• No results found

Exercise Solutions

N/A
N/A
Protected

Academic year: 2021

Share "Exercise Solutions"

Copied!
146
0
0

Loading.... (view fulltext now)

Full text

(1)Fundamentals of Applied Electromagnetics 6e by Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli. Exercise Solutions. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(2) Chapters Chapter 1 Introduction: Waves and Phasors Chapter 2 Transmission Lines Chapter 3 Vector Analysis Chapter 4 Electrostatics Chapter 5 Magnetostatics Chapter 6 Maxwell’s Equations for Time-Varying Fields Chapter 7 Plane-Wave Propagation Chapter 8 Wave Reflection and Transmission Chapter 9 Radiation and Antennas Chapter 10 Satellite Communication Systems and Radar Sensors. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(3) Chapter 1 Exercise Solutions Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7 Exercise 1.8 Exercise 1.9 Exercise 1.10. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(4) Exercise 1.1 Consider the red wave shown in Fig. E1.1. What is the wave’s (a) amplitude, (b) wavelength, and (c) frequency, given that its phase velocity is 6 m/s?. Solution: (a) A = 6 V. (b) λ = 4 cm. (c) f =. up 6 = = 150 Hz. λ 4 × 10−2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(5) Exercise 1.2. The wave shown in red in Fig. E1.2 is given by υ = 5 cos 2πt/8. Of the following four equations:. (1) υ = 5 cos(2πt/8 − π/4), (2) υ = 5 cos(2πt/8 + π/4), (3) υ = −5 cos(2πt/8 − π/4), (4) υ = 5 sin 2πt/8, (a) which equation applies to the green wave? (b) which equation applies to the blue wave?. Solution: (a) The green wave has an amplitude of 5 V and a period T = 8 s. Its peak occurs earlier than that of the red wave; hence, its constant phase angle is positive relative to that of the red wave. A full cycle of 8 s corresponds to 2π in phase. The green wave crosses the time axis 1 s sooner than the red wave. Hence, its phase angle is φ0 =. 1 π × 2π = . 8 4. Consequently, υ = 5 cos(2πt/T + φ0 ) = 5 cos(2πt/7 + π/4), which is given by #2. (b) The blue wave’s period T = 8 s. Its phase angle is delayed relative to the red wave by 2 s. Hence, the phase angle is negative and given by 2 π φ0 = − × 2π = − , 8 2 and   2πt π υ = 5 cos − 8 2 = 5 sin 2πt/8, which is given by #4.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(6) Exercise 1.3. The electric field of a traveling electromagnetic wave is given by E(z,t) = 10 cos(π × 107t + πz/15 + π/6) (V/m).. Determine (a) the direction of wave propagation, (b) the wave frequency f , (c) its wavelength λ , and (d) its phase velocity up . Solution: (a) −z-direction because the signs of the coefficients of t and z are both positive. (b) From the given expression, ω = π × 107. (rad/s).. Hence, f=. ω π × 107 = = 5 × 106 Hz = 5 MHz. 2π 2π. (c) From the given expression, π 2π = . λ 15 Hence λ = 30 m. (d) up = f λ = 5 × 106 × 30 = 1.5 × 108 m/s.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(7) Exercise 1.4 Consider the red wave shown in Fig. E1.4. What is the wave’s (a) amplitude (at x = 0), (b) wavelength, and (c) attenuation constant?. Solution: The wave shown in the figure exhibits a sinusoidal variation in x and its amplitude decreases as a function of x. Hence, it can be described by the general expression   2πx −αx υ = Ae cos + φ0 . λ From the given coordinates of the first two peaks, we deduce that λ = 8.4 − 2.8 = 5.6 cm. At x = 0, υ = −5 V and it occurs exactly λ /2 before the first peak. Hence, the wave amplitude is 5 V, and from −5 = 5 cos(0 + φ0 ), it follows that φ0 = π. Consequently, υ = 5e. −αx. .  2πx cos +π . 5.6. In view of the relation cos x = − cos(x ± π), υ can be expressed as υ = −5e−αx cos. 2πx 5.6. (V).. We can describe the amplitude as 5 V for a wave with a constant phase angle of π, or as −5 V with a phase angle of zero. At x = 2.8 cm,   2π × 2.8 υ(x = 2.8) = 4.23 = −5e−2.8α cos 5.6 = 5e−2.8α .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(8) Hence, e−2.8α = and. 4.23 , 5.   1 4.23 α =− ln = 0.06 Np/cm. 2.8 5. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(9) Exercise 1.5 The red wave shown in Fig. E1.5 is given by υ = 5 cos 4πx (V). What expression is applicable to (a) the blue wave and (b) the green wave?. Solution: At x = 0, all three waves start at their peak value of 5 V. Also, λ = 0.5 m for all three waves. Hence, they share the general form 2πx λ = 5e−αx cos 4πx (V).. υ = Ae−αx cos. For the red wave, α = 0. For the blue wave, 3.52 = 5e−0.5α. α = 0.7 Np/m.. 1.01 = 5e−0.5α. α = 3.2 Np/m.. For the green wave,. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(10) Exercise 1.6 An electromagnetic wave is propagating in the z-direction in a lossy medium with attenuation constant α = 0.5 Np/m. If the wave’s electric-field amplitude is 100 V/m at z = 0, how far can the wave travel before its amplitude will have been reduced to (a) 10 V/m, (b) 1 V/m, (c) 1 µV/m? Solution: (a) 100e−αz = 10 100e−0.5z = 10 e−0.5z = 0.1 −0.5z = ln 0.1 = −2.3 z = 4.6 m. (b) 100e−0.5z = 1 ln 0.01 z= = 9.2 m. −0.5 (c) 100e−0.5z = 10−6 z=. ln 10−8 = 37 m. −0.5. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(11) Exercise 1.7. Express the following complex functions in polar form: z1 = (4 − j3)2 , z2 = (4 − j3)1/2 .. Solution: z1 = (4 − j3)2 h i2 −1 = (42 + 32 )1/2 ∠− tan 3/4 = [5∠−36.87◦ ]2 = 25∠−73.7◦ . z2 = (4 − j3)1/2 h i1/2 −1 = (42 + 32 )1/2 ∠− j tan 3/4 √ = [5∠−36.87◦ ]1/2 = ± 5∠−18.4◦ .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(12) Exercise 1.8. Show that. √ 2 j = ±(1 + j).. Solution: e jπ/2 = 0 + j sin(π/2) = j √ p 2 j = [2e jπ/2 ]1/2 = ± 2 e jπ/4 √ = ± 2(cos π/4 + j sin π/4)   √ 1 1 √ √ =± 2 +j 2 2 = ±(1 + j).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(13) Exercise 1.9 A series RL circuit is connected to a voltage source given by vs (t) = 150 cos ωt (V). Find (a) the phasor current I˜ and (b) the instantaneous current i(t) for R = 400 Ω, L = 3 mH, and ω = 105 rad/s. Solution: (a) From Example 1–4, I˜ =. Ves R + jωL. 150 400 + j105 × 3 × 10−3 150 = = 0.3∠−36.9◦ 400 + j300. =. (A).. (b) e jωt ] i(t) = Re[Ie ◦. 5. = Re[0.3e− j36.9 e j10 t ] = 0.3 cos(105t − 36.9◦ ) (A).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(14) Exercise 1.10. A phasor voltage is given by Ve = j5 V. Find v(t).. Solution: Ve = j5 = 5e jπ/2 v(t) = Re[Ve e jωt ] = Re[5e jπ/2 e jωt ]  π = −5 sin ω = 5 cos ωt + 2. (V).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(15) Chapter 2 Exercise Solutions Exercise 2.1 Exercise 2.2 Exercise 2.3 Exercise 2.4 Exercise 2.5 Exercise 2.6 Exercise 2.7 Exercise 2.8 Exercise 2.9 Exercise 2.10 Exercise 2.11 Exercise 2.12 Exercise 2.13 Exercise 2.14 Exercise 2.15 Exercise 2.16 Exercise 2.17. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(16) Exercise 2.1 Use Table 2-1 to compute the line parameters of a two-wire air line whose wires are separated by a distance of 2 cm, and each is 1 mm in radius. The wires may be treated as perfect conductors with σc = ∞. Solution: Two-wire air line: Because medium between wires is air, ε = ε0 , µ = µ0 and σ = 0. d = 2 cm, 1/2 π f µc =0 Rs = σc. a = 1 mm,. σc = ∞. . R0 = 0     s 2 µ0  d d L0 = ln − 1 + π 2a 2a     s 2   −7 20 4π × 10 20 = ln  + − 1 π 2 2 √ = 4 × 10−7 ln[10 + 99] = 1.2 (µH/m). G0 = 0 C0 =. because σ = 0.  ln. πε0  q d 2a +.  d 2 −1 2a. =. π × 8.85 × 10−12 √ = 9.29 ln[10 + 99]. (pF/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(17) Exercise 2.2 Calculate the transmission line parameters at 1 MHz for a rigid coaxial air line with an inner conductor diameter of 0.6 cm and an outer conductor diameter of 1.2 cm. The conductors are made of copper [see Appendix B for µc and σc of copper]. Solution: Coaxial air line: Because medium between wires is air, ε = ε0 , µ = µ0 and σ = 0. a = 0.3 cm, Rs =. b = 0.6 cm,. µc = µ0 ,. σc = 5.8 × 107 S/m. p π f µc /σc. = [π × 106 × 4π × 10−7 /(5.8 × 107 )]1/2 = 2.6 × 10−4 Ω. Rs R = 2π 0. . 1 1 + a b. . 2.6 × 10−4 = 2π. . 1 1 + −3 3 × 10 6 × 10−3.   µ0 b 4π × 10−7 L = ln = ln 2 = 0.14 2π a 2π 0. G0 = 0 C0 =. . = 2.08 × 10−2. (Ω/m). (µH/m). because σ = 0. 2πε 2π × 8.85 × 10−12 = = 80.3 ln(b/a) ln 2. (pF/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(18) Exercise 2.3. Verify that Eq. (2.26a) is indeed a solution of the wave equation given by Eq. (2.21).. Solution: Ve (z) = V0+ e−γz +V0− eγz d 2 Ve (z) ? − γ 2 Ve (z) = 0 2 dz d 2 + −γz ? (V0 e +V0− eγz ) − γ 2 (V0+ e−γz +V0− eγz ) = 0 2 dz γ 2V0+ e−γz + γ 2V0− eγz − γ 2V0+ e−γz − γ 2V0− eγz = 0.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(19) Exercise 2.4 A two-wire air line has the following line parameters: R0 = 0.404 (mΩ/m), L0 = 2.0 (µH/m), G0 = 0, and 0 C = 5.56 (pF/m). For operation at 5 kHz, determine (a) the attenuation constant α, (b) the phase constant β , (c) the phase velocity up , and (d) the characteristic impedance Z0 . Solution: Given: R0 = 0.404 (mΩ/m),. G0 = 0,. L0 = 2.0 (µH/m),. C0 = 5.56 (pF/m).. (a) n o α = Re [(R0 + jωL0 )(G0 + jωC0 )]1/2 n o = Re [(0.404 × 10−3 + j2π × 5 × 103 × 2 × 10−6 )(0 + j2π × 5 × 103 × 5.56 × 10−12 )]1/2 = Re[3.37 × 10−7 + j1.05 × 10−4 ] α = 3.37 × 10−7. (Np/m).. (b) From part (a), n o β = Im [(R0 + jωL0 )(G0 + jωC0 )]1/2 = 1.05 × 10−4. (rad/m).. (c) up =. ω 2π × 5 × 103 = = 3 × 108 β 1.05 × 10−4. (m/s).. (d) R0 + jωL0 α + jβ 0.404 × 10−3 + j5 × 103 × 2 × 10−6 = 3.37 × 10−7 + j1.05 × 10−4 = (600 − j2) Ω.. Z0 =. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(20) Exercise 2.5. For a lossless transmission line, λ = 20.7 cm at 1 GHz. Find εr of the insulating material.. Solution: λ0 λ=√ εr  2  2  2 λ0 c 3 × 108 εr = = = = 2.1. λ fλ 1 × 108 × 20.7 × 10−2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(21) Exercise 2.6 A lossless transmission line uses a dielectric insulating material with εr = 4. If its line capacitance is C 0 = 10 (pF/m), find (a) the phase velocity up , (b) the line inductance L0 , and (c) the characteristic impedance Z0 . Solution: (a) c 3 × 108 up = √ = √ = 1.5 × 108 m/s. εr 4 (b) 1 up = √ , L0C0 L0 =. u2p =. 1 . L0C0. 1 1 = = 4.45 u2pC0 (1.5 × 108 )2 × 10 × 10−12. (µH/m).. (c) r Z0 =. L0 = C0. . 4.45 × 10−6 10 × 10−12. 1/2 = 667.1 Ω.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(22) Exercise 2.7 A 50-Ω lossless transmission line is terminated in a load impedance ZL = (30 − j200) Ω. Calculate the voltage reflection coefficient at the load. Solution: ZL − Z0 ZL + Z0 30 − j200 − 50 −20 − j200 = = = 0.93∠−27.5◦ . (30 − j200) + 50 80 − j200. Γ=. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(23) Exercise 2.8. A 150-Ω lossless line is terminated in a capacitor whose impedance is ZL = − j30 Ω. Calculate Γ.. Solution: ZL − Z0 ZL + Z0 − j30 − 150 = = 1∠−157.4◦ . − j30 + 150. Γ=. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(24) Exercise 2.9 Use CD Module 2.4 to generate the voltage and current standing-wave patterns for a 50-Ω line of length 1.5λ , terminated in an inductance with ZL = j140 Ω. Solution: Standing-wave patterns generated with the help of DVD Module 2.4 are shown.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(25) Exercise 2.10 load.. If Γ = 0.5∠−60◦ and λ = 24 cm, find the locations of the voltage maximum and minimum nearest to the. Solution: Γ = 0.5∠−60◦ ,. λ = 24 cm. θr λ λ + (because θr is negative) 2 4π  (−π/3) × 24 24 = cm = [−2 + 12] cm = 10 cm. + 4π 2. lmax =. λ lmin = lmax − (because lmax > λ /4) 4   24 = 10 − cm = 4 cm. 4. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(26) Exercise 2.11 A 140-Ω lossless line is terminated in a load impedance ZL = (280 + j182) Ω. If λ = 72 cm, find (a) the reflection coefficient Γ, (b) the voltage standing-wave ratio S, (c) the locations of voltage maxima, and (d) the locations of voltage minima. Solution: Z0 = 140 Ω,. ZL = (280 + j182) Ω. (a) ZL − Z0 ZL + Z0 280 + j182 − 140 140 + j182 = = = 0.5∠29◦ . 280 + j182 + 140 420 + j182. Γ=. (b) S=. 1 + |Γ| 1 + 0.5 1.5 = = = 3. 1 − |Γ| 1 − 0.5 0.5. (c) θr λ nλ + , n = 0, 1, 2, . . . 4π 2 (29π/180) × 0.72 n × 0.72 = + 4π 2 = (2.9 + 36n) (cm), n = 0, 1, 2, . . .. lmax =. (d) λ lmin = lmax + 4   72 cm = (2.9 + 36n) + 4 = (20.9 + 36n) cm, n = 0, 1, 2, . . .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(27) Exercise 2.12 A 50-Ω lossless transmission line uses an insulating material with εr = 2.25. When terminated in an open circuit, how long should the line be for its input impedance to be equivalent to a 10-pF capacitor at 50 MHz? Solution: For a 10-pF capacitor at 50 MHz, 1 1000 −j = −j = Ω 6 −12 jωC 2π × 50 × 10 × 10 × 10 π √ √ 2π εr 2π f εr 2π = = β= λ λ0 c √ 2π × 5 × 107 2.25 = = 1.57 (rad/m). 3 × 108 Zc =. For lossless lines with open-circuit termination, Zin = − jZ0 cot β l = − j50 cot 1.57l Hence, −j. 1000 = − j50 cot 1.57l π. or l = 9.92. (cm).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(28) Exercise 2.13 A 300-Ω feedline is to be connected to a 3-m long, 150-Ω line terminated in a 150-Ω resistor. Both lines are lossless and use air as the insulating material, and the operating frequency is 50 MHz. Determine (a) the input impedance of the 3-m long line, (b) the voltage standing-wave ratio on the feedline, and (c) the characteristic impedance of a quarter-wave transformer were it to be used between the two lines in order to achieve S = 1 on the feedline. Solution: At 50 MHz, λ = λ0 =. c 3 × 108 = = 6 m. f 5 × 107. (a) l 3 = = 0.5. λ 6 Hence, Zin = ZL = 150 Ω. (Zin = ZL if Z = nλ /2.) (b) Zin − Z0 150 − 300 −150 1 = = =− . Zin + Z0 150 + 300 450 3 4/3 1 + |Γ| 1 + 31 = = = 2. S= 1 1 − |Γ| 1 − 3 2/3. Γ=. (c) 2 Z02 = Z1 Z3 = 300 × 150 = 45, 000. Z02 = 212.1 Ω. where Z1 is the feedline and Z3 is Zin of part (a).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(29) Exercise 2.14 For a 50-Ω lossless transmission line terminated in a load impedance ZL = (100 + j50) Ω, determine the fraction of the average incident power reflected by the load. Solution: ZL − Z0 ZL + Z0 100 + j50 − 50 50 + j50 = = = 0.45∠26.6◦ . 100 + j50 + 50 150 + j50. Γ=. Fraction of reflected power = |Γ|2 = (0.45)2 = 20%.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(30) Exercise 2.15. For the line of Exercise 2.14, what is the magnitude of the average reflected power if |V0+ | = 1 V?. Solution: r Pav = |Γ|2. |V0+ |2 0.2 × 1 = =2 2Z0 2 × 50. (mW).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(31) Exercise 2.16 Use the Smith chart to find the values of Γ corresponding to the following normalized load impedances: (a) zL = 2 + j0, (b) zL = 1 − j1, (c) zL = 0.5 − j2, (d) zL = − j3, (e) zL = 0 (short circuit), (f) zL = ∞ (open circuit), (g) zL = 1 (matched load). Solution:. (a) Γ=. OA θ ∠ 1 = 0.33 OR. (b) Γ=. OB θ ∠ 2 = 0.45∠−63.4◦ OR. Γ=. OC θ ∠ 3 = 0.83∠−50.9◦ OR. (c). (d) Γ=. OD θ ∠ 4 = 1∠−36.9◦ OR. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(32) (e) Γ=. OE θ ∠ 5 = 1∠180◦ = −1 OR. (f) Γ=. OF θ ∠1=1 OR. (g) Γ=. OG =0 OR. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(33) Exercise 2.17 Use the Smith chart to find the normalized input impedance of a lossless line of length l terminated in a normalized load impedance zL for each of the following combinations: (a) l = 0.25λ , zL = 1 + j0, (b) l = 0.5λ , zL = 1 + j1, (c) l = 0.3λ , zL = 1 − j1, (d) l = 1.2λ , zL = 0.5 − j0.5, (e) l = 0.1λ , zL = 0 (short circuit), (f) l = 0.4λ , zL = j3, (g) l = 0.2λ , zL = ∞ (open circuit). Solution: (a). zin = 1 + j0. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(34) (b). zin = 1 + j1. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(35) (c). zin = 0.76 + j0.84. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(36) (d). zin = 0.59 + j0.66. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(37) (e). zin = 0 + j0.73. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(38) (f). zin = 0 + j0.72. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(39) (g). zin = 0 − j0.32. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(40) Chapter 3 Exercise Solutions Exercise 3.1 Exercise 3.2 Exercise 3.3 Exercise 3.4 Exercise 3.5 Exercise 3.6 Exercise 3.7 Exercise 3.8 Exercise 3.9 Exercise 3.10 Exercise 3.11 Exercise 3.12 Exercise 3.13 Exercise 3.14 Exercise 3.15 Exercise 3.16 Exercise 3.17 Exercise 3.18 Exercise 3.19. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(41) Exercise 3.1. Find the distance vector between P1 (1, 2, 3) and P2 (−1, −2, 3) in Cartesian coordinates.. Solution: −−→ P1 P2 = xˆ (x2 − x1 ) + yˆ (y2 − y1 ) + zˆ (z2 − z1 ) = xˆ (−1 − 1) + yˆ (−2 − 2) + zˆ (3 − 3) = −ˆx2 − yˆ 4.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(42) Exercise 3.2. Find the angle θ between vectors A and B of Example 3-1 using the cross product between them.. Solution: × B = nAB ˆ sin θAB A× × B| |A× AB × (−ˆx − yˆ 5 − zˆ )| |(ˆx2 + yˆ 3 + zˆ 3)× √ √ = 22 27 ˆ ˆ | − z10 + y2 + zˆ 3 − xˆ 3 − yˆ 3 + xˆ 15| √ √ = 22 27 √ xˆ 12 − yˆ − zˆ 7| 144 + 1 + 49 = √ √ = √ √ = 0.57 22 27 22 27. sin θAB =. θAB = sin−1 (0.57) = 34.9◦ or 145.1◦ .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(43) Exercise 3.3. Find the angle that vector B of Example 3-1 makes with the z-axis.. Solution: B · zˆ = B cos θ √ (−ˆx − yˆ 5 − zˆ ) · zˆ = 27 cos θ −1 cos θ = √ 27 θ = 101.1◦ .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(44) Exercise 3.4 Vectors A and B lie in the y-z plane and both have the same magnitude of 2 (Fig. E3.4). Determine (a) A · B × B. and (b) A×. Solution: (a) A · B = AB cos(90◦ + 30◦ ) = 2 × 2 × cos 120◦ = −2. (b) A = yˆ 2 B = −ˆy 2 cos 60◦ + zˆ 2 cos 30◦ = −ˆy 1 + zˆ 1.73 × B = yˆ 2× × (−ˆy 1 + zˆ 1.73) A× = xˆ 3.46.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(45) Exercise 3.5. If A · B = A · C, does it follow that B = C?. Solution: The answer is No, which can be demonstrated through the following example. Let A = xˆ 1, B = xˆ 2 + yˆ 1, C = xˆ 2 + yˆ 2. A · B = 2, A · C = 2, but B 6= C.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(46) Exercise 3.6 A circular cylinder of radius r = 5 cm is concentric with the z-axis and extends between z = −3 cm and z = 3 cm. Use Eq. (3.44) to find the cylinder’s volume. Solution: d V = r dr dφ dz Z 5 cm Z 2π Z 3 cm V. = = =. r dr dφ dz r=0 φ =0 z=−3 cm

(47) 5 cm 2 r

(48)

(49) 3 cm × φ |2π 0 × z|−3 cm 2

(50) 0. 25 × 2π × 6 = 471.2 cm3 . 2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(51) Exercise 3.7. √ Point P = (2 3, π/3, −2) is given in cylindrical coordinates. Express P in spherical coordinates.. Solution: q √ p + + r2 + z2 = (2 3)2 + (−2)2 = 4 π φ= (unchanged) 3 √ !   π 2π −1 r −1 2 3 = −60◦ = − or θ = tan = tan . z −2 3 3 R=. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(52) Exercise 3.8. Transform vector A = xˆ (x + y) + yˆ (y − x) + zˆ z. from Cartesian to cylindrical coordinates. Solution: A = xˆ (x + y) + yˆ (y − x) + zˆ z = (ˆr cos φ − φˆ sin φ )(r cos φ + r sin φ ) + (ˆr sin φ + φˆ cos φ )(r sin φ − r cos φ ) + zˆ z = rˆ (cos2 φ + cos φ sin φ + sin2 φ − cos φ sin φ )r + φˆ (− sin φ cos φ − sin2 φ + sin φ cos φ − cos2 φ )r + zˆ z = rˆ r − φˆ r + zˆ z.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(53) Exercise 3.9. Given V = x2 y + xy2 + xz2 , (a) find the gradient of V , and (b) evaluate it at (1, −1, 2).. Solution: V = x2 y + xy2 + xz2 (a) ∂V ∂V ∂V + yˆ + zˆ ∂x ∂y ∂z 2 2 = xˆ (2xy + y + z ) + yˆ (x2 + 2xy) + zˆ 2xz.. ∇V = xˆ. (b) ∇V |(1,−1,2) = xˆ (−2 + 1 + 4) + yˆ (1 − 2) + zˆ 4 = xˆ 3 − yˆ + zˆ 4.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(54) Exercise 3.10. Find the directional derivative of V = rz2 cos 2φ along the direction A = rˆ 2 − zˆ and evaluate it at (1, π/2, 2).. Solution: V = rz2 cos 2φ ∂V ∂V ˆ 1 ∂V +φ + zˆ ∇V = rˆ ∂r r ∂φ ∂z 2r = rˆ z2 cos 2φ − φˆ z2 sin 2φ + zˆ 2rz cos 2φ r dV = ∇V · aˆ l dl A = ∇V · A rˆ 2 − zˆ = (ˆr z2 cos 2φ − φˆ 2z2 sin 2φ + zˆ 2rz cos 2φ ) · √ 5 2z2 cos 2φ − 2rz cos 2φ √ = 5

(55) 2 × 4 cos π − 2 × 2 cos π dV

(56)

(57) √ = dl

(58) (1,π/2,2) 5 √ = −4/ 5.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(59) Exercise 3.11 The power density radiated by a star [Fig. E3.11(a)] decreases radially as S(R) = S0 /R2 , where R is the radial distance from the star and S0 is a constant. Recalling that the gradient of a scalar function denotes the maximum rate of change of that function per unit distance and the direction of the gradient is along the direction of maximum increase, generate an arrow representation of ∇S.. Solution: S(R) =. S0 . R2 . ∂ 1 ∂ 1 ∂ + θˆ + φˆ ∂R R ∂θ R sin θ ∂ φ S0 = −Rˆ 2 3 . R. ∇S = Rˆ. . S0 R2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(60) Exercise 3.12 The graph in Fig. E3.12(a) depicts a gentle change in atmospheric temperature from T1 over the sea to T2 over land. The temperature profile is described by the function T (x) = T1 + (T2 − T1 )/(e−x + 1), where x is measured in kilometers and x = 0 is the sea-land boundary. (a) In which direction does ∇T point and (b) at what value of x is it a maximum?. Solution: T (x) = T1 +. T2 − T1 e−x + 1. ∂T ∂x  ∂ T2 − T1 = xˆ T1 + −x ∂x e +1 ∂ −x = xˆ (T2 − T1 ) (e + 1)−1 ∂x = xˆ (T2 − T1 )e−x (e−x + 1)−2. ∇T = xˆ. = xˆ. e−x (T2 − T1 ) . (e−x + 1)2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(61) Exercise 3.13. Given A = e−2y (ˆx sin 2x + yˆ cos 2x), find ∇ · A.. Solution: A = e−2y (ˆx sin 2x + yˆ cos 2x) ∂ Ax ∂ Ay ∂ Az + + ∇·A = ∂x ∂y ∂z ∂ −2y ∂ = (e sin 2x) + (e−2y cos 2x) ∂x ∂y −2y −2y = 2e cos 2x − 2e cos 2x = 0.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(62) Exercise 3.14. Given A = rˆ r cos φ + φˆ r sin φ + zˆ 3z, find ∇ · A at (2, 0, 3).. Solution: A = rˆ r cos φ + φˆ r sin φ + zˆ 3z 1 ∂ Aφ ∂ Az 1 ∂ (rAr ) + + ∇·A = r ∂r r ∂φ ∂z 1 ∂ 2 1 ∂ ∂ = (r cos φ ) + (r sin φ ) + (3z) r ∂r r ∂φ ∂z = 2 cos φ + cos φ + 3 ∇ · A|(2,0,3) = 2 + 1 + 3 = 6.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(63) Exercise 3.15 at the origin.. If E = Rˆ AR in spherical coordinates, calculate the flux of E through a spherical surface of radius a, centered. Solution: E = Rˆ AR Z. E · ds =. n. S. Z π Z 2π. ˆ AR · Rˆ R2 sin θ dθ dφ

(64) R R=a θ =0 φ =0

(65). h

(66) π i = −2πAR3 cos θ

(67) 0. R=a. = 4πAa3 .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(68) Exercise 3.16 Verify the divergence theorem by calculating the volume integral of the divergence of the field E of Exercise 3.11 over the volume bounded by the surface of radius a. Solution: Z. Divergence Theorem: From Exercise 3.11,. Z. V. ∇ · E dV =. Z. E · ds. n. S. E · ds = 4πAa3 .. n. S. For the left side of Divergence Theorem, with E = Rˆ AR, ∇·E = Z V. 1 ∂ 1 ∂ (R2 ER ) = 2 (AR3 ) = 3A R2 ∂ R R ∂R. ∇ · E dV =. Z a Z π Z 2π. 3A · R2 sin θ dR dθ dφ. 0. =. 0

(69) a 0 3 3AR

(70).

(71) × (− cos θ |π ) × π|2π 0 0 3

(72) 0. = 4πAa3 . Hence, Divergence Theorem is verified.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(73) Exercise 3.17 The arrow representation in Fig. E3.17 represents the vector field A = xˆ x − yˆ y. At a given point in space, A has a positive divergence ∇ · A if the net flux flowing outward through the surface of an imaginary infinitesimal volume centered at that point is positive, ∇ · A is negative if the net flux is into the volume, and ∇ · A = 0 if the same amount of flux enters into the volume as leaves it. Determine ∇ · A everywhere in the x–y plane.. Solution: A = xˆ x − yˆ y ∂ Ax ∂ Ay ∂ Az ∇·A = + + ∂x ∂y ∂z ∂x ∂y = − ∂x ∂y = 1 − 1 = 0.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(74) Exercise 3.18. × A at (2, 0, 3) in cylindrical coordinates for the vector field Find ∇× A = rˆ 10e−2r cos φ + zˆ 10 sin φ .. Solution: A = rˆ 10e−2r cos φ + zˆ 10 sin φ       1 ∂ Az ∂ Aφ ∂ Ar ∂ Az 1 ∂ ∂ Ar ∇ × A = rˆ − + φˆ − + zˆ rAφ − r ∂φ ∂z ∂z ∂r r ∂r ∂φ     ∂ ∂ 1 ∂ −2r ˆ (10 sin φ ) + φ (10e cos φ ) − (10 sin φ ) = rˆ r ∂φ ∂z ∂r 1 ∂ + zˆ (−10e−2r cos φ ) r ∂φ 10e−2r 10 cos φ + zˆ sin φ = rˆ r r ∇ × A|(2,0,3) = rˆ 5.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(75) Exercise 3.19. × A at (3, π/6, 0) in spherical coordinates for the vector field A = θˆ 12 sin θ . Find ∇×. Solution: A = θˆ 12 sin θ 1 ∂ (RAθ ) ∇ × A = φˆ R ∂R 1 ∂ = φˆ (12R sin θ ) R ∂R 12 sin θ = φˆ . R ∇ × A|(3,π/6,0) = φˆ 4 sin 30◦ = φˆ 2.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(76) Chapter 4 Exercise Solutions Exercise 4.1 Exercise 4.2 Exercise 4.3 Exercise 4.4 Exercise 4.5 Exercise 4.6 Exercise 4.7 Exercise 4.8 Exercise 4.9 Exercise 4.10 Exercise 4.11 Exercise 4.12 Exercise 4.13 Exercise 4.14 Exercise 4.15 Exercise 4.16 Exercise 4.17 Exercise 4.18 Exercise 4.19. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(77) Exercise 4.1 A square plate in the x–y plane is situated in the space defined by −3 m ≤ x ≤ 3 m and −3 m ≤ y ≤ 3 m. Find the total charge on the plate if the surface charge density is given by ρs = 4y2 (µC/m2 ). Solution: ρs = 4y2 Z. Q= S. ρs ds. Z 3Z 3. 4y2 dx dy −3 −3

(78) 3

(79) 3 4y3 x

(80)

(81)

(82)

(83) =

(84) = 432 µC = 0.432 3

(85) −3

(86) =. (mC).. −3. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(87) Exercise 4.2 A spherical shell centered at the origin extends between R = 2 cm and R = 3 cm. If the volume charge density is given by ρv = 3R × 10−4 (C/m3 ), find the total charge contained in the shell. Solution: ρv = 3R × 10−4 Z. Q=. ρv d V V Z 3 cm Z π. Z 2π. =. 3R × 10−4 · R2 sin θ dR dθ dφ. R=2 cm θ =0 φ =0

(88) 3 cm

(89) 3R4 −4

(90). × 10

(91) × 2 × 2π 2 cm   = 3π × 10−4 (3 × 10−2 )4 − (2 × 10−2 )4 = 0.61 =. 4. (nC).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(92) Exercise 4.3 Four charges of 10 µC each are located in free space at points with Cartesian coordinates (−3, 0, 0), (3, 0, 0), (0, −3, 0), and (0, 3, 0). Find the force on a 20-µC charge located at (0, 0, 4). All distances are in meters. Solution:. R1 = −ˆx 3 R2 = xˆ 3 R3 = −ˆy 3 R4 = yˆ 3 R = zˆ 4 QQ1 R − R1 F1 = 4πε0 |R − R1 |3 QQ2 R − R2 F2 = 4πε0 |R − R2 |3 QQ3 R − R3 F3 = 4πε0 |R − R3 |3 QQ4 R − R4 F4 = 4πε0 |R − R4 |3. QQ1 zˆ 4 + xˆ 3 4πε0 125 QQ2 zˆ 4 − xˆ 3 = 4πε0 125 QQ3 zˆ 4 + yˆ 3 = 4πε0 125 QQ4 zˆ 4 − yˆ 3 = 4πε0 125 =. QQ1 (ˆz 4 + xˆ 3) 500πε0 QQ2 = (ˆz 4 − xˆ 3) 500πε0 QQ3 = (ˆz 4 + yˆ 3) 500πε0 QQ4 = (ˆz 4 − yˆ 3) 500πε0 =. F = F1 + F2 + F3 + F4 =. 200 × 10−12 32 × 10−12 (ˆz 16) = zˆ = zˆ 0.23 500πε0 5π × 8.85 × 10−12. (N).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(93) Exercise 4.4 field zero?. Two identical charges are located on the x-axis at x = 3 and x = 7. At what point in space is the net electric. Solution: Since both charges are on the x-axis, the point at which the fields due to the two charges can cancel has to lie on the x-axis also. Intuitively, since the two charges are identical, that point is midway between them at (5, 0, 0).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(94) Exercise 4.5 In a hydrogen atom the electron and proton are separated by an average distance of 5.3 × 10−11 m. Find the magnitude of the electrical force Fe between the two particles, and compare it with the gravitational force Fg between them. Solution: Fe =. qe qp (1.6 × 10−19 )2 = = 8.2 × 10−8 N. 4πε0 R2 4π × 8.85 × 10−12 (5.3 × 10−11 )2. Fg =. Gme mp 6.67 × 10−11 × 9.11 × 10−31 × 1.67 × 10−27 = = 3.6 × 10−47 N. R2 (5.3 × 10−11 )2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(95) Exercise 4.6 An infinite sheet of charge with uniform surface charge density ρs is located at z = 0 (x–y plane), and another infinite sheet with density −ρs is located at z = 2 m, both in free space. Determine E in all regions. Solution: Per Eq. (4.25), for the sheet at z = 0,  ρs  for z > 0, zˆ 2ε , 0 E1 =  −ˆz ρs , for z < 0. 2ε0 Similarly, for the sheet at z = 2 m with charge density −ρs ,. E2 =.  ρs  −ˆz 2ε , for z > 2 m, 0.  zˆ ρs , 2ε0. for z < 2 m.. Hence,   0, for z < 0,   ρ s E = E1 + E2 = zˆ , for 0 < z < 2 m, ε0    0, for z > 2 m.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(96) Exercise 4.7 Two infinite lines of charge, each carrying a charge density ρl , are parallel to the z-axis and located at x = 1 and x = −1. Determine E at an arbitrary point in free space along the y-axis. Solution:. The distance between either line of charge and a point at y on the y-axis is r = (1 + y2 )1/2 . For line 1, r1 −ˆx + yˆ y rˆ 1 = . = r (1 + y2 )1/2 For line 2, rˆ 2 =. r2 xˆ + yˆ y . = r (1 + y2 )1/2. Using Eq. (4.33), E = E1 + E2 rˆ 1 ρl rˆ 2 ρl = + 2πε0 r 2πε0 r (−ˆx + yˆ y)ρl (ˆx + yˆ y)ρl yˆ ρl y = + = . 2πε0 (1 + y2 ) 2πε0 (1 + y2 ) πε0 (y2 + 1). Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(97) Exercise 4.8. A thin spherical shell of radius a carries a uniform surface charge density ρs . Use Gauss’s law to determine E.. Solution:. Z. D · ds = Q. n. S. Symmetry suggests that D is radial in direction. Hence, D = Rˆ DR ds = Rˆ ds Z. D · ds =. Z. DR ds = DR (4πR2 ) = Q. n. n. S. S. DR =. Q 4πR2. • For a Gaussian surface of radius R1 < a, no charge is enclosed. Hence, Q = 0, in which case E = 0. • For a Gaussian surface of radius R2 > a, Q = ρs (4πa2 ) and E=. ˆQ R 4πρs a2 ρ a2 D Rˆ ˆ ˆ s . = Dr = = R = R ε ε 4πεR22 4πεR22 εR22. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(98) Exercise 4.9 A spherical volume of radius a contains a uniform volume charge density ρv . Use Gauss’s law to determine D for (a) R ≤ a and (b) R ≥ a. Solution: (a). For R ≤ a,. Z. D · ds =. Z. Dr ds = Dr (4πR2 ). n. n. S. S. Q within a sphere of radius R is 4 Q = πR3 ρv 3 Hence, 4 4πR2 DR = πR3 ρv 3 ρv R , Dr = 3. D = Rˆ Dr = Rˆ. ρv R , 3. R ≤ a.. (b). Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(99) For R ≥ a, total charge in sphere is 4 Q = πa3 ρv , 3 4 3 2 4πR DR = πa ρv , 3 ρv a3 D = Rˆ Dr = Rˆ , R ≥ a. 3R2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(100) Exercise 4.10 Determine the electric potential at the origin due to four 20-µC charges residing in free space at the corners of a 2 m × 2 m square centered about the origin in the x–y plane. Solution:. For four identical charges all equidistant from the origin: √ 4Q , R = 2 (m) 4πε0 R √ 4 × 20 × 10−6 2 × 10−5 √ = = πε0 4πε0 2. V=. (V).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(101) Exercise 4.11 A spherical shell of radius R has a uniform surface charge density ρs . Determine the electric potential at the center of the shell. Solution: Application of (4.48b): 1 ρs 0 ds 4πε S0 R0 1 = · ρs (4πR2 ) 4πεR ρs R . = ε Z. V (R) =. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(102) Exercise 4.12 Determine the density of free electrons in aluminum, given that its conductivity is 3.5 × 107 (S/m) and its electron mobility is 0.0015 (m2 /V · s). Solution: σ = Ne µe e σ 3.5 × 107 = µe e 0.0015 × 1.6 × 10−19 = 1.46 × 1029 electrons/m3 .. Ne =. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(103) Exercise 4.13 The current flowing through a 100-m-long conducting wire of uniform cross section has a density of 3 × 105 (A/m2 ). Find the voltage drop across the length of the wire if the wire material has a conductivity of 2 × 107 (S/m). Solution: J = σE J E= σ V = El Jl = (where l = length of wire) σ 3 × 105 × 100 = = 1.5 (V). 2 × 107. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(104) Exercise 4.14 A 50-m-long copper wire has a circular cross section with radius r = 2 cm. Given that the conductivity of copper is 5.8 × 107 (S/m), determine (a) the resistance R of the wire and (b) the power dissipated in the wire if the voltage across its length is 1.5 (mV). Solution: (a) R=. l 50 = 7 σ A 5.8 × 10 × π(0.02)2 = 6.9 × 10−4 Ω.. (b) P=. V 2 (1.5 × 10−3 )2 = = 3.3 R 6.9 × 10−4. (mW).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(105) Exercise 4.15. Repeat part (b) of Exercise 4.14 by applying Eq. (4.80).. Solution: Z. P=. σ |E|2 d V. V 1.5 × 10−3 = = 3 × 10−5 l 50 P = σ |E|2 V. E=. (V/m). = 5.8 × 107 × (3 × 10−5 )2 × 50 × π(0.02)2 = 3.3. (mW).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(106) Exercise 4.16. Find E1 in Fig. 4-19 if E2 = xˆ 2 − yˆ 3 + zˆ 3 (V/m), ε1 = 2ε0 , ε2 = 8ε0 , and the boundary is charge free.. Solution: E2 = xˆ 2 − yˆ 3 + zˆ 3. (V/m). Given that the x–y plane is the boundary between the two media, the x- and y-components of E2 are parallel to the boundary, and therefore are the same across the two sides of the boundary. Thus, E1x = E2x = 2 E1y = E2y = −3. For the z-component, ε1 E1z = ε2 E2z (ρs = 0) ε2 8ε0 E1z = E2z = · 3 = 12. ε1 2ε0 Hence, E1 = xˆ 2 − yˆ 3 + zˆ 12. (V/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(107) Exercise 4.17. Repeat Exercise 4.16 for a boundary with surface charge density ρs = 3.54 × 10−11 (C/m2 ).. Solution: E2 = xˆ 2 − yˆ 3 + zˆ 3 From Exercise 4.16, E1x = 2 E1y = −3. For z-component, ε1 E1z − ε2 E2z = ρs ε2 E2z + ρs E1z = ε1 8ε0 × 3 + 3.54 × 10−11 = 2ε0 3.54 × 10−11 = 12 + 2 × 8.85 × 10−12 = 12 + 2 = 14 (V/m). Hence, E1 = xˆ 2 − yˆ 3 + zˆ 14. (V/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(108) Exercise 4.18 The radii of the inner and outer conductors of a coaxial cable are 2 cm and 5 cm, respectively, and the insulating material between them has a relative permittivity of 4. The charge density on the outer conductor is ρl = 10−4 (C/m). Use the expression for E derived in Example 4-12 to calculate the total energy stored in a 20-cm length of the cable. Solution: ρl 2πεr Z 1 εE 2 d V We = 2 V Z 5 cm 1 = εl E 2 (2πr dr) 2 r=2 cm Z 5 cm  ρl 2 = πεl r dr 2πεr 2 cm Z ρ 2 l 5 cm dr = l 4πε 2 cm r   ρ 2l 5 = l ln = 4.1 (J). 4πε 2 E=. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(109) Exercise 4.19. Use the result of Example 4-13 to find the surface charge density ρs on the surface of the conducting plane.. Solution: According to (4.95), ε1 E1n − ε2 E2n = ρs . In the present case, E2n (in conductor) = 0, ε1 = ε0 and E1n is the z-component of the expression given in Example 4-13, evaluated at z = 0, namely 2Qd 1 E1n = − · 2 . 2 4πε0 (x + y + d 2 )3/2 Hence, ρs = ε0 E1n = −. Qd . 2π(x2 + y2 + d 2 )3/2. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(110) Chapter 5 Exercise Solutions Exercise 5.1 Exercise 5.2 Exercise 5.3 Exercise 5.4 Exercise 5.5 Exercise 5.6 Exercise 5.7 Exercise 5.8 Exercise 5.9 Exercise 5.10 Exercise 5.11 Exercise 5.12 Exercise 5.13. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(111) Exercise 5.1 An electron moving in the positive x-direction perpendicular to a magnetic field experiences a deflection in the negative z-direction. What is the direction of the magnetic field? Solution: The magnetic force acting on a moving charged particle is Fm = qu × B In this case, q = −e u = xˆ u Fm = −ˆz Fm ×B −ˆz Fm = −ˆx ue× For the cross product to apply, B has to be in the positive y-direction.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(112) Exercise 5.2 A proton moving with a speed of 2 × 106 m/s through a magnetic field with magnetic flux density of 2.5 T experiences a magnetic force of magnitude 4 × 10−13 N. What is the angle between the magnetic field and the proton’s velocity? Solution: F = quB sin θ F sin θ = quB 4 × 10−13 1.6 × 10−19 × 2 × 106 × 2.5 = 0.5 =. θ = sin−1 0.5 = 30◦ or 150◦ .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(113) Exercise 5.3 A charged particle with velocity u is moving in a medium containing uniform fields E = xˆ E and B = yˆ B. What should u be so that the particle experiences no net force on it? Solution: Fe = qE = xˆ qE × B = q(u× × yˆ B) Fm = qu× For net force to be zero, Fm has to be along −ˆx, which requires u to be along +ˆz. Thus, qE = quB E u= B E u = zˆ . B If u also has a y-component, that component will exercise no force on the particle.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(114) Exercise 5.4 A horizontal wire with a mass per unit length of 0.2 kg/m carries a current of 4 A in the +x-direction. If the wire is placed in a uniform magnetic flux density B, what should the direction and minimum magnitude of B be in order to magnetically lift the wire vertically upward? (Hint: The acceleration due to gravity is g = −ˆz 9.8 m/s2 .) Solution: For a length l, Fg = −ˆz 0.2l × 9.8 = −ˆz 1.96l Fm = xˆ Il × B. (N). For Fm + Fg = 0, Fm has to be along +ˆz, which means that B has to be along +ˆy. Hence, 1.96l = IlB 1.96 B= = 0.49 (T), and I B = yˆ 0.49 (T).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(115) Exercise 5.5 A square coil of 100 turns and 0.5-m-long sides is in a region with a uniform magnetic flux density of 0.2 T. If the maximum magnetic torque exerted on the coil is 4 × 10−2 (N·m), what is the current flowing in the coil? Solution: Tmax = NIAB0 I=. Tmax 4 × 10−2 = =8 NAB0 100 × (0.5)2 × 0.2. (mA).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(116) Exercise 5.6 A semiinfinite linear conductor extends between z = 0 and z = ∞ along the z-axis. If the current I in the conductor flows along the positive z-direction, find H at a point in the x–y plane at a radial distance r from the conductor.. Solution: From (5.27), I (cos θ1 − cos θ2 ) 4πr For a conductor extending from z = 0 to z = ∞, θ1 = 0 and θ2 = π. Hence, H = φˆ. H = φˆ. I I (1 + 1) = φˆ 4πr 2πr. (A/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(117) Exercise 5.7 A wire carrying a current of 4 A is formed into a circular loop. If the magnetic field at the center of the loop is 20 A/m, what is the radius of the loop if the loop has (a) only one turn and (b) 10 turns? Solution: (a) From (5.35), I (at z = 0). 2a 4 I = = 0.1 a= 2H 2 × 20. H = zˆ. (m).. (b) NI 2a NI a= = 10 × 0.1 = 1 2H. H=. (m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(118) Exercise 5.8 A wire is formed into a square loop and placed in the x–y plane with its center at the origin and each of its sides parallel to either the x- or y-axes. Each side is 40 cm in length, and the wire carries a current of 5 A whose direction is clockwise when the loop is viewed from above. Calculate the magnetic field at the center of the loop. Solution:. The direction of the current will induce a magnetic field along −ˆz (according to the right-hand rule). At the center of the loop, each segment will contribute exactly the same amount. Each of the four contributions can be calculated using (5.29) with φˆ replaced with −ˆz: Il √ H1 = −ˆz . 2πr 4r2 + l 2 In this case r = l/2. Hence, H1 = −ˆz. Il I √ = −ˆz √ . 2 2 2 πl 2π(l/2) l + l. Finally, 4I H = 4H1 = −ˆz √ 2 πl 4×5 = −ˆz √ = −ˆz 11.25 2 π × 0.4. (A/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(119) Exercise 5.9 Current I flows in the inner conductor of a long coaxial cable and returns through the outer conductor. What is the magnetic field in the region outside the coaxial cable and why? Solution:. H = 0 outside the coaxial cable because the net current enclosed by the Amp`erian contour is zero.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(120) Exercise 5.10 The metal niobium becomes a superconductor with zero electrical resistance when it is cooled to below 9 K, but its superconductive behavior ceases when the magnetic flux density at its surface exceeds 0.12 T. Determine the maximum current that a 0.1-mm-diameter niobium wire can carry and remain superconductive. Solution: From (5.49), the magnetic field at r ≥ a from a wire is given by H=. I , 2πr. r ≥ a.. At the surface of the wire, r = a. Hence, B = µ0 H =. µ0 I , 2πa. 2πaB µ0 2π × 0.05 × 10−3 × 0.12 = = 30 A. 4π × 10−7. I=. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(121) Exercise 5.11 The magnetic vector M is the vector sum of the magnetic moments of all the atoms contained in a unit volume (1m3 ). If a certain type of iron with 8.5 × 1028 atoms/m3 contributes one electron per atom to align its spin magnetic moment along the direction of the applied field, find (a) the spin magnetic moment of a single electron, given that me = 9.1 × 10−31 (kg) and h¯ = 1.06 × 10−34 (J·s), and (b) the magnitude of M. Solution: (a) ms =. e¯h 1.6 × 10−19 × 1.06 × 10−34 = = 9.3 × 10−24 2me 2 × 9.1 × 10−31. (A·m2 ).. (b) M = nms = 8.5 × 1028 × 9.3 × 10−24 = 7.9 × 105. (A/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(122) Exercise 5.12 With reference to Fig. 5-24, determine the angle between H1 and nˆ 2 = zˆ if H2 = (ˆx3 + zˆ 2) (A/m), µr1 = 2, and µr2 = 8, and Js = 0.. Solution: H2 = xˆ 3 + zˆ 2 H1x = H2x = 3 µ1 H1z = µ2 H2z 8 µ2 H1z = H2z = × 2 = 8 µ1 2 Hence, H1 = xˆ 3 + zˆ 8 H1 · zˆ = H1 cos θ cos θ =. H1 · zˆ 8 8 =√ = √ = 0.936 H1 9 + 64 73. θ = 20.6◦ .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(123) Exercise 5.13 Use Eq. (5.89) to obtain an expression for B at a point on the axis of a very long solenoid but situated at its end points. How does B at the end points compare to B at the midpoint of the solenoid?. Solution: B = zˆ. µnI (sin θ2 − sin θ1 ) 2. For a point at P with θ1 = 0 and θ2 = 90◦ , B = zˆ. µnI µNI = zˆ , 2 2l. which is half as large as B at the midpoint.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(124) Chapter 6 Exercise Solutions Exercise 6.1 Exercise 6.2 Exercise 6.3 Exercise 6.4 Exercise 6.5 Exercise 6.6 Exercise 6.7. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(125) Exercise 6.1. tr if B = y ˆ B0 cos ωt? For the loop shown in Fig. 6-3, what is Vemf. tr = 0 because B is orthogonal to the loop’s surface normal ds. Solution: Vemf. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(126) Exercise 6.2 Suppose that the loop of Example 6-1 is replaced with a 10-turn square loop centered at the origin and having 20-cm sides oriented parallel to the x- and y-axes. If B = zˆ B0 x2 cos 103t and B0 = 100 T, find the current in the circuit. Solution:. Z. Φ=. B · ds. S. Z 0.1. Z 0.1. =. (ˆz 100x2 cos 103t) · zˆ dx dy. x=−0.1 y=−0.1. Z 0.1. = (100 cos 103t) × 0.2 x2 dx −0.1

(127) 3

(128) 0.1 3 x

(129) = 20 cos 10 t 3

(130) −0.1 20 = cos 103t((0.1)3 + (0.1)3 ) = 13.3 × 10−3 cos 103t. 3 Vemf R N dΦ =− R dt 10 d =− (13.3 × 10−3 cos 103t) = 133 sin 103t 1000 dt. I=. (mA).. At t = 0, dΦ/dt < 0 and Vemf > 0. Since the flux is decreasing, Lenz’s law requires I to be in the direction opposite that shown in the figure so that the flux inducted by I is in opposition to the trend of dΦ/dt. Hence, in terms of the indicated direction of I, I = −133 sin 103t (mA).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(131) Exercise 6.3 For the moving loop of Fig. 6-9, find I when the loop sides are at y1 = 4 m and y2 = 4.5 m. Also, reverse the direction of motion such that u = −ˆy5 (m/s).. Solution: At y1 = 4 m and y2 = 4.5 m, B(y1 ) = zˆ 0.2e−0.1×4 = zˆ 0.1340 B(y2 ) = zˆ 0.2e−0.1×4.5 = zˆ 0.1275 Z 1. V12 =. 2. (T). (T).. [u × B(y1 )] · dl. Z −l/2. =. (−ˆy 5 × zˆ 0.134) · xˆ dx. l/2. = 0.67l = 0.67 × 2 = 1.340. (V).. V43 = u B(y2 )l = 5 × 0.1275 × 2 = 1.275 I=. V43 −V12 1.275 − 1.340 = = −13 R 5. (V). (mA).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(132) Exercise 6.4 that case?. Suppose that we turn the loop of Fig. 6-9 so that its surface is parallel to the x–z plane. What would I be in. Solution: I = 0, because in that case V12 and V43 would always be equal because both are always at the same value of y, and hence the B field is the same for both of them.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(133) Exercise 6.5 A poor conductor is characterized by a conductivity σ = 100 (S/m) and permittivity ε = 4ε0 . At what angular frequency ω is the amplitude of the conduction current density J equal to the amplitude of the displacement current density Jd ? Solution: |J| = σ |E|

(134)

(135)

(136) ∂D

(137)

(138)

(139) = | jωεE| = ωε|E| |Jd | =

(140) ∂t

(141) If |J| = |Jd |, then σ = ωε, or ω=. 100 σ σ = = 2.82 × 1012 = ε εr ε0 4 × 8.85 × 10−12. (rad/s).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(142) Exercise 6.6 Determine (a) the relaxation time constant and (b) the time it takes for a charge density to decay to 1% of its initial value in quartz, given that εr = 5 and σ = 10−17 S/m. Solution: (a) τr =. ε εr ε0 5 × 8.85 × 10−12 = = = 4.425 × 106 s = 51.2 days. σ σ 10−17. (b) ρv (t) = ρv0 e−t/τr ρv = 0.01 = e−t/51.2 ρv0 t ln 0.01 = − 51.2 t = −51.2 ln 0.01 = 236 days.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(143) Exercise 6.7 The magnetic field intensity of an electromagnetic wave propagating in a lossless medium with ε = 9ε0 and µ = µ0 is given by H(z,t) = xˆ 0.3 cos(108t − kz + π/4) (A/m). Find E(z,t) and k. Solution: √ √ √ k = ω µε = ω εr ε0 µ0 √ ω εr 108 × 3 =1 = = c 3 × 108. (rad/m).. H(z,t) = xˆ 0.3 cos(108t − kz + π/4) (A/m) e = xˆ 0.3e− jkz e jπ/4 H(z) e = jωε E e ∇×H e = 1 ∇×H e E jωε ∂ e 1 yˆ (H = x) jωε ∂ z 1 ∂ = yˆ (0.3e− jkz e jπ/4 ) jωε ∂ z 0.3k − jkz jπ/4 e e = −ˆy ωε 0.3 × 1 = −ˆy 8 e− jkz e jπ/4 10 × 8.85 × 10−12 × 9 = −ˆy 37.7e− jkz e jπ/4 e e jωt ] E(z,t) = Re[E(z) = −ˆy 37.7 cos(108t − z + π/4) (V/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(144) Chapter 7 Exercise Solutions Exercise 7.1 Exercise 7.2 Exercise 7.3 Exercise 7.4 Exercise 7.5 Exercise 7.6 Exercise 7.7 Exercise 7.8 Exercise 7.9 Exercise 7.10 Exercise 7.11. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(145) Exercise 7.1 A 10-MHz uniform plane wave is traveling in a nonmagnetic medium with µ = µ0 and εr = 9. Find (a) the phase velocity, (b) the wavenumber, (c) the wavelength in the medium, and (d) the intrinsic impedance of the medium. Solution: (a) 1 1 c 3 × 108 up = √ =√ = 108 √ =√ = √ µε µ0 ε0 εr εr 9. (m/s).. (b) k=. 2π × 107 ω = = 0.2π up 108. (rad/m).. (c) k=. 2π , λ. λ=. 2π 2π = = 10 k 0.2π. (m).. (d) r η=. µ = ε. r. 377 µ0 1 ·√ = = 125.67 Ω. ε0 εr 3. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(146) Exercise 7.2 The electric field phasor of a uniform plane wave traveling in a lossless medium with an intrinsic impedance e = zˆ 10e− j4πy (mV/m). Determine (a) the associated magnetic field phasor and (b) the instantaneous of 188.5 Ω is given by E expression for E(y,t) if the medium is nonmagnetic (µ = µ0 ). Solution: e is along k× ˆ × E = yˆ × zˆ E = xˆ E. Hence, (a) E is along +ˆz and the wave direction kˆ is along +ˆy. It follows that H −3. e = xˆ 10 × 10 H 188.5. e− j4πy = xˆ 53e− j4πy. (µA/m).. (b) From the given coefficient of y, k = 4π. (rad/m).. √ From η = η0 / εr ,  εr =. η0 η. 2.  =. 377 188.5. 2 = 4.. 1 c 3 × 108 up = √ =√ = = 1.5 × 108 µε εr 2 ω = kup = 4π × 1.5 × 108 = 6π × 108. (m/s).. (rad/s).. e e jωt ] E(z,t) = Re[E(z) = zˆ 10 cos(ωt − ky) = zˆ 10 cos(6π × 108t − 4πy) (mV/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(147) Exercise 7.3 If the magnetic field phasor of a plane wave traveling in a medium with intrinsic impedance η = 100 Ω is e = (ˆy 10 + zˆ 20)e− j4x (mA/m), find the associated electric field phasor. given by H Solution: e = (ˆy 10 + zˆ 20)e− j4x H. (mA/m). e denotes that kˆ = xˆ . The phase factor of H e = −η k× e ˆ ×H E = −100[ˆx × (ˆy 10 + zˆ 20)]e− j4x × 10−3 = (−ˆz + yˆ 2)e− j4x. (V/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(148) Exercise 7.4. Repeat Exercise 7.3 for a magnetic field given by e = yˆ (10e− j3x − 20e j3x ) (mA/m). H. Solution: e = yˆ (10e− j3x − 20e j3x ) (mA/m) H This magnetic field is composed of two components, one with amplitude of 10 (mA/m) belonging to a wave traveling along +ˆx and another with amplitude of 20 (mA/m) belonging to a separate wave traveling in the opposite direction (−ˆx). Hence, we need to treat these two components separately: e =H e1 +H e2 H with e 1 = yˆ 10e− j3x (mA/m), H e 2 = −ˆy 20e− j3x (mA/m). H For the first wave: e 1 = −η k× e1 ˆ ×H E = −100(ˆx × yˆ 10e− j3x ) = −ˆz e− j3x. (V/m).. For the second wave: e 2 = −100[−ˆx × (−ˆy 20e j3x )] E = −ˆz 2e j3x. (V/m).. e=E e1 + E e2 E = −ˆz (e− j3x + 2e j3x ) (V/m).. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(149) Exercise 7.5. The electric field of a plane wave is given by E(z,t) = xˆ 3 cos(ωt − kz) + yˆ 4 cos(ωt − kz) (V/m).. Determine (a) the polarization state, (b) the modulus of E, and (c) the inclination angle. Solution: (a) Since the x- and y-components are exactly in phase with each other, the polarization state has to be linear. This can also be ascertained by verifying that χ = 0. From the given expression for E(z,t), δx = δy = 0. Hence, δ = δy − δx = 0.   4 −1 ay ψ0 = tan = tan−1 = 53.1◦ . ax 3 sin 2χ = (sin 2ψ0 ) sin δ = 0 χ = 0. (b) |E| = [Ex2 + Ey2 ]1/2 = 5 cos(ωt − kz) (V/m). (c) From part (a), ψ0 = 53.1◦ .. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(150) Exercise 7.6. e = (ˆy − zˆ j)e− jkx , determine the polarization state. If the electric field phasor of a TEM wave is given by E. Solution: − j = e− jπ · e jπ/2 = e− jπ/2 Hence, e = (ˆy − zˆ j)e− jkx E = yˆ + zˆ e− jkx e− jπ/2 It follows that δy = 0,. δz = −. δ = δz − δy = −. π . 2. π . 2. Since ay = az = 1 and δ = −π/2, the wave is RHC.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(151) Exercise 7.7 The constitutive parameters of copper are µ = µ0 = 4π × 10−7 (H/m), ε = ε0 ' (1/36π) × 10−9 (F/m), and σ = 5.8 × 107 (S/m). Assuming that these parameters are frequency independent, over what frequency range of the electromagnetic spectrum [see Fig. 1-16] is copper a good conductor? Solution: Good conductor implies that. ε 00 σ = > 100 0 ε ωε. or σ 100ε σ 5.8 × 107 f< = = 1.04 × 1016 Hz. 200πε 200π × (1/36π) × 10−9. ω = 2π f <. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(152) Exercise 7.8 Over what frequency range may dry soil, with εr = 3, µr = 1, and σ = 10−4 (S/m), be regarded as a low-loss dielectric medium? Solution: Low loss dielectric implies that. ε 00 σ = < 0.01 ε0 ωε. or σ 0.01ε 100 × 10−4 100σ = = 60 MHz. f> 2πεr ε0 2π × 3 × (1/36π) × 10−9. ω = 2π f >. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(153) Exercise 7.9 For a wave traveling in a medium with a skin depth δs , what is the amplitude of E at a distance of 3δs compared with its initial value? Solution: For a wave traveling in the z-direction: |E(z)| = |E0 |e−αz = |E0 |e−z/δs where we used the fact that δs = 1/α. At z = 3δs , |E(z = 3δs )| = e−3 = 0.05 = 5%. |E0 |. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(154) Exercise 7.10. Convert the following values of the power ratio G to decibels: (a) 2.3, (b) 4 × 103 , (c) 3 × 10−2 .. Solution: (a) 10 log 2.3 = 3.6 dB. (b) 10 log 4 × 103 = 10 log 4 + 10 log 103 = 6 + 30 = 36 dB. (c) 10 log 3 × 10−2 = 10 log 3 + 10 log 10−2 = 4.8 − 20 = −15.2 dB.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(155) Exercise 7.11 Find the voltage ratio g in natural units corresponding to the following decibel values of the power ratio G: (a) 23 dB, (b) −14 dB, (c) −3.6 dB. Solution: (a) 10 log G = 23 dB 23 log G = = 2.3 10 G = 102.3 = 199.53 √ √ g = G = 199.53 = 14.13. (b) 10 log G = −14 dB log G = −1.4 G = 10−1.4 = 0.04 √ g = G = 0.2. (c) 10 log G = −3.6 dB log G = −0.36 G = 10−0.36 = 0.436 √ g = G = 0.66.. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(156) Chapter 8 Exercise Solutions Exercise 8.1 Exercise 8.2 Exercise 8.3 Exercise 8.4 Exercise 8.5 Exercise 8.6 Exercise 8.7 Exercise 8.8 Exercise 8.9 Exercise 8.10 Exercise 8.11 Exercise 8.12 Exercise 8.13 Exercise 8.14. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

(157) Exercise 8.1 To eliminate reflections of normally incident plane waves, a dielectric slab of thickness d and relative permittivity εr2 is to be inserted between two semi-infinite media with relative permittivities εr1 = 1 and εr3 = 16. Use the quarter-wave transformer technique to select d and εr2 . Assume f = 3 GHz. Solution: The quarter-wave transformer technique requires that the in-between layer be λ /4 thick (as well as λ /4 plus multiples of λ /2) and that its characteristic impedance be related to the impedances of the two media as follows: η2 =. √ η1 η2 .. Thus, µ0 = εr ε0 or εr =. r. µ0 µ0 εr1 ε0 εr2 ε0. √ √ εr1 εr2 = 1 × 16 = 4.. At 3 GHz, λ0 c 3 × 108 √ = 5 cm. λ=√ = √ = εr f εr 3 × 109 4 Hence, d=. λ nλ + = (1.25 + 2.5n) (cm). 4 4. Fawwaz T. Ulaby, Eric Michielssen, and Umberto Ravaioli, Fundamentals of Applied Electromagnetics. c 2010 Prentice Hall.

References

Related documents

To investigate the effects of aluminium nitride (AlN) buffer layer thickness and various number of coated process cycles on the surface morphologies, structural and

The City of Kenosha used the 2010 Census, the 2006-2010 ACS default needs assessment data, results from the online survey, and comments received during the public input session,

To attach existing share transactions to a cash account, go to the Transactions view of the attached portfolio and double-click on the relevant transaction.. The Record a

Analysis of interviews identified various effects of the ACA on occupational therapists in private practice including, but not limited to, trends in prevention, i

This contribution looks at the interplay of different logics of governing the environment, resources and people in Cambodia that materialise in overlapping zones of exclusion,

Leaving nothing to chance in your measuring tasks, Mitutoyo offers an extremely wide range of contact and non-contact probe systems, each component carefully coordinated with

In addition to the above basic operations, MATLAB has two forms of matrix division: the left inverse operator \ or the right inverse operator /.. Matrices of the same dimension may

Supplier Keramik Granit Homogenous Tile (Lokal dan Cina) DAN Sanitary Ware Products. Bagi KASKUSER yang butuh Keramik Granit Homogenous Tile dan SANITARY WARE, bisa hubungi di