˆ…π‘‹ = βˆ‡π‘Œβˆ…π‘‹ + β„Ž(π‘Œ, βˆ…π‘‹).

From Weingarten formula (2.17), we have βˆ‡Μ…π‘‹βˆ…π‘Œ = βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ.

Now, from above two equations, we get

βˆ‡

Μ…π‘‹βˆ…π‘Œ βˆ’ βˆ‡Μ…π‘Œβˆ…π‘‹ = βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡

π‘Œβˆ…π‘‹ βˆ’ β„Ž(π‘Œ, βˆ…π‘‹). (3.17)

Comparing equation (3.17) and (3.8), we have

(βˆ‡Μ…π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡Μ…π‘Œβˆ…)𝑋 + βˆ…[𝑋, π‘Œ] = βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡π‘Œβˆ…π‘‹ βˆ’ β„Ž(π‘Œ, βˆ…π‘‹)

βˆ’πœ‚(𝑋)π‘Œ.

(βˆ‡Μ…π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡Μ…π‘Œβˆ…)𝑋 = βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡π‘Œβˆ…π‘‹ βˆ’ β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ πœ‚(𝑋)π‘Œ

βˆ’βˆ…[𝑋, π‘Œ]. (3.18) Adding (3.18) and (2.14), we have

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹βˆ’π΄βˆ…π‘Œπ‘‹ +βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡π‘Œβˆ…π‘‹ βˆ’ β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ βˆ…[𝑋, π‘Œ].

Subtracting (3.18) from (2.14), we find

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+π΄βˆ…π‘Œπ‘‹

βˆ’βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ‡π‘Œβˆ…π‘‹ + β„Ž(π‘Œ, βˆ…π‘‹) + βˆ…[𝑋, π‘Œ] for all 𝑋 ∈ 𝐷 and π‘Œ ∈ 𝐷βŠ₯.

Corollary 3.7. If 𝑀 be a πœ‰ βˆ’ horizontal CR-submanifold of a nearly hyperbolic Sasakian manifold 𝑀̅ with semi symmetric metric connection. Then

2(βˆ‡Μ…π‘‹βˆ…)π‘Œ = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(𝑋)βˆ…π‘Œβˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹

βˆ’β„Ž(π‘Œ, βˆ…π‘‹) βˆ’ βˆ…[𝑋, π‘Œ],

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(𝑋)βˆ…π‘Œ+π΄βˆ…π‘Œπ‘‹ βˆ’ βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ‡π‘Œβˆ…π‘‹ +β„Ž(π‘Œ, βˆ…π‘‹) + βˆ…[𝑋, π‘Œ]

for all 𝑋 ∈ 𝐷 π‘Žπ‘›π‘‘ π‘Œ ∈ 𝐷βŠ₯.

Corollary 3.8. If 𝑀 be a πœ‰ βˆ’ vertical CR-submanifold of a nearly hyperbolic Sasakian manifold

𝑀̅ with semi symmetric metric connection. Then

(9)

2(βˆ‡Μ…π‘Œβˆ…)𝑋 = 2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(π‘Œ)βˆ…π‘‹+π΄βˆ…π‘Œπ‘‹ βˆ’ βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ‡π‘Œβˆ…π‘‹ +β„Ž(π‘Œ, βˆ…π‘‹) + βˆ…[𝑋, π‘Œ]

for all 𝑋 ∈ 𝐷 and π‘Œ ∈ 𝐷βŠ₯.

4. Parallel Distributions

Definition 4.1. The horizontal (resp., vertical) distribution 𝐷(resp. , 𝐷βŠ₯) is said to be parallel [7]

with respect to the connection βˆ‡ π‘œπ‘› 𝑀 if βˆ‡π‘‹π‘Œ ∈ 𝐷(resp. , βˆ‡π‘π‘Š ∈ 𝐷βŠ₯) for any vector field

𝑋, π‘Œ ∈ 𝐷 (resp. , π‘Š, 𝑍 ∈ 𝐷βŠ₯).

Theorem 4.2. Let 𝑀 be a πœ‰ βˆ’ vertical CR-submanifold of a nearly hyperbolic Sasakian

manifold 𝑀̅ with semi symmetric metric connection. Then

β„Ž(𝑋, βˆ…π‘Œ) = β„Ž(π‘Œ, βˆ…π‘‹) (4.1)

for any 𝑋, π‘Œ ∈ 𝐷.

Proof. Using parallelism of horizontal distribution D, we have

βˆ‡π‘‹βˆ…π‘Œ ∈ 𝐷 π‘Žπ‘›π‘‘ βˆ‡π‘Œβˆ…π‘‹ ∈ 𝐷, (4.2)

for all 𝑋, π‘Œ ∈ 𝐷. From (3.2), we have

2𝑔(𝑋, π‘Œ)π‘„πœ‰ βˆ’ πœ‚(𝑋)π‘„π‘Œ βˆ’ πœ‚(π‘Œ)𝑄𝑋 + 2π΅β„Ž(𝑋, π‘Œ) = π‘„βˆ‡π‘‹(βˆ…π‘ƒπ‘Œ)

+π‘„βˆ‡π‘Œ(βˆ…π‘ƒπ‘‹) βˆ’ π‘„π΄βˆ…π‘„π‘Œπ‘‹ βˆ’ π‘„π΄βˆ…π‘„π‘‹π‘Œ.

As Q is a projection operator on 𝐷βŠ₯, so we have

𝑔(𝑋, π‘Œ)πœ‰ + π΅β„Ž(𝑋, π‘Œ) = 0. (4.3) As we know from (2.12), we have

βˆ…β„Ž(𝑋, π‘Œ) = βˆ’π‘”(𝑋, π‘Œ)πœ‰ + πΆβ„Ž(𝑋, π‘Œ). (4.4) Now, from (3.3) we have

βˆ’πœ‚(𝑋)βˆ…π‘„π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘„π‘‹ + βˆ…π‘„(βˆ‡π‘‹π‘Œ) + βˆ…π‘„(βˆ‡π‘Œπ‘‹) + 2πΆβ„Ž(𝑋, π‘Œ)

= β„Ž(𝑋, βˆ…π‘ƒπ‘Œ) + β„Ž(π‘Œ, βˆ…π‘ƒπ‘‹) + βˆ‡π‘‹βŠ₯(βˆ…π‘„π‘Œ) + βˆ‡π‘ŒβŠ₯(βˆ…π‘„π‘‹).

As Q is a projection operator on 𝐷βŠ₯, we have

β„Ž(𝑋, βˆ…π‘Œ) + β„Ž(π‘Œ, βˆ…π‘‹) = 2πΆβ„Ž(𝑋, π‘Œ).

Using equation (4.4) in above, we have

β„Ž(𝑋, βˆ…π‘Œ) + β„Ž(π‘Œ, βˆ…π‘‹) = 2βˆ…β„Ž(𝑋, π‘Œ) + 2𝑔(𝑋, π‘Œ)πœ‰. (4.5) Replacing π‘Œ 𝑏𝑦 βˆ…π‘Œ in (4.5), we have

(10)

Using (2.1), we have

β„Ž(𝑋, π‘Œ) + β„Ž(βˆ…π‘Œ, βˆ…π‘‹) = 2βˆ…β„Ž(𝑋, βˆ…π‘Œ) + 2𝑔(𝑋, βˆ…π‘Œ)πœ‰. (4.6) Similarly, replacing 𝑋 𝑏𝑦 βˆ…π‘‹ in (4.5) and using (2.1), we have

β„Ž(βˆ…π‘‹, βˆ…π‘Œ) + β„Ž(π‘Œ, 𝑋) = 2βˆ…β„Ž(βˆ…π‘‹, π‘Œ) + 2𝑔(βˆ…π‘‹, π‘Œ)πœ‰. (4.7) Comparing (4.6) and (4.7), we have

2βˆ…β„Ž(𝑋, βˆ…π‘Œ) + 2𝑔(𝑋, βˆ…π‘Œ)πœ‰ = 2βˆ…β„Ž(βˆ…π‘‹, π‘Œ) + 2𝑔(βˆ…π‘‹, π‘Œ)πœ‰.

Appling βˆ… both side, we have

βˆ…2β„Ž(𝑋, βˆ…π‘Œ) + 𝑔(𝑋, βˆ…π‘Œ)βˆ…πœ‰ = βˆ…2β„Ž(βˆ…π‘‹, π‘Œ) + 𝑔(βˆ…π‘‹, π‘Œ)βˆ…πœ‰.

Using equation (2.2) in above, we have β„Ž(𝑋, βˆ…π‘Œ) = β„Ž(βˆ…π‘‹, π‘Œ)

for all 𝑋, π‘Œ ∈ 𝐷.

Theorem 4.3. Let 𝑀 be a πœ‰ βˆ’ π‘£π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ CR-submanifold of a nearly hyperbolic Sasakian

manifold 𝑀̅ with semi symmetric metric connection. If the distribution 𝐷βŠ₯ is parallel with

respect to the connection on 𝑀, then

π΄βˆ…π‘‹π‘Œ + π΄βˆ…π‘Œπ‘‹ ∈ 𝐷βŠ₯ (4.8)

for all 𝑋, π‘Œ ∈ 𝐷βŠ₯.

Proof. Let 𝑋, π‘Œ ∈ 𝐷βŠ₯, then from Weingarten formula (2.17), we have

(βˆ‡Μ…π‘‹βˆ…)π‘Œ = βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ…(βˆ‡Μ…π‘‹π‘Œ).

Using Gauss equation (2.16) in above, we have

(βˆ‡Μ…π‘‹βˆ…)π‘Œ = βˆ’π΄βˆ…π‘Œπ‘‹ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ βˆ’ βˆ…(βˆ‡

π‘‹π‘Œ) βˆ’ βˆ…β„Ž(𝑋, π‘Œ). (4.9)

Interchanging 𝑋 and π‘Œ, we have

(βˆ‡Μ…π‘Œβˆ…)𝑋 = βˆ’π΄βˆ…π‘‹π‘Œ + βˆ‡π‘ŒβŠ₯βˆ…π‘‹ βˆ’ βˆ…(βˆ‡π‘Œπ‘‹) βˆ’ βˆ…β„Ž(π‘Œ, 𝑋). (4.10) Adding (4.9) and (4.10), we get

(βˆ‡Μ…π‘‹βˆ…)π‘Œ + (βˆ‡Μ…π‘Œβˆ…)𝑋 = βˆ’π΄βˆ…π‘Œπ‘‹ βˆ’ π΄βˆ…π‘‹π‘Œ + βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ‡π‘ŒβŠ₯βˆ…π‘‹ βˆ’ βˆ…(βˆ‡π‘‹π‘Œ)

βˆ’βˆ…(βˆ‡π‘Œπ‘‹) βˆ’ 2βˆ…β„Ž(𝑋, π‘Œ). (4.11) Using (2.14) in (4.11), we have

2𝑔(𝑋, π‘Œ)πœ‰ βˆ’ πœ‚(𝑋)π‘Œ βˆ’ πœ‚(π‘Œ)𝑋 βˆ’ πœ‚(𝑋)βˆ…π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘‹ = βˆ’π΄βˆ…π‘Œπ‘‹ βˆ’ π΄βˆ…π‘‹π‘Œ

+βˆ‡π‘‹βŠ₯βˆ…π‘Œ + βˆ‡ π‘Œ

βŠ₯βˆ…π‘‹ βˆ’ βˆ…(βˆ‡

π‘‹π‘Œ) βˆ’ βˆ…(βˆ‡π‘Œπ‘‹) βˆ’ 2βˆ…β„Ž(𝑋, π‘Œ). (4.12)

(11)

2𝑔(𝑋, π‘Œ)𝑔(πœ‰, 𝑍) βˆ’ πœ‚(𝑋)𝑔(π‘Œ, 𝑍) βˆ’ πœ‚(π‘Œ)𝑔(𝑋, 𝑍) βˆ’ πœ‚(𝑋)𝑔(βˆ…π‘Œ, 𝑍)

βˆ’πœ‚(π‘Œ)𝑔(βˆ…π‘‹, 𝑍) = βˆ’π‘”(π΄βˆ…π‘Œπ‘‹, 𝑍) βˆ’ 𝑔(π΄βˆ…π‘‹π‘Œ, 𝑍) + 𝑔(βˆ‡π‘‹βŠ₯βˆ…π‘Œ, 𝑍)

+𝑔(βˆ‡π‘ŒβŠ₯βˆ…π‘‹, 𝑍) βˆ’ 𝑔(βˆ…(βˆ‡π‘‹π‘Œ), 𝑍 βˆ’ 𝑔(βˆ…(βˆ‡π‘Œπ‘‹), 𝑍) βˆ’ 2𝑔(βˆ…β„Ž(𝑋, π‘Œ), 𝑍).

If 𝐷βŠ₯ is parallel then βˆ‡

π‘‹π‘Œ ∈ 𝐷βŠ₯ and βˆ‡π‘Œπ‘‹ ∈ 𝐷βŠ₯, so that from above equation,

0 = βˆ’π‘”(π΄βˆ…π‘Œπ‘‹, 𝑍) βˆ’ 𝑔(π΄βˆ…π‘‹π‘Œ, 𝑍).

𝑔(π΄βˆ…π‘Œπ‘‹ + π΄βˆ…π‘‹π‘Œ, 𝑍) = 0. (4.13)

Consequently, we have

π΄βˆ…π‘Œπ‘‹ + π΄βˆ…π‘‹π‘Œ ∈ 𝐷βŠ₯ (4.14)

for all 𝑋, π‘Œ ∈ 𝐷βŠ₯.

Definition 4.4. A CR-submanifold is said to be mixed-totally geodesic if β„Ž(𝑋, π‘Œ) = 0, for all 𝑋 ∈ 𝐷 and π‘Œ ∈ 𝐷βŠ₯.

Definition 4.5. A normal vector field 𝑁 β‰  0 is called 𝐷 βˆ’ parallel normal section if βˆ‡π‘‹βŠ₯𝑁 =

0 for all 𝑋 ∈ 𝐷.

Theorem 4.6. Let 𝑀 be a mixed totally geodesic πœ‰ βˆ’ vertical CR-submanifold of a nearly hyperbolic Sasakian manifold 𝑀̅ with semi symmetric metric connection. Then the normal section 𝑁 ∈ βˆ…π·βŠ₯ is 𝐷 βˆ’ parallel if and only if βˆ‡π‘‹βˆ…π‘ ∈ 𝐷 for all 𝑋 ∈ 𝐷.

Proof. Let 𝑁 ∈ βˆ…π·βŠ₯, for all 𝑋 ∈ 𝐷 and π‘Œ ∈ 𝐷βŠ₯ then from (3.2), we have

2𝑔(𝑋, π‘Œ)π‘„πœ‰ βˆ’ πœ‚(𝑋)π‘„π‘Œ βˆ’ πœ‚(π‘Œ)𝑄𝑋 + 2π΅β„Ž(𝑋, π‘Œ) = π‘„βˆ‡π‘‹(βˆ…π‘ƒπ‘Œ) + π‘„βˆ‡π‘Œ(βˆ…π‘ƒπ‘‹) βˆ’ π‘„π΄βˆ…π‘„π‘Œπ‘‹ βˆ’

π‘„π΄βˆ…π‘„π‘‹π‘Œ

As 𝑀 is a πœ‰ βˆ’ vertical CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑀̅ with semi symmetric metric connection, so we have from above equation

2π΅β„Ž(𝑋, π‘Œ) = π‘„βˆ‡π‘Œ(βˆ…π‘‹) βˆ’ π‘„π΄βˆ…π‘Œπ‘‹. (4.15)

Using definition of mixed geodesic CR-submanifold, we have π‘„βˆ‡π‘Œ(βˆ…π‘‹) βˆ’ π‘„π΄βˆ…π‘Œπ‘‹ = 0.

π‘„βˆ‡π‘Œβˆ…π‘‹ = π‘„π΄βˆ…π‘Œπ‘‹. (4.16)

From (3.3), we have

βˆ’πœ‚(𝑋)βˆ…π‘„π‘Œ βˆ’ πœ‚(π‘Œ)βˆ…π‘„π‘‹ + βˆ…π‘„(βˆ‡π‘‹π‘Œ) + βˆ…π‘„(βˆ‡π‘Œπ‘‹) + 2πΆβ„Ž(𝑋, π‘Œ)

(12)

Using (4.16) in (4.17), we have

βˆ…π‘„βˆ‡π‘‹(βˆ…π‘) = βˆ‡π‘‹βŠ₯𝑁. (4.18)

Then by definition of parallelism of 𝑁, we have

βˆ…π‘„βˆ‡π‘‹(βˆ…π‘) = 0.

Consequently, we have

βˆ‡π‘‹(βˆ…π‘) ∈ 𝐷 (4.19) for all 𝑋 ∈ 𝐷.

Converse part is a easy consequence of (4.19).

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCE

[1] Ahmad, M., Jun, J.B., Submanifolds of an almost r-paracontact Riemannian manifold endowed with a semi-symmetric metric connection, Honam Mathematical Journal, 32 (2010), 363-374.

[2] Ahmad, M., Rahman, S. and Siddiqi, M.D, Semi-invariant submanifolds of a nearly Sasakian manifolds endowed with a semi-symmetric metric connection, Bull. Allahabad Math. Soc., 25 (2010), 23-33.

[3] Ahmad, M., Siddiqi, M.D., and Rizvi, S., CR-submanifolds of a nearly hyperbolic Sasakian manifold admitting semi-symmetric semi-metric connection, International J. Math. Sci. and Engg. Appls., 6 (2012), 145-155. [4] Bejancu, A., Geometry of CR- submanifolds, D. Reidel Publ. Co. (1986).

[5] Bejancu, A., CR- submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc., 69 (1978), 135-142. [6] Bejancu, A. and Papaghuic, N., CR-submanifolds of Kenmotsu manifold, Rend. Mat.7 (1984), 607-622. [7] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509,

Springer-Verlag, Berlin, (1976).

[8] Bhatt, L. and Dube, K.K., CR-submanifolds of trans-hyperbolic Sasakian manifold, Acta Ciencia Indica 31 (2003), 91-96.

[9] Das, Lovejoy S. and Ahmad, M., Siddiqi, M.D., Haseeb, A, Semi-invariant submanifolds of trans-Sasakian manifolds with semi-symmetric semi-metric connection, Demonstratio Mathematica, 46 (2013), 345-359. [10] Das, SK Lovejoy, Ahmad, M, CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a

semi-symmetric non-metric connection, Algebras Group Geometry, 31 (2014), 313-326.

[11] FRIENDMANN, A. and SCHOUTEN, J.A., Uber die Geometric der halbsymmetrischen, Ubertragung Math. Z., Springer-Verlag, Berlin, Germany, (1924), 211-223.

(13)

[13] HAYDEN, H.A., Subspace of a space with torsion, Proc Landon Mathematical Soc. II Series, Landon, U.K., (1932), 27-50.

[14]HSU, C.J., On CR-submanifolds of Sasakian manifolds I, Math. Research Centre Reports, Symposium Summer, (1983), 117-140.

[15] IMAI, T., Notes on semi-symmetric metric connection, Tensor, Japan, (1972), 293-296.

[16] Jun, J.B., Ahmad, M., Haseeb, A, Some properties of CR-submanifolds of a nearly trans-Sasakian manifold with certain connection, JP J. of Geometry and Topology, 17 (2015), 1-15.

[17] KOBAYASHI, M., CR-submanifolds of a Sasakian manifold, Tensor (N.S.), Japan, (1981), 297-307.

[18] KHAN, T., KHAN, S.A. and AHAMD, M., β€˜On semi-invariant submanifolds of a nearly hyperbolic Kenmotsu manifold with semi-symmetric metric connection’, Int. Journal of Engineering Research and Application, 4 (2014), 61-69.

[19] MATSUMOTO, K., On CR-submanifolds of locally conformal Kaehler manifold, J. Korean Math. Soc., (1984), 49-61.

[20] OZGUR, C., AHAMD, M. and HASEEB, A., CR-submanifolds of LP-Sasakian manifolds with semi-symmetric metric connection, Hacettepe J. Math. And Stat. 39 (2010), 489-496.

[21] UPADHYAY, M.D. and DUBE K.K., Almost contact hyperbolic (𝑓, πœ‰, πœ‚, 𝑔)-structure, Acta. Math. Acad. Scient. Hung. Tomus, 28 (1976), 1-4.

References

Related documents

The framework, which is a revised model of TP patterns proposed by DaneΕ‘ (1974, as cited in McCabe, 1999), includes four types of thematic progression patterns:

In this paper, we will highlight our research in the following aspects: First, we expand the mechanism analysis between urbanization and industrial pollutant emissions and then

Analyzing preferences of each players using pure-mixed strategy, each player’s preferences equilibrium met at central government delays to take any action regarding the

The contemporary man has not been able to fully realize his potential because the old structures, which bound and limited the scope of his negative freedom, at the same time

Despite these challenges, this is the first study to report that death in critically-ill cancer patients is associated with weather conditions around the time of death; low

The Toronto meeting emphasized the need for new initiatives, along the lines of the OECD Privacy Guidelines, to promote the harmo- nization of principles upon which

For the class of n-variate, individual-degree-d polynomials computed by constant width ROABPs (known variable order), a poly ( n, d ) -size hitting set can be constructed, when

Using related analytical frameworks, this paper will argue that the viability of self-settled refugees to participate in the return effort was made possible by a combination